Application of Fluorescence in Studying Therapeutic Enzymes

  • Zhaoshuai WangEmail author
  • Caihong Li
  • Yinan Wei
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1148)


Fluorescence spectroscopy is one of the most important techniques in the study of therapeutic enzymes. The fluorescence phenomenon has been discovered and exploited for centuries, while therapeutic enzymes have been used in treatment of disease for only decades. This chapter provides a brief summary of the current applications of fluorescence methods in studying therapeutic enzymes to provide some insights on the selection of proper method tailored to the goal. First a brief introduction about therapeutic enzymes and history of fluorescence were provided, followed by discussions on how fluorescence was applied in the studies. Four popular fluorescence methods are discussed: fluorescence tracing, fluorescence resonance energy transfer (FRET), fluorescence quenching and fluorescence polarization. Selected application of the fluorescence methods in studying therapeutic enzymes are listed, and discussed in details in the following paragraphs.


Therapeutic enzyme Fluorescence tracing FRET Fluorescence quenching Fluorescence polarization 



Fluorescence resonance energy transfer


Mass spectroscopy


Circular dichroism


Fourier-transform infrared spectroscopy


Food and Drug Administration in USA


Severe combined immunodeficiency disease


Monoclonal antibodies


Immunoglobulin G1


Green Fluorescent Protein




Activity-based probes


Mantle cell lymphoma


Microencapsulated streptokinase


Unencapsulated streptokinase


Cyan fluorescent protein


Yellow fluorescent protein




Break point cluster


Enhanced cyan fluorescent protein


N-(2-hydroxypropyl) methacrylamide


Adenosine deaminase


6-carboxyfluo rescein


Multi-walled carbon nanotubes


Immunoglobulin E


The IgE Fc receptor


Interferon gamma


  1. Alinari L, Yu B, Christian BA et al (2011) Combination anti-CD74 (milatuzumab) and anti-CD20 (rituximab) monoclonal antibody therapy has in vitro and in vivo activity in mantle cell lymphoma. Blood 117(17):4530–4541PubMedPubMedCentralCrossRefGoogle Scholar
  2. American Diabetes A (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Suppl 1):S62–S69CrossRefGoogle Scholar
  3. Carter PJ, Lazar GA (2018) Next generation antibody drugs: pursuit of the ‘high-hanging fruit’. Nat Rev Drug Discov 17(3):197–223PubMedCrossRefGoogle Scholar
  4. Chan AC, Carter PJ (2010) Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol 10:301PubMedCrossRefGoogle Scholar
  5. Ciftci HI, Ozturk SE, Ali TFS et al (2018) The first pentacyclic triterpenoid gypsogenin derivative exhibiting anti-ABL1 kinase and anti-chronic myelogenous leukemia activities. Biol Pharm Bull 41(4):570–574PubMedCrossRefGoogle Scholar
  6. Falach A, Nathan I, Baram S et al (1997) Interaction of a novel fluorescent analog of interferon-γ with transformed cells. Bioconjug Chem 8(4):459–465PubMedCrossRefGoogle Scholar
  7. Goldberg DM (1992) Enzymes as agents for the treatment of disease. Clin Chim Acta 206(1):45–76PubMedCrossRefGoogle Scholar
  8. Helms V (2008) Principles of computational cell biology: from protein complexes to cellular networks. Wiley, Weinheim, pp 39–59Google Scholar
  9. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723PubMedPubMedCentralCrossRefGoogle Scholar
  10. Hu K, Huang Y, Wang S et al (2014) A carbon nanotubes based fluorescent aptasensor for highly sensitive detection of adenosine deaminase activity and inhibitor screening in natural extracts. J Pharm Biomed Anal 95:164–168PubMedCrossRefGoogle Scholar
  11. Jones SA, Shim SH, He J et al (2011) Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 8(6):499–508PubMedPubMedCentralCrossRefGoogle Scholar
  12. Kallemeijn WW, Scheij S, Hoogendoorn S et al (2017) Investigations on therapeutic glucocerebrosidases through paired detection with fluorescent activity-based probes. PLoS One 12(2):e0170268PubMedPubMedCentralCrossRefGoogle Scholar
  13. Kim B, Eggel A, Tarchevskaya SS et al (2012) Accelerated disassembly of IgE-receptor complexes by a disruptive macromolecular inhibitor. Nature 491:613PubMedPubMedCentralCrossRefGoogle Scholar
  14. Kinch MS (2015) An overview of FDA-approved biologics medicines. Drug Discov Today 20(4):393–398PubMedCrossRefGoogle Scholar
  15. Kurokawa K, Mochizuki N, Ohba Y et al (2001) A pair of fluorescent resonance energy transfer-based probes for tyrosine phosphorylation of the CrkII adaptor protein in vivo. J Biol Chem 276(33):31305–31310PubMedCrossRefGoogle Scholar
  16. Leach JK, Patterson E, O’Rear EA (2004) Distributed intraclot thrombolysis: mechanism of accelerated thrombolysis with encapsulated plasminogen activators. J Thromb Haemost 2(9):1548–1555PubMedCrossRefGoogle Scholar
  17. Leader B, Baca QJ, Golan DE (2008) Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 7:21CrossRefGoogle Scholar
  18. Li M, Liu L, Xi N et al (2011) Imaging and measuring the rituximab-induced changes of mechanical properties in B-lymphoma cells using atomic force microscopy. Biochem Biophys Res Commun 404(2):689–694PubMedCrossRefGoogle Scholar
  19. Li S, Yang X, Yang S et al (2012) Technology prospecting on enzymes: application, marketing and engineering. Comput Struct Biotechnol J 2:e201209017PubMedPubMedCentralCrossRefGoogle Scholar
  20. Manchester KL (1995) Louis Pasteur (1822–1895) – chance and the prepared mind. Trends Biotechnol 13(12):511–515PubMedCrossRefGoogle Scholar
  21. McLaughlin P, Grillo-López AJ, Link BK et al (1998) Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 16(8):2825–2833CrossRefGoogle Scholar
  22. Miyawaki A, Llopis J, Heim R et al (1997) Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin. Nature 388:882–887PubMedCrossRefGoogle Scholar
  23. Murai T, Kawashima H (2008) A simple assay for hyaluronidase activity using fluorescence polarization. Biochem Biophys Res Commun 376(3):620–624PubMedCrossRefGoogle Scholar
  24. Nath CE, Dallapozza L, Eslick AE (2008) An isocratic fluorescence HPLC assay for the monitoring of l-asparaginase activity and l-asparagine depletion in children receiving E. coli l-asparaginase for the treatment of acute lymphoblastic leukaemia. Biomed Chromatogr 23(2):152–159CrossRefGoogle Scholar
  25. Nowell PC (2007) Discovery of the Philadelphia chromosome: a personal perspective. J Clin Invest 117(8):2033–2035PubMedPubMedCentralCrossRefGoogle Scholar
  26. Piepenhagen PA, Vanpatten S, Hughes H (2010) Use of direct fluorescence labeling and confocal microscopy to determine the biodistribution of two protein therapeutics, Cerezyme® and Ceredase®. Microsc Res Tech 73(7):694–703PubMedGoogle Scholar
  27. Pietraszewska-Bogiel A, Gadella TW (2011) FRET microscopy: from principle to routine technology in cell biology. J Microsc 241(2):111–118PubMedCrossRefGoogle Scholar
  28. Piston DW, Kremers GJ (2007) Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem Sci 32(9):407–414PubMedCrossRefGoogle Scholar
  29. Schulz JD, Patt M, Basler S et al (2016) Site-specific polymer conjugation stabilizes therapeutic enzymes in the gastrointestinal tract. Adv Mater 28(7):1455–1460PubMedCrossRefGoogle Scholar
  30. Shahzad A, Köhler G, Knapp M et al (2009) Emerging applications of fluorescence spectroscopy in medical microbiology field. J Transl Med 7:99PubMedPubMedCentralCrossRefGoogle Scholar
  31. Shaner NC, Campbell RE, Steinbach PA et al (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572PubMedCrossRefGoogle Scholar
  32. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909PubMedCrossRefGoogle Scholar
  33. Szittner Z, Papp K, Sándor N et al (2013) Application of fluorescent monocytes for probing immune complexes on antigen microarrays. PLoS One 8(9):e72401PubMedPubMedCentralCrossRefGoogle Scholar
  34. Tatford OC, Gomme PT, Bertolini J (2004) Analytical techniques for the evaluation of liquid protein therapeutics. Biotechnol Appl Biochem 40(1):67–81PubMedCrossRefGoogle Scholar
  35. Tompa P, Batke J, Ovadi J et al (1987) Quantitation of the interaction between citrate synthase and malate dehydrogenase. J Biol Chem 262(13):6089–6092PubMedGoogle Scholar
  36. Tunceroglu A, Matsuda M, Birge RB (2010) Real-time fluorescent resonance energy transfer analysis to monitor drug resistance in chronic myelogenous leukemia. Mol Cancer Ther 9(11):3065–3073PubMedPubMedCentralCrossRefGoogle Scholar
  37. Tyagarajan K, Pretzer E, Wiktorowicz JE (2003) Thiol-reactive dyes for fluorescence labeling of proteomic samples. Electrophoresis 24(14):2348–2358PubMedCrossRefGoogle Scholar
  38. Usmani SS, Bedi G, Samuel JS et al (2017) THPdb: database of FDA-approved peptide and protein therapeutics. PLoS One 12(7):e0181748PubMedPubMedCentralCrossRefGoogle Scholar
  39. Valeur B, Berberan-Santos MN (2011) A brief history of fluorescence and phosphorescence before the emergence of quantum theory. J Chem Educ 88(6):731–738CrossRefGoogle Scholar
  40. Vellard M (2003) The enzyme as drug: application of enzymes as pharmaceuticals. Curr Opin Biotechnol 14(4):444–450PubMedCrossRefGoogle Scholar
  41. Verhamme IM, Bock PE (2014) Rapid binding of plasminogen to streptokinase in a catalytic complex reveals a three-step mechanism. J Biol Chem 289(40):28006–28018PubMedPubMedCentralCrossRefGoogle Scholar
  42. Wakabayashi H, Fay PJ (2013) Molecular orientation of factor VIIIa on the phospholipid membrane surface determined by fluorescence resonance energy transfer. Biochem J 452(2):293–301PubMedPubMedCentralCrossRefGoogle Scholar
  43. Wei H, Mo J, Tao L et al (2014) Hydrogen/deuterium exchange mass spectrometry for probing higher order structure of protein therapeutics: methodology and applications. Drug Discov Today 19(1):95–102PubMedCrossRefGoogle Scholar
  44. Yadav AK, Shen DL, Shan X et al (2015) Fluorescence-quenched substrates for live cell imaging of human glucocerebrosidase activity. J Am Chem Soc 137(3):1181–1189PubMedCrossRefGoogle Scholar
  45. Yang J, Luo K, Pan H et al (2011) Synthesis of biodegradable multiblock copolymers by click coupling of RAFT-generated HeterotelechelicPolyHPMA conjugates. React Funct Polym 71(3):294–302PubMedPubMedCentralCrossRefGoogle Scholar
  46. Ye C, Wang Z, Lu W et al (2014) Unfolding study of a trimeric membrane protein AcrB. Protein Sci 23(7):897–905PubMedPubMedCentralCrossRefGoogle Scholar
  47. Yi NY, He Q, Caligan TB et al (2015) Development of a cell-based fluorescence polarization biosensor using preproinsulin to identify compounds that alter insulin granule dynamics. Assay Drug Dev Technol 13(9):558–569PubMedPubMedCentralCrossRefGoogle Scholar
  48. Yuan T, Weljie AM, Vogel HJ (1998) Tryptophan fluorescence quenching by methionine and selenomethionine residues of calmodulin: orientation of peptide and protein binding. Biochemistry 37(9):3187–3195PubMedCrossRefGoogle Scholar
  49. Zhang R, Yang J, Radford DC et al (2017) FRET imaging of enzyme-responsive HPMA copolymer conjugate. Macromol Biosci 17(1):1600125CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Pharmaceutical ScienceUniversity of KentuckyLexingtonUSA
  2. 2.Department of Educational, School, and Counseling PsychologyUniversity of KentuckyLexingtonUSA
  3. 3.Department of ChemistryUniversity of KentuckyLexingtonUSA

Personalised recommendations