Skip to main content

Hodgkin Lymphoma: Revisited

  • Chapter
  • First Online:
  • 1257 Accesses

Abstract

Hodgkin lymphoma (HL), which in the past was called Hodgkin disease, has always been one of the front runners of research in lymphomas. It usually arises from germinal centre or post-germinal centre B cells. Composition of HL is commonly defined as having predominantly inflammatory cells having minor population of neoplastic cells which were named as Reed–Sternberg cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7.

    Article  PubMed  Google Scholar 

  2. Ries LA, Kosary CL, Hankey BF, et al., editors. SEER cancer statistics review: 1973-1994, NIH publ no. 97-2 789. Bethesda: National Cancer Institute; 1997.

    Google Scholar 

  3. Correa P, O’Conor GT. Epidemiologic patterns of Hodgkin’s disease. Int J Cancer. 1971;8:192.

    Article  CAS  PubMed  Google Scholar 

  4. Correa P, O’Conor GT. Geographic pathology of lymphoreticular tumours: summary of survey from the geographic pathology committee of the international union against cancer. J Natl Cancer Inst. 1973;50:1609.

    Article  CAS  PubMed  Google Scholar 

  5. Gutensohn N, Cole P. Childhood social environment and Hodgkin’s disease. N Engl J Med. 1981;304:135.

    Article  CAS  PubMed  Google Scholar 

  6. Alexander FE, Jarrett RF, Lawrence D, et al. Risk factors for Hodgkin’s disease by Epstein-Barr virus (EBV) status: prior infection by EBV and other agents. Br J Cancer. 2000;82:1117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chang KL, Albújar PF, Chen YY, et al. High prevalence of Epstein-Barr virus in the Reed-Sternberg cells of Hodgkin’s disease occurring in Peru. Blood. 1993;81:496.

    CAS  PubMed  Google Scholar 

  8. Hjalgrim H, Askling J, Rostgaard K, et al. Characteristics of Hodgkin’s lymphoma after infectious mononucleosis. N Engl J Med. 2003;349:1324.

    Article  CAS  PubMed  Google Scholar 

  9. Tinguely M, Vonlanthen R, Müller E, et al. Hodgkin’s disease-like lymphoproliferative disorders in patients with different underlying immunodeficiency states. Mod Pathol. 1998;11:307.

    CAS  PubMed  Google Scholar 

  10. Carbone A, Gloghini A, Larocca LM, et al. Human immunodeficiency virus-associated Hodgkin’s disease derives from post-germinal center B cells. Blood. 1999;93:2319.

    CAS  PubMed  Google Scholar 

  11. Levine AM. HIV-associated Hodgkin’s disease. Biologic and clinical aspects. Hematol Oncol Clin North Am. 1996;10:1135.

    Article  CAS  PubMed  Google Scholar 

  12. Weiss LM, Chen YY, Liu XF, Shibata D. Epstein-Barr virus and Hodgkin’s disease. A correlative in situ hybridization and polymerase chain reaction study. Am J Pathol. 1991;139:1259.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gledhill S, Gallagher A, Jones DB, et al. Viral involvement in Hodgkin’s disease: detection of clonal type A Epstein-Barr virus genomes in tumour samples. Br J Cancer. 1991;64:227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gahn TA, Schildkraut CL. The Epstein-Barr virus origin of plasmid replication, oriP, contains both the initiation and termination sites of DNA replication. Cell. 1989;58:527.

    Article  CAS  PubMed  Google Scholar 

  15. Kilger E, Kieser A, Baumann M, Hammerschmidt W. Epstein-Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J. 1998;17:1700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jarrett RF, MacKenzie J. Epstein-Barr virus and other candidate viruses in the pathogenesis of Hodgkin’s disease. Semin Hematol. 1999;36:260.

    CAS  PubMed  Google Scholar 

  17. Sylla BS, Hung SC, Davidson DM, et al. Epstein-Barr virus-transforming protein latent infection membrane protein 1 activates transcription factor NF-kappaB through a pathway that includes the NF-kappaB-inducing kinase and the IkappaB kinases IKKalpha and IKKbeta. Proc Natl Acad Sci U S A. 1998;95:10106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cader FZ, Vockerodt M, Bose S, et al. The EBV oncogene LMP1 protects lymphoma cells from cell death through the collagen-mediated activation of DDR1. Blood. 2013;122:4237.

    Article  CAS  PubMed  Google Scholar 

  19. Mancao C, Hammerschmidt W. Epstein-Barr virus latent membrane protein 2A is a B-cell receptor mimic and essential for B-cell survival. Blood. 2007;110:3715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rengstl B, Newrzela S, Heinrich T, et al. Incomplete cytokinesis and re-fusion of small mononucleated Hodgkin cells lead to giant multinucleated Reed-Sternberg cells. Proc Natl Acad Sci U S A. 2013;110:20729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xavier de Carvalho A, Maiato H, Maia AF, et al. Reed-Sternberg cells form by abscission failure in the presence of functional Aurora B kinase. PLoS One. 2015;10:e0124629.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Tzankov A, Zimpfer A, Pehrs AC, et al. Expression of B-cell markers in classical Hodgkin lymphoma: a tissue microarray analysis of 330 cases. Mod Pathol. 2003;16:1141.

    Article  PubMed  Google Scholar 

  23. Kadin ME, Muramoto L, Said J. Expression of T-cell antigens on Reed-Sternberg cells in a subset of patients with nodular sclerosing and mixed cellularity Hodgkin’s disease. Am J Pathol. 1988;130:345.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Liso A, Capello D, Marafioti T, et al. Aberrant somatic hypermutation in tumor cells of nodular-lymphocyte predominant and classic Hodgkin lymphoma. Blood. 2006;108:1013.

    Article  CAS  PubMed  Google Scholar 

  25. Marafioti T, Hummel M, Foss HD, et al. Hodgkin and Reed-Sternberg cells represent an expansion of a single clone originating from a germinal center B-cell with functional immunoglobulin gene rearrangements but defective immunoglobulin transcription. Blood. 2000;95:1443.

    CAS  PubMed  Google Scholar 

  26. Kanzler H, Küppers R, Hansmann ML, Rajewsky K. Hodgkin and Reed-Sternberg cells in Hodgkin’s disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J Exp Med. 1996;184:1495.

    Article  CAS  PubMed  Google Scholar 

  27. Theil J, Laumen H, Marafioti T, et al. Defective octamer-dependent transcription is responsible for silenced immunoglobulin transcription in Reed-Sternberg cells. Blood. 2001;97:3191.

    Article  CAS  PubMed  Google Scholar 

  28. Stein H, Marafioti T, Foss HD, et al. Down-regulation of BOB.1/OBF.1 and Oct2 in classical Hodgkin disease but not in lymphocyte predominant Hodgkin disease correlates with immunoglobulin transcription. Blood. 2001;97:496.

    Article  CAS  PubMed  Google Scholar 

  29. Jundt F, Kley K, Anagnostopoulos I, et al. Loss of PU.1 expression is associated with defective immunoglobulin transcription in Hodgkin and Reed-Sternberg cells of classical Hodgkin disease. Blood. 2002;99:3060.

    Article  CAS  PubMed  Google Scholar 

  30. Ushmorov A, Ritz O, Hummel M, et al. Epigenetic silencing of the immunoglobulin heavy-chain gene in classical Hodgkin lymphoma-derived cell lines contributes to the loss of immunoglobulin expression. Blood. 2004;104:3326.

    Article  CAS  PubMed  Google Scholar 

  31. Marafioti T, Pozzobon M, Hansmann ML, et al. Expression of intracellular signaling molecules in classical and lymphocyte predominance Hodgkin disease. Blood. 2004;103:188.

    Article  CAS  PubMed  Google Scholar 

  32. Ushmorov A, Leithäuser F, Sakk O, et al. Epigenetic processes play a major role in B-cell-specific gene silencing in classical Hodgkin lymphoma. Blood. 2006;107:2493.

    Article  CAS  PubMed  Google Scholar 

  33. Mathas S, Janz M, Hummel F, et al. Intrinsic inhibition of transcription factor E2A by HLH proteins ABF-1 and Id2 mediates reprogramming of neoplastic B cells in Hodgkin lymphoma. Nat Immunol. 2006;7:207.

    Article  CAS  PubMed  Google Scholar 

  34. Renné C, Martin-Subero JI, Eickernjäger M, et al. Aberrant expression of ID2, a suppressor of B-cell specific gene expression, in Hodgkin’s lymphoma. Am J Pathol. 2006;169:655.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Scheeren FA, Diehl SA, Smit LA, et al. IL-21 is expressed in Hodgkin lymphoma and activates STAT5: evidence that activated STAT5 is required for Hodgkin lymphomagenesis. Blood. 2008;111:4706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gilmore TD, Kalaitzidis D, Liang MC, Starczynowski DT. The c-Rel transcription factor and B-cell proliferation: a deal with the devil. Oncogene. 2004;23:2275.

    Article  CAS  PubMed  Google Scholar 

  37. Horie R, Watanabe T, Morishita Y, et al. Ligand-independent signaling by overexpressed CD30 drives NFkappaB activation in Hodgkin-Reed-Sternberg cells. Oncogene. 2002;21:2493.

    Article  CAS  PubMed  Google Scholar 

  38. Horie R, Watanabe T, Ito K, et al. Cytoplasmic aggregation of TRAF2 and TRAF5 proteins in the Hodgkin- Reed-Sternberg cells. Am J Pathol. 2002;160:1647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Buri C, Körner M, Schärli P, et al. CC chemokines and the receptors CCR3 and CCR5 are differentially expressed in the nonneoplastic leukocytic infiltrates of Hodgkin disease. Blood. 2001;97:1543.

    Article  CAS  PubMed  Google Scholar 

  40. Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 1998;16:225.

    Article  CAS  PubMed  Google Scholar 

  41. Wu M, Lee H, Bellas RE, et al. Inhibition of NF-kappaB/Rel induces apoptosis of murine B cells. EMBO J. 1996;15:4682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Takeda K, Kamanaka M, Tanaka T, et al. Impaired IL-13-mediated functions of macrophages in STAT6- deficient mice. J Immunol. 1996;157:3220.

    CAS  PubMed  Google Scholar 

  43. Skinnider BF, Elia AJ, Gascoyne RD, et al. Signal transducer and activator of transcription 6 is frequently activated in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood. 2002;99:618.

    Article  CAS  PubMed  Google Scholar 

  44. Kreher S, Bouhlel MA, Cauchy P, et al. Mapping of transcription factor motifs in active chromatin identifies IRF5 as key regulator in classical Hodgkin lymphoma. Proc Natl Acad Sci U S A. 2014;111:E4513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fhu CW, Graham AM, Yap CT, et al. Reed-Sternberg cell-derived lymphotoxin-α activates endothelial cells to enhance T-cell recruitment in classical Hodgkin lymphoma. Blood. 2014;124:2973.

    Article  CAS  PubMed  Google Scholar 

  46. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, Advani R, Ghielmini M, Salles GA, Zelenetz AD, Jaffe ES. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127:2375–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mauch PM, Kalish LA, Kadin M, et al. Patterns of presentation of Hodgkin disease. Implications for etiology and pathogenesis. Cancer. 1993;71:2062.

    Article  CAS  PubMed  Google Scholar 

  48. Kaplan HS. Hodgkin's disease. 2nd ed. Cambridge: Harvard University Press; 1980.

    Google Scholar 

  49. Good GR, DiNubile MJ. Images in clinical medicine. Cyclic fever in Hodgkin’s disease (Pel-Ebstein fever). N Engl J Med. 1995;332:436.

    Article  CAS  PubMed  Google Scholar 

  50. Gobbi PG, Cavalli C, Gendarini A, et al. Reevaluation of prognostic significance of symptoms in Hodgkin’s disease. Cancer. 1985;56:2874.

    Article  CAS  PubMed  Google Scholar 

  51. Atkinson K, Austin DE, McElwain TJ, Peckham MJ. Alcohol pain in Hodgkin’s disease. Cancer. 1976;37:895.

    Article  CAS  PubMed  Google Scholar 

  52. Cavalli F. Rare syndromes in Hodgkin’s disease. Ann Oncol. 1998;9(Suppl 5):S109.

    Article  PubMed  Google Scholar 

  53. Lucker GP, Steijlen PM. Acrokeratosis paraneoplastica (Bazex syndrome) occurring with acquired ichthyosis in Hodgkin’s disease. Br J Dermatol. 1995;133:322.

    Article  CAS  PubMed  Google Scholar 

  54. Perifanis V, Sfikas G, Tziomalos K, et al. Skin involvement in Hodgkin’s disease. Cancer Investig. 2006;24:401.

    Article  Google Scholar 

  55. Dabbs DJ, Striker LM, Mignon F, Striker G. Glomerular lesions in lymphomas and leukemias. Am J Med. 1986;80:63.

    Article  CAS  PubMed  Google Scholar 

  56. Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 15-1983. A 24-year-old man with cervical lymphadenopathy and the nephrotic syndrome. N Engl J Med. 1983;308:888.

    Article  Google Scholar 

  57. Seymour JF, Gagel RF. Calcitriol: the major humoral mediator of hypercalcemia in Hodgkin’s disease and non-Hodgkin’s lymphomas. Blood. 1993;82:1383.

    CAS  PubMed  Google Scholar 

  58. Rieke JW, Donaldson SS, Horning SJ. Hypercalcemia and vitamin D metabolism in Hodgkin’s disease. Is there an underlying immunoregulatory relationship? Cancer. 1989;63:1700.

    Article  CAS  PubMed  Google Scholar 

  59. Di Biagio E, Sánchez-Borges M, Desenne JJ, et al. Eosinophilia in Hodgkin’s disease: a role for interleukin 5. Int Arch Allergy Immunol. 1996;110:244.

    Article  PubMed  Google Scholar 

  60. Teruya-Feldstein J, Jaffe ES, Burd PR, et al. Differential chemokine expression in tissues involved by Hodgkin’s disease: direct correlation of eotaxin expression and tissue eosinophilia. Blood. 1999;93:2463.

    CAS  PubMed  Google Scholar 

  61. Peters MV, Alison RE, Bush RS. Natural history of Hodgkin’s disease as related to staging. Cancer. 1966;19:308.

    Article  Google Scholar 

  62. Kaplan HS. The radical radiotherapy of regionally localized Hodgkin’s disease. Radiology. 1962;78:553.

    Article  CAS  PubMed  Google Scholar 

  63. Rosenberg SA, Kaplan HS. Evidence for an orderly progression in the spread of Hodgkin’s disease. Cancer Res. 1966;26:1225.

    CAS  PubMed  Google Scholar 

  64. Klimm B, Franklin J, Stein H, et al. Lymphocyte-depleted classical Hodgkin’s lymphoma: a comprehensive analysis from the German Hodgkin study group. J Clin Oncol. 2011;29:3914.

    Article  PubMed  Google Scholar 

  65. NCCN guidelines version 2; 2016.

    Google Scholar 

  66. Gaulard P, Jaffe E, Krenacs L, Macon WR. Hepatosplenic T-cell lymphoma. In: Swerdlow SH, et al., editors. WHO classification of tumours of hematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 292–3.

    Google Scholar 

  67. Martelli M, Ferreri AJ, Johnson P. Primary mediastinal large B cell lymphoma. Crit Rev Oncol Hematol. 2008;68(3):256–63.

    Article  PubMed  Google Scholar 

  68. Barrington SF, Mikhaael NG, et al. Role of imaging in the staging and response assessment of lymphoma: consensus of International conference on Malignant lymphoma Imaging work group. J Clin Oncol. 2014;32(27):3048–58.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Carbone PP, Kaplan HS, Musshoff K, et al. Report of the Committee on Hodgkin’s Disease Staging Classification. Cancer Res. 1971;31:1860.

    CAS  PubMed  Google Scholar 

  70. Lister TA, Crowther D, Sutcliffe SB, et al. Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin’s disease: Cotswolds meeting. J Clin Oncol. 1989;7:1630.

    Article  CAS  PubMed  Google Scholar 

  71. Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32:3059.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Barrington SF, Mikhaeel NG. When should FDG-PET be used in the modern management of lymphoma? Br J Haematol. 2014;164:315.

    Article  PubMed  Google Scholar 

  73. Hutchings M, Loft A, Hansen M, et al. Position emission tomography with or without computed tomography in the primary staging of Hodgkin’s lymphoma. Haematologica. 2006;91:482.

    PubMed  Google Scholar 

  74. Naumann R, Beuthien-Baumann B, Reiss A, et al. Substantial impact of FDG PET imaging on the therapy decision in patients with early-stage Hodgkin’s lymphoma. Br J Cancer. 2004;90:620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Barrington SF, Kirkwood AA, Franceschetto A, et al. PET-CT for staging and early response: results from the Response-Adapted Therapy in Advanced Hodgkin Lymphoma study. Blood. 2016;127:1531.

    Article  CAS  PubMed  Google Scholar 

  76. Advani RH, Horning SJ. Treatment of early-stage Hodgkin’s disease. Semin Hematol. 1999;36:270.

    CAS  PubMed  Google Scholar 

  77. Ng AK, Weeks JC, Mauch PM, Kuntz KM. Decision analysis on alternative treatment strategies for favorable-prognosis, early-stage Hodgkin’s disease. J Clin Oncol. 1999;17:3577.

    Article  CAS  PubMed  Google Scholar 

  78. Moccia AA, Donaldson J, Chhanabhai M, Hoskins PJ, Klasa RJ, Savage KJ, Shenkier TN, Slack GW, Skinnider B, Gascoyne RD, Connors JM, Sehn LH. International Prognostic Score in advanced-stage Hodgkin’s lymphoma: altered utility in the modern era. J Clin Oncol. 2012;30(27):3383. Epub 2012 Aug 6.

    Article  PubMed  Google Scholar 

  79. Stein RS. Hodgkin’s disease. In: Lee GR, Foerester J, Lukens J, editors. Wintrobe’s clinical hematology. 10th ed. Baltimore: Williams and Wilkins; 1999. p. 2530–71.

    Google Scholar 

  80. Guermazi A, Brice P, de Kerviler EE, Fermé C, Hennequin C, Meignin V, et al. Extranodal Hodgkin disease: spectrum of disease. Radiographics. 2001;21:161–79.

    Article  CAS  PubMed  Google Scholar 

  81. Eustace S, O’Regan R, Graham D, Carney D. Primary multifocal skeletal Hodgkin’s disease confined to bone. Skelet Radiol. 1995;24:61–3.

    Article  CAS  Google Scholar 

  82. Fried G, Ben Arieh Y, Haim N, Dale J, Stein M. Primary Hodgkin’s disease of the bone. Med Pediatr Oncol. 1995;24:204–7.

    Article  CAS  PubMed  Google Scholar 

  83. Munker R, Harenclever D, Brosteanu O. Bone marrow involvement in Hodgkin’s disease: an analysis of 135 consecutive cases. German Hodgkin’s lymphoma study group. J Clin Oncol. 1996;14:682–3.

    Article  Google Scholar 

  84. Ostrowski ML, Inwards CY, Strickler JG, Witzig TE, Wenger DE, Unni KK. Osseous Hodgkin disease. Cancer. 1999;85:1166–78.

    Article  CAS  PubMed  Google Scholar 

  85. Hasenclever D, Diehl V. A prognostic score for advanced disease—international prognostic factors on advanced Hodgkin disease. NEJM. 1998;339:1506–14.

    Article  CAS  PubMed  Google Scholar 

  86. Ansell SM. Hodgkin lymphoma: 2016 update on diagnosis, risk-stratification, and management. Am J Hematol. 2016;91(4):434–42.

    Article  CAS  PubMed  Google Scholar 

  87. Hutchings M, Loft A, Hansen M, et al. FDGPET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma. Blood. 2006;107:52–9.

    Article  CAS  PubMed  Google Scholar 

  88. Gallamini A, Hutchings M, Rigacci L, et al. Early interim 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography is prognostically superior to international prognostic score in advanced-stage Hodgkin’s lymphoma: a report from a joint Italian-Danish study. J Clin Oncol. 2007;25:3746–52.

    Article  CAS  PubMed  Google Scholar 

  89. Horning S. Hodgkin’s disease. In: Kaye S, editor. Textbook of medical oncology. 2nd ed. London: Martin Dunitz Publishers; 2000. p. 461–74.

    Google Scholar 

  90. Diehl V, Mauch PM, Harris NL. Hodgkin’s disease. In: De Vita VT, Hellman S, Rosenberg SA, editors. Principles and practice of oncology, vol. 2. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 2339–86.

    Google Scholar 

  91. Longo DL, Duffey PL, Young RC, et al. Conventional- dose salvage combination chemotherapy in patients relapsing with Hodgkin’s disease after combination chemotherapy: the low probability for cure. J Clin Oncol. 1992;10:210–8.

    Article  CAS  PubMed  Google Scholar 

  92. Bonfante V, Santoro A, Viviani S, et al. Outcome of patients with Hodgkin’s disease failing after primary MOPP-ABVD. J Clin Oncol. 1997;15:528–34.

    Article  CAS  PubMed  Google Scholar 

  93. Andre M, Henry-Amar M, Pico JL, et al. Comparison of high-dose therapy and autologous stem-cell transplantation with conventional therapy for Hodgkin’s disease induction failure: a case-control study. Societe Francaise de Greffe de Moelle. J Clin Oncol. 1999;17:222–9.

    Article  CAS  PubMed  Google Scholar 

  94. Reece DE, Barnett MJ, Shepherd JD, et al. High dose cyclophosphamide, carmustine (BCNU), and etoposide (VP16-213) with or without cisplatin (CBV 1/2 P) and autologous transplantation for patients with Hodgkin’s disease who fail to enter a complete remission after combination chemotherapy. Blood. 1995;86:451–6.

    CAS  PubMed  Google Scholar 

  95. Linch DC, Winfield D, Goldstone AH, et al. Dose intensification with autologous bone marrow transplantation in relapsed and resistant Hodgkin’s disease: results of a BNLI randomised trial. Lancet. 1993;341:1051–4.

    Article  CAS  PubMed  Google Scholar 

  96. Schmitz N, Pfistner B, Sextro M, et al. Aggressive conventional chemotherapy compared with high-dose chemotherapy with autologous haemopoietic stem-cell transplantation for relapsed chemosensitive Hodgkin’s disease: a randomised trial. Lancet. 2002;359:2065–71.

    Article  CAS  PubMed  Google Scholar 

  97. Kewalramani T, Nimer SD, Zelenetz AD, et al. Progressive disease following autologous transplantation in patients with chemosensitive relapsed or primary refractory Hodgkin’s disease or aggressive non-Hodgkin’s lymphoma. Bone Marrow Transplant. 2003;32:673–9.

    Article  CAS  PubMed  Google Scholar 

  98. Devizzi L, Santoro A, Bonfante V, et al. Vinorelbine: a new promising drug in Hodgkin’s disease. Leuk Lymphoma. 1996;22:409–14.

    Article  CAS  PubMed  Google Scholar 

  99. Santoro A, Bredenfeld H, Devizzi L, et al. Gemcitabinen in the treatment of refractory Hodgkin’s disease: results of a multicenter phase II study. J Clin Oncol. 2000;18:2615–9.

    Article  CAS  PubMed  Google Scholar 

  100. Younes A, Bartlett NL, Leonard JP, et al. Brentuximab vedotin (SGN-35) for relapsed CD30- positive lymphomas. N Engl J Med. 2010;363:1812–21.

    Article  CAS  PubMed  Google Scholar 

  101. Younes A, Gopal AK, Smith SE, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol. 2012;30:2183–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ansell SM, Lesokhin AM, Borrello I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372:311–9.

    Article  PubMed  CAS  Google Scholar 

  103. Armand P, Shipp MA, Ribrag V, et al. PD-1 blockade with pembrolizumab in patients with classical Hodgkin lymphoma after brentuximab vedotin failure: safety, efficacy, and biomarker assessment. In: 57th ASH annual meeting 2015; abstract 584.

    Google Scholar 

  104. Herbaux C, Gauthier J, Brice P, et al. Nivolumab is effective and reasonably safe in relapsed or refractory Hodgkin’s lymphoma after allogeneic hematopoietic cell transplantation: a study from the Lysa and SFGM-TC. In: 57th ASH annual meeting 2015; abstract 3979.

    Google Scholar 

  105. Zhou N, Moradei O, Raeppel S, et al. Discovery of N-(2-aminophenyl)24-[(4-pyridin-3-ylpyrimidin- 2-ylamino)methyl]benzamide (MGCD0103), an orally active histone deacetylase inhibitor. J Med Chem. 2008;51:4072–5.

    Article  CAS  PubMed  Google Scholar 

  106. Fournel M, Bonfils C, Hou Y, et al. MGCD0103, a novel isotype-selective histone deacetylase inhibitor, has broad spectrum antitumor activity in vitro and in vivo. Mol Cancer Ther. 2008;7:759–68.

    Article  CAS  PubMed  Google Scholar 

  107. Johnston PB, Pinter-Brown L, Rogerio J, et al. Everolimus for relapsed/refractory classical Hodgkin lymphoma: multicenter, open-label, single-arm, phase 2 study. In: 54th ASH annual meeting 2012; abstract 2740.

    Google Scholar 

  108. Younes A, Oki Y, Bociek RG, et al. Mocetinostat for relapsed classical Hodgkin’s lymphoma: an open-label, single-arm, phase 2 trial. Lancet Oncol. 2011;12:1222–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Meadows SA, Vega F, Kashishian A, et al. PI3Kdelta inhibitor, GS-1101 (CAL-101), attenuates pathway signaling, induces apoptosis, and overcomes signals from the microenvironment in cellular models of Hodgkin lymphoma. Blood. 2012;119:1897–900.

    Article  CAS  PubMed  Google Scholar 

  110. Juweid ME, Stroobants S, Hoekstra OS, et al. Use of positron emission tomography for response assessment of lymphoma: consensus of the imaging subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol. 2007;25:571–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chatterjee, B.T., Ahuja, A. (2019). Hodgkin Lymphoma: Revisited. In: Saxena, R., Pati, H. (eds) Hematopathology. Springer, Singapore. https://doi.org/10.1007/978-981-13-7713-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7713-6_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7712-9

  • Online ISBN: 978-981-13-7713-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics