Skip to main content

Engineering Strategies for Oral Therapeutic Enzymes to Enhance Their Stability and Activity

  • Chapter
  • First Online:
Therapeutic Enzymes: Function and Clinical Implications

Abstract

Oral application of therapeutic enzymes is a promising and non-invasive administration that improves patient compliance. However, the gastrointestinal tract poses several challenges to the oral delivery of proteins, including harsh pH conditions and digestive proteases. A promising way to stabilise enzymes during their gastrointestinal route is by modification with polymers that can provide both steric shielding and selective interaction in different digestive compartments. We give an overview of modification technologies for oral enzymes ranging from functionalisation of native proteins, to site-specific mutation and protein-polymer engineering. We specifically focus on enzymes that are active directly in the gastrointestinal lumen and not systemically absorbed. In addition, we discuss examples of microparticle and nanoparticle encapsulated enzymes for improved oral delivery. The modification of orally administered enzymes offers a broad chemical variability and may be a promising tool for enhancing their gastrointestinal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-BIBB:

2-bromoisobutyryl bromide

AP:

Alkaline phosphatase

ATRP:

Atom transfer radical polymerization

BCA:

Bicinchoninic acid

BTpNA:

Benzoyl-l-tyrosine p-nitroanilide

CAP:

Cellulose acetate phthalate

CD:

Circular dichroism

CLSM:

Confocal laser scanning microscopy

CM:

Carboxymethyl

CT:

α1-antichymotrypsin

DLS:

Dynamic light scattering

DSC:

Differential scanning calorimetry

EDC:

1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide

FDA:

Food and drug administration USA

FITC-BSA:

Fluorescein isothiocyanate conjugate - bovine serum albumin

FTIR:

Fourier-transform infrared spectroscopy

GI:

Gastrointestinal

GPC:

Gel permeation chromatography

H/D:

Hydrogen/deuterium

HA:

Hyaluronic acid

HAP:

Hydroxyapatite

HPLC:

High performance liquid chromatography

HPMCP:

Hydroxyl propyl methyl cellulose phthalate

HRP:

Horseradish peroxidase

LC-MS:

Liquid chromatography–mass spectrometry

LCST:

Lower critical solution temperature

MALDI-TOF-MS:

Matrix assisted laser desorption ionization time-of-flight mass spectrometry

MP:

Microparticle

mPEG2-NHS:

Branched PEG N-hydroxysuccinimide

MW:

Molecular weight

NCC:

Nanoceramic cores

NHS:

N-hydroxysuccinimide

NHS-Br:

N-Hydroxysuccinimide-bromide

NMR:

Nuclear magnetic resonance

o-NP:

Ortho-nitrophenol

o-NPG:

Ortho-nitrophenyl-β-galactoside

PAMAM:

Poly(amidoamine)

PBPE:

Polymer-based protein engineering

pCBAm:

Poly (carboxybetaine acrylamide)

PDMAEMA:

Poly(2-(dimethylamino)ethyl methacrylate)

pDMAPS:

Poly[N,N′-dimethyl (methacryloylethyl) ammonium propane sulfonate]

PEG:

Polyethylene glycol

PEP:

Proline-specific endopeptidase

pNIPAm:

Poly (N-isopropylacry-lamide)

pOEGMA:

Poly(oligoethylene glycol monomethylether methacry-late)

pQA:

Poly-(quarternary ammonium methacrylate

pSMA:

Poly-(sulfonate methac-rylate)

RT:

Room temperature

SDS-PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

SEC:

Size exclusion chromatography

SEM:

Scanning electron microscopy

SGC:

Simulated gastric conditions

SGF:

Simulated gastric fluid

SIC:

Simulated intestinal tract conditions

SIF:

Simulated intestinal fluid

Suc-Ala-Ala-Pro-Phe-pNA:

N-succinyl-L-alanyl-L-alanyl-L-prolyl-L-phenyla-lanine4-nitroanilide

TEM:

Transmission electron microscopy

Tm :

Denaturation midpoint

TM-AvPAL:

Triple mutant-Anabaena variabilis phenylalanine ammonia lyase

TNBSA:

2,4,6-trinitrobenzene sulfonic acid

UCST:

Upper critical solution temperature

UV-vis:

Ultraviolet-visible α1-anti

α-CT:

α-chymotrypsin

References

  • Aguado BA, Grim JC, Rosales AM, Watson-Capps JJ, Anseth KS (2018) Engineering precision biomaterials for personalized medicine. Sci Transl Med 10(424)

    Google Scholar 

  • Aloulou A, Schué M, Puccinelli D, Milano S, Delchambre C, Leblond Y, Laugier R, Carriere F (2015) Yarrowia Lipolytica lipase 2 is stable and highly active in test meals and increases fat absorption in an animal model of pancreatic exocrine insufficiency. Gastroenterology 149(7):1910–1919.e5

    Article  CAS  PubMed  Google Scholar 

  • Bansil R, Turner BS (2018) The biology of mucus: composition, synthesis and organization. Adv Drug Deliv Rev 12:43–15

    Google Scholar 

  • Bélanger-Quintana A, Burlina A, Harding CO, Muntau AC (2011) Up to date knowledge on different treatment strategies for phenylketonuria. Mol Genet Metab 104(0):S19–S25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blau N, Van Spronsen FJ, Levy HL (2010) Phenylketonuria. Lancet 376(9750):1417–1427

    Article  CAS  PubMed  Google Scholar 

  • Blocher M, Walde P, Dunn IJ (1999) Modeling of enzymatic reactions in vesicles: the case of alpha-chymotrypsin. Biotechnol Bioeng 62(1):36–43

    Article  CAS  PubMed  Google Scholar 

  • Brock A, Aldag I, Edskes S, Hartmann M, Herzog T, Uhl W, Schnekenburger J (2016) Novel ciliate lipases for enzyme replacement during exocrine pancreatic insufficiency. Eur J Gastroenterol Hepatol 28(11):1305–1312

    Article  CAS  PubMed  Google Scholar 

  • Chopra S, Bertrand N, Lim J-M, Wang A, Farokhzad OC, Karnik R (2017) Design of insulin-loaded nanoparticles enabled by multistep control of nanoprecipitation and zinc chelation. ACS Appl Mater Interfaces 9(13):11440–11450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clardy-James S, Allis DG, Fairchild TJ, Doyle RP (2012) Examining the effects of vitamin B12 conjugation on the biological activity of insulin: a molecular dynamic and in vivo oral uptake investigation. MedChemComm 3(9):1054–1058

    Article  CAS  Google Scholar 

  • Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV (2012) Microencapsulation of probiotics for gastrointestinal delivery. J Control Release 162(1):56–67

    Article  CAS  PubMed  Google Scholar 

  • Couvreur P, Puisieux F (1993) Nano- and microparticles for the delivery of polypeptides and proteins. Adv Drug Deliv Rev 10(2):141–162

    Article  CAS  Google Scholar 

  • Cummings C, Murata H, Koepsel R, Russell AJ (2013) Tailoring enzyme activity and stability using polymer-based protein engineering. Biomaterials 34(30):7437–7443

    Article  CAS  PubMed  Google Scholar 

  • Cummings CS, Campbell AS, Baker SL, Carmali S, Murata H, Russell AJ (2017) Design of stomach acid-stable and mucin-binding enzyme polymer conjugates. Biomacromolecules 18(2):576–586

    Article  CAS  PubMed  Google Scholar 

  • Dean SN, Turner KB, Medintz IL, Walper SA (2017) Targeting and delivery of therapeutic enzymes. Ther Deliv 8(7):577–595

    Article  CAS  PubMed  Google Scholar 

  • Donaldson GP, Lee SM, Mazmanian SK (2015) Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 14:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eek D, Krohe M, Mazar I, Horsfield A, Pompilus F, Friebe R, Shields AL (2016) Patient-reported preferences for oral versus intravenous administration for the treatment of cancer: a review of the literature. Patient Prefer Adherence 10:1609–1621

    Article  PubMed  PubMed Central  Google Scholar 

  • Ehren J, Govindarajan S, Moron B, Minshull J, Khosla C (2008) Protein engineering of improved prolyl endopeptidases for celiac sprue therapy. Protein Eng Des Sel 21(12):699–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frizzell H, Ohlsen TJ, Woodrow KA (2017) Protein-loaded emulsion electrospun fibers optimized for bioactivity retention and Ph-controlled release for peroral delivery of biologic therapeutics. Int J Pharm 533(1):99–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuhrmann G (2018) Luminal coating of the intestine. Nat Mater 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Fuhrmann K, Fuhrmann G (2017) Recent advances in oral delivery of macromolecular drugs and benefits of polymer conjugation. Curr Opin Colloid Interface Sci 31:67–74

    Article  CAS  Google Scholar 

  • Fuhrmann G, Leroux J-C (2011) In vivo fluorescence imaging of exogenous enzyme activity in the gastrointestinal tract. Proc Natl Acad Sci U S A 108(22):9032–9037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuhrmann G, Leroux J-C (2014) Improving the stability and activity of oral therapeutic enzymes – recent advances and perspectives. Pharm Res 31(5):1099–1105

    Article  CAS  PubMed  Google Scholar 

  • Fuhrmann G, Grotzky A, Lukic R, Matoori S, Luciani P, Yu H, Walde P, Schlüter AD, Gauthier MA, Leroux J-C (2013) Sustained gastrointestinal activity of dendronized polymer-enzyme conjugates. Nat Chem 5:582–589

    Article  CAS  PubMed  Google Scholar 

  • Fuhrmann G, Chandrawati R, Pamar PA, Keane TJ, Maynard SA, Bertazzo S, Stevens MM (2018) Engineering extracellular vesicles with the tools of enzyme prodrug therapy. Adv Mater 30:1706616

    Article  CAS  Google Scholar 

  • Gauthier MA, Klok H-A (2010) Polymer-protein conjugates: an enzymatic activity perspective. Polym Chem 1(9):1352–1373

    Article  CAS  Google Scholar 

  • Graham ML (2003) Pegaspargase: a review of clinical studies. Adv Drug Deliv Rev 55(10):1293–1302

    Article  CAS  PubMed  Google Scholar 

  • Grotzky A, Nauser T, Erdogan H, Schlüter AD, Walde P (2012) A fluorescently-labeled dendronized polymer-enzyme conjugate carrying multiple copies of two different types of active enzymes. J Am Chem Soc 134:11392–11395

    Article  CAS  PubMed  Google Scholar 

  • Gupta V, Hwang BH, Doshi N, Mitragotri S (2013) A permeation enhancer for increasing transport of therapeutic macromolecules across the intestine. J Control Release 172(2):541–549

    Article  CAS  PubMed  Google Scholar 

  • Hafner A, Lovrić J, Lakoš GP, Pepić I (2014) Nanotherapeutics in the Eu: an overview on current state and future directions. Int J Nanomed 9:1005–1023

    Google Scholar 

  • Hamuro Y, Coales SJ, Molnar KS, Tuske SJ, Morrow JA (2008) Specificity of immobilized porcine pepsin in H/D exchange compatible conditions. Rapid Commun Mass Spectrom 22(7):1041–1046

    Article  CAS  PubMed  Google Scholar 

  • Ishida T, Maeda R, Ichihara M, Irimura K, Kiwada H (2003) Accelerated clearance of pegylated liposomes in rats after repeated injections. J Control Release 88(1):35–42

    Article  CAS  PubMed  Google Scholar 

  • Kang TS, Wang L, Sarkissian CN, Gámez A, Scriver CR, Stevens RC (2010) Converting an injectable protein therapeutic into an oral form: phenylalanine ammonia lyase for phenylketonuria. Mol Genet Metab 99(1):4–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim W, Erlandsen H, Surendran S, Stevens RC, Gamez A, Michols-Matalon K, Tyring SK, Matalon R (2004) Trends in enzyme therapy for phenylketonuria. Mol Ther 10(2):220–224

    Article  PubMed  CAS  Google Scholar 

  • Klinger D, Landfester K (2011) Dual stimuli-responsive poly(2-hydroxyethyl methacrylate-co-methacrylic acid) microgels based on photo-cleavable cross-linkers: Ph-dependent swelling and light-induced degradation. Macromolecules 44(24):9758–9772

    Article  CAS  Google Scholar 

  • Kumar A, Montemagno C, Choi H-J (2017) Smart microparticles with a Ph-responsive macropore for targeted oral drug delivery. Sci Rep 7(1):3059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee Y, Deelman TE, Chen K, Lin DSY, Tavakkoli A, Karp JM (2018) Therapeutic luminal coating of the intestine. Nat Mater 17:834–842

    Article  CAS  PubMed  Google Scholar 

  • Leeds JS, Oppong K, Sanders DS (2011) The role of fecal elastase-1 in detecting exocrine pancreatic disease. Nat Rev Gastroenterol Hepatol 8(7):405–415

    Article  CAS  PubMed  Google Scholar 

  • Leonard F, Ali H, Collnot EM, Crielaard BJ, Lammers T, Storm G, Lehr CM (2012) Screening of budesonide nanoformulations for treatment of inflammatory bowel disease in an inflamed 3d cell-culture model. Altex 29(3):275–285

    Article  PubMed  Google Scholar 

  • Liu M, Tirino P, Radivojevic M, Phillips D, Gibson M, Leroux J-C, Gauthier MA (2012) Molecular sieving on the surface of a protein provides protection without loss of activity. Adv Funct Mater 23(16):2007–2015

    Article  CAS  Google Scholar 

  • Liu Y, Lee J, Mansfield KM, Ko JH, Sallam S, Wesdemiotis C, Maynard HD (2017) Trehalose glycopolymer enhances both solution stability and pharmacokinetics of a therapeutic protein. Bioconjug Chem 28(3):836–845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lomer MCE, Parkes GC, Sanderson JD (2008) Review article: lactose intolerance in clinical practice – myths and realities. Aliment Pharmacol Ther 27(2):93–103

    Article  CAS  PubMed  Google Scholar 

  • Lundh G (1957) Determination of trypsin and chymotrypsin in human intestinal content. Scand J Clin Lab Invest 9(3):229–232

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S, Burke PA, Langer R (2014) Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov 13(9):655–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moroz E, Matoori S, Leroux J-C (2016) Oral delivery of macromolecular drugs: where we are after almost 100 years of attempts. Adv Drug Deliv Rev 101:108–121

    Article  CAS  PubMed  Google Scholar 

  • Murata H, Cummings CS, Koepsel RR, Russell AJ (2013) Polymer-based protein engineering can rationally tune enzyme activity, Ph-dependence, and stability. Biomacromolecules 14(6):1919–1926

    Article  CAS  PubMed  Google Scholar 

  • Murgia X, Loretz B, Hartwig O, Hittinger M, Lehr C-M (2018) The role of mucus on drug transport and its potential to affect therapeutic outcomes. Adv Drug Deliv Rev 124:82–97

    Article  CAS  PubMed  Google Scholar 

  • Naikwade SR, Meshram RN, Bajaj AN (2009) Preparation and in vivo efficacy study of pancreatin microparticles as an enzyme replacement therapy for pancreatitis. Drug Dev Ind Pharm 35(4):417–432

    Article  CAS  PubMed  Google Scholar 

  • Parihar AKS, Srivastava S, Patel S, Singh MR, Singh D (2017) Novel catalase loaded nanocores for the treatment of inflammatory bowel diseases. Artif Cells Nanomed Biotechnol 45(5):981–989

    Article  CAS  PubMed  Google Scholar 

  • Parmar PA, Chow LW, St-Pierre J-P, Horejs C-M, Peng YY, Werkmeister JA, Ramshaw JAM, Stevens MM (2015) Collagen-mimetic peptide-modifiable hydrogels for articular cartilage regeneration. Biomaterials 54:213–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascucci T, Rossi L, Colamartino M, Gabucci C, Carducci C, Valzania A, Sasso V, Bigini N, Pierigè F, Viscomi MT, Ventura R, Cabib S, Magnani M, Puglisi-Allegra S, Leuzzi V (2018) A new therapy prevents intellectual disability in mouse with phenylketonuria. Mol Genet Metab 124(1):39–49

    Article  CAS  PubMed  Google Scholar 

  • Pashuck ET, Stevens MM (2012) Designing regenerative biomaterial therapies for the clinic. Sci Transl Med 4(160):160sr4

    Article  PubMed  CAS  Google Scholar 

  • Pinier M, Fuhrmann G, Verdu E, Leroux J-C (2010) Prevention measures and exploratory pharmacological treatments of celiac disease. Am J Gastroenterol 105:2551–2561

    Article  CAS  PubMed  Google Scholar 

  • Regan PT, Malagelada J-R, Dimagno EP, Glanzman SL, Go VLW (1977) Comparative effects of antacids, cimetidine and enteric coating on the therapeutic response to oral enzymes in severe pancreatic insufficiency. N Engl J Med 297(16):854–858

    Article  CAS  PubMed  Google Scholar 

  • Robic S (2007) Pegylated glutenase polypeptides. USA patent application WO/2007/047303. 26.04.2007

    Google Scholar 

  • Rodríguez-Martínez JA, Solá RJ, Castillo B, Cintrón-Colón HR, Rivera-Rivera I, Barletta G, Griebenow K (2008) Stabilization of Α-chymotrypsin upon pegylation correlates with reduced structural dynamics. Biotechnol Bioeng 101(6):1142–1149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodríguez-Martínez JA, Rivera-Rivera I, Solá RJ, Griebenow K (2009) Enzymatic activity and thermal stability of Peg-Α-chymotrypsin conjugates. Biotechnol Lett 31(6):883–887

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarkissian CN, Shao Z, Blain F, Peevers R, Su H, Heft R, Chang TMS, Scriver CR (1999) A different approach to treatment of phenylketonuria: phenylalanine degradation with recombinant phenylalanine ammonia lyase. Proc Natl Acad Sci U S A 96(5):2339–2344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkissian CN, Gámez A, Wang L, Charbonneau M, Fitzpatrick P, Lemontt JF, Zhao B, Vellard M, Bell SM, Henschell C, Lambert A, Tsuruda L, Stevens RC, Scriver CR (2008) Preclinical evaluation of multiple species of pegylated recombinant phenylalanine ammonia lyase for the treatment of phenylketonuria. Proc Natl Acad Sci U S A 105(52):20894–20899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz JD, Gauthier MA, Leroux J-C (2015a) Improving oral drug bioavailability with polycations? Eur J Pharm Biopharm 97(Part B):427–437

    Article  CAS  PubMed  Google Scholar 

  • Schulz JD, Patt M, Basler S, Kries H, Hilvert D, Gauthier MA, Leroux J-C (2015b) Site-specific polymer conjugation stabilizes therapeutic enzymes in the gastrointestinal tract. Adv Mater 28(7):1455–1460

    Article  PubMed  CAS  Google Scholar 

  • Shan L, Marti T, Sollid LM, Gray GM, Khosla C (2004) Comparative biochemical analysis of three bacterial prolyl endopeptidases: implications for coeliac sprue. Biochem J 383(2):311–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tack GJ, Verbeek WHM, Schreurs MWJ, Mulder CJJ (2010) The spectrum of celiac disease: epidemiology, clinical aspects and treatment. Nat Rev Gastroenterol Hepatol 7:204–213

    Article  CAS  PubMed  Google Scholar 

  • Tack GJ, Van De Water JMW, Bruins MJ, Kooy-Winkelaar EMC, Van Bergen J, Bonnet P, Vreugdenhil ACE, Korponay-Szabo I, Edens L, Von Blomberg BME, Schreurs MWJ, Mulder CJ, Koning F (2013) Consumption of gluten with gluten-degrading enzyme by celiac patients: a pilot-study. World J Gastroenterol 19(35):5837–5847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang BC, Dawson M, Lai SK, Wang Y-Y, Suk JS, Yang M, Zeitlin P, Boyle MP, Fu J, Hanes J (2009) Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc Natl Acad Sci 106(46):19268–19273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang D-W, Yu S-H, Wu W-S, Hsieh H-Y, Tsai Y-C, Mi F-L (2014) Hydrogel microspheres for stabilization of an antioxidant enzyme: effect of emulsion cross-linking of a dual polysaccharide system on the protection of enzyme activity. Colloids Surf B: Biointerfaces 113:59–68

    Article  CAS  PubMed  Google Scholar 

  • Turner JR (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9(11):799–809

    Article  CAS  PubMed  Google Scholar 

  • Turner KM, Pasut G, Veronese FM, Boyce A, Walsh G (2011) Stabilization of a supplemental digestive enzyme by post-translational engineering using chemically-activated polyethylene glycol. Biotechnol Lett 33(3):617–621

    Article  CAS  PubMed  Google Scholar 

  • Veronese FM, Pasut G (2005) Pegylation, successful approach to drug delivery. Drug Discov Today 10(21):1451–1458

    Article  CAS  PubMed  Google Scholar 

  • Vllasaliu D, Thanou M, Stolnik S, Fowler R (2018) Recent advances in oral delivery of biologics: nanomedicine and physical modes of delivery. Expert Opin Drug Deliv 15(8):759–770

    Article  CAS  PubMed  Google Scholar 

  • Vorselen D, Van Dommelen SM, Sorkin R, Piontek MC, Schiller J, Döpp ST, Kooijmans SAA, Van Oirschot BA, Versluijs BA, Bierings MB, Van Wijk R, Schiffelers RM, Wuite GJL, Roos WH (2018) The fluid membrane determines mechanics of erythrocyte extracellular vesicles and is softened in hereditary spherocytosis. Nat Commun 9(1):4960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zelikin AN, Ehrhardt C, Healy AM (2016) Materials and methods for delivery of biological drugs. Nat Chem 8(11):997–1007

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Bellinger AM, Glettig DL, Barman R, Lee Y-AL, Zhu J, Cleveland C, Montgomery VA, Gu L, Nash LD, Maitland DJ, Langer R, Traverso G (2015) A Ph-responsive supramolecular polymer gel as an enteric elastomer for use in gastric devices. Nat Mater 14:1065–1071. advance online publication

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Zhang R, Mcclements DJ (2017) Lactase (Β-galactosidase) encapsulation in hydrogel beads with controlled internal Ph microenvironments: impact of bead characteristics on enzyme activity. Food Hydrocoll 67:85–93

    Article  CAS  Google Scholar 

  • Zhao Y, Wang C, Wang L, Yang Q, Tang W, She Z, Deng Y (2012) A frustrating problem: accelerated blood clearance of pegylated solid lipid nanoparticles following subcutaneous injection in rats. Eur J Pharm Biopharm 81(3):506–513

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Fuhrmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lapuhs, P., Fuhrmann, G. (2019). Engineering Strategies for Oral Therapeutic Enzymes to Enhance Their Stability and Activity. In: Labrou, N. (eds) Therapeutic Enzymes: Function and Clinical Implications. Advances in Experimental Medicine and Biology, vol 1148. Springer, Singapore. https://doi.org/10.1007/978-981-13-7709-9_8

Download citation

Publish with us

Policies and ethics