Skip to main content

Minimal Residual Disease in Acute Lymphoblastic Leukemia

  • Chapter
  • First Online:
Hematopathology
  • 1272 Accesses

Abstract

Once patient of acute lymphoblastic leukemia (ALL) is in clinical remission, more sensitive tools than morphology are required to assess minimal residual disease (MRD), to guide clinicians in management of the disease. In the present time, MRD assessment by flow cytometry and molecular methods has emerged as the single most useful prognostic factor in ALL. The chapter deals with definition, technique, utility, and prognostic implications of MRD measurement in ALL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomas A. How can we improve on the already impressive results in pediatric ALL? Hematology Am Soc Hematol Educ Program. 2015;2015(1):414–9.

    Article  Google Scholar 

  2. Campana D, Coustan-Smith E. Detection of minimal residual disease in acute leukemia by flow cytometry. Cytometry. 1999;38(4):139–52.

    Article  CAS  Google Scholar 

  3. Bradstock KF, Janossy G, Tidman N, Papageorgiou ES, Prentice HG, Willoughby M, et al. Immunological monitoring of residual disease in treated thymic acute lymphoblastic leukaemia. Leuk Res. 1981;5(4–5):301–9.

    Article  CAS  Google Scholar 

  4. Gaipa G, Basso G, Biondi A, Campana D. Detection of minimal residual disease in pediatric acute lymphoblastic leukemia: MRD in pediatric ALL. Cytometry B Clin Cytom. 2013;84(6):359–69.

    Article  Google Scholar 

  5. van Dongen JJM, van der Velden VHJ, Bruggemann M, Orfao A. Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies. Blood. 2015;125(26):3996–4009.

    Article  Google Scholar 

  6. Borowitz MJ, Devidas M, Hunger SP, Bowman WP, Carroll AJ, Carroll WL, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children’s Oncology Group study. Blood. 2008;111(12):5477–85.

    Article  CAS  Google Scholar 

  7. Sutton R, Venn NC, Tolisano J, Bahar AY, Giles JE, Ashton LJ, et al. Clinical significance of minimal residual disease at day 15 and at the end of therapy in childhood acute lymphoblastic leukaemia. Br J Haematol. 2009;146(3):292–9.

    Article  CAS  Google Scholar 

  8. Borowitz MJ, Wood BL, Devidas M, Loh ML, Raetz EA, Salzer WL, et al. Prognostic significance of minimal residual disease in high risk B-ALL: a report from Children’s Oncology Group study AALL0232. Blood. 2015;126(8):964–71.

    Article  CAS  Google Scholar 

  9. Ikoma MRV, Beltrame MP, Ferreira SIACP, Souto EX, Malvezzi M, Yamamoto M. Proposal for the standardization of flow cytometry protocols to detect minimal residual disease in acute lymphoblastic leukemia. Rev Bras Hematol Hemoter. 2015;37(6):406–13.

    Article  Google Scholar 

  10. Bradstock K, Papageorgiou ES, Janossy G, Hoffbrand AV, Willoughby M, Roberts P, et al. Detection of leukæmic lymphoblasts in CSF by immunofluorescence for terminal transferase. Lancet. 1980;315(8178):1144.

    Article  Google Scholar 

  11. Pedreira CE, Costa ES, Lecrevisse Q, van Dongen JJM, Orfao A, EuroFlow Consortium. Overview of clinical flow cytometry data analysis: recent advances and future challenges. Trends Biotechnol. 2013;31(7):415–25.

    Article  CAS  Google Scholar 

  12. Brady KA, Atwater SK, Lowell CA. Flow cytometric detection of CD10 (cALLA) on peripheral blood B lymphocytes of neonates. Br J Haematol. 1999;107(4):712–5.

    Article  CAS  Google Scholar 

  13. McKenna RW, Washington LT, Aquino DB, Picker LJ, Kroft SH. Immunophenotypic analysis of hematogones (B-lymphocyte precursors) in 662 consecutive bone marrow specimens by 4-color flow cytometry. Blood. 2001;98(8):2498–507.

    Article  CAS  Google Scholar 

  14. Chantepie SP, Cornet E, Salaün V, Reman O. Hematogones: an overview. Leuk Res. 2013;37(11):1404–11.

    Article  CAS  Google Scholar 

  15. McPherson R, Pincus M. Henry’s clinical diagnosis and management by laboratory methods E-book. Philadelphia: Elsevier Health Sciences; 2016.

    Google Scholar 

  16. Dworzak MN, Gaipa G, Ratei R, Veltroni M, Schumich A, Maglia O, et al. Standardization of flow cytometric minimal residual disease evaluation in acute lymphoblastic leukemia: multicentric assessment is feasible. Cytometry B Clin Cytom. 2008;74B(6):331–40.

    Article  Google Scholar 

  17. Coustan-Smith E, Song G, Clark C, Key L, Liu P, Mehrpooya M, et al. New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood. 2011;117(23):6267–76.

    Article  CAS  Google Scholar 

  18. Czader M. Hematological malignancies. Totowa: Humana Press; 2013.

    Book  Google Scholar 

  19. Shaver AC, Greig BW, Mosse CA, Seegmiller AC. B-ALL minimal residual disease flow cytometry: an application of a novel method for optimization of a single-tube model. Am J Clin Pathol. 2015;143(5):716–24.

    Article  CAS  Google Scholar 

  20. 6 flow cytometry gating tips that most scientists forget|expert cytometry|flow cytometry training [internet]. Expert cytometry. 2014 [cited 2017 Dec 18]. https://expertcytometry.com/6-flow-cytometry-gating-tips-that-most-scientists-forget/.

  21. Ghodke K, Bibi A, Rabade N, Patkar N, Subramanian PG, Kadam PA, et al. CD19 negative precursor B acute lymphoblastic leukemia (B-ALL)-immunophenotypic challenges in diagnosis and monitoring: a study of three cases: CD19 negative precursor B-ALL-immunophenotypic challenges in diagnosis and monitoring. Cytometry B Clin Cytom. 2017;92(4):315–8.

    Article  CAS  Google Scholar 

  22. Theunissen P, Mejstrikova E, Sedek L, van der Sluijs-Gelling AJ, Gaipa G, Bartels M, et al. Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. Blood. 2017;129(3):347–57.

    Article  CAS  Google Scholar 

  23. Brüggemann M, Schrauder A, Raff T, Pfeifer H, Dworzak M, Ottmann OG, et al. Standardized MRD quantification in European ALL trials: proceedings of the Second International Symposium on MRD assessment in Kiel, Germany, 18–20 September 2008. Leukemia. 2010;24(3):521–35.

    Article  Google Scholar 

  24. Gleissner B, Rieder H, Thiel E, Fonatsch C, Janssen LA, Heinze B, et al. Prospective BCR-ABL analysis by polymerase chain reaction (RT-PCR) in adult acute B-lineage lymphoblastic leukemia: reliability of RT-nested-PCR and comparison to cytogenetic data. Leukemia. 2001;15(12):1834–40.

    Article  CAS  Google Scholar 

  25. Mitterbauer G, Nemeth P, Wacha S, Cross NC, Schwarzinger I, Jaeger U, et al. Quantification of minimal residual disease in patients with BCR-ABL-positive acute lymphoblastic leukaemia using quantitative competitive polymerase chain reaction. Br J Haematol. 1999 Sep;106(3):634–43.

    Article  CAS  Google Scholar 

  26. Flohr T, Schrauder A, Cazzaniga G, Panzer-Grümayer R, van der Velden V, Fischer S, et al. Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia. 2008;22(4):771–82.

    Article  CAS  Google Scholar 

  27. Vora AJ, Goulden N, Mitchell CD, Hough R, Rowntree C, Richards SM. UKALL 2003, a randomised trial investigating treatment intensification for children and young adults with minimal residual disease defined high risk acute lymphoblastic leukaemia. Blood. 2012;120(21):136.

    Google Scholar 

  28. Rambaldi A, Borleri G, Dotti G, Bellavita P, Amaru R, Biondi A, et al. Innovative two-step negative selection of granulocyte colony-stimulating factor–mobilized circulating progenitor cells: adequacy for autologous and allogeneic transplantation. Blood. 1998;91(6):2189–96.

    CAS  PubMed  Google Scholar 

  29. Patkar N, Alex A, Bargavi B, Ahmed R, Abraham A, George B, Vishwabandya A, Srivastava A, Mathews V. Standardization minimal residual disease by flow cytometry for precursor B lineage acute lymphoblastic leukemia in a developing country. Cytometry B Clin Cytom. 2012;82B:252–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chauhan, R., Juneja, R., Sharma, R., Saxena, R. (2019). Minimal Residual Disease in Acute Lymphoblastic Leukemia. In: Saxena, R., Pati, H. (eds) Hematopathology. Springer, Singapore. https://doi.org/10.1007/978-981-13-7713-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7713-6_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7712-9

  • Online ISBN: 978-981-13-7713-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics