Quality Control and Downstream Processing of Therapeutic Enzymes

  • David GervaisEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1148)


Therapeutic enzymes are a commercially minor but clinically important area of biopharmaceuticals. An array of therapeutic enzymes has been developed for a variety of human diseases, including leukaemia and enzyme-deficiency diseases such as Gaucher’s disease. Production and testing of therapeutic enzymes is strictly governed by regulatory bodies in each country around the world, and batch-to-batch consistency is crucially important. Manufacture of a batch starts with the fermentation or cell culture stage. After expression of the therapeutic enzyme in a cell culture bioreactor, robust and reproducible protein purification, or downstream processing (DSP) of the target product, is critical to ensuring safe delivery of these medicines. Modern processing technology, including the use of disposable processing equipment, has greatly improved the DSP development pathway in terms of robustness and speed to clinic. Once purified, the drug substance undergoes rigorous quality control (QC) testing according to current regulatory guidance, to enable release to the clinic and patient. QC testing is conducted to ensure the safety, purity, identity, potency and strength of the medicinal product, requiring multiple analytical methods that are rigorously validated and monitored for robust performance. Several case studies, including L-asparaginase and asfotase alfa, are discussed to illustrate the methods described herein.


Therapeutic enzymes Downstream processing Quality control Enzyme characterisation Enzyme manufacturing 



Two-dimensional gel electrophoresis


Acid β-glucosidase


Anti-drug antibodies


Antibody-drug conjugates


Analytical ultracentrifugation


Colony-forming units


Capillary gel electrophoresis


Chinese hamster ovary


Capillary isoelectric focussing




Central nervous system


Diethyl amino ethyl


Deoxyribonucleic acid


Design of experiments


Drug product


Drug substance


Downstream processing


Enzyme-linked immunosorbent assay


European medicines agency


Enzyme replacement therapy


Endotoxin units


Constant domain (antibody)


United States Food and Drug Administration


Gaucher’s disease


Good manufacturing practice


Host cell proteins


Human epidermal growth factor receptor 2


Hydrophobic interaction chromatography


High-pressure liquid chromatography




Heating, ventilation and air conditioning


International Council on Harmonisation




Ion-exchange high-pressure liquid chromatography




Immobilised-metal affinity chromatography


Isothermal calorimetry


International unit (of enzymatic activity)


Enzyme catalytic constant


Michaelis constant


Limulus amoebocyte lysate


Lysosomal acid lipase deficiency


Liquid chromatography coupled mass spectrometry


Limit of detection


Monoclonal antibodies


Matrix-assisted laser desorption/ionisation




Mass spectrometry


Tandem mass spectrometry


Nicotinamide adenine dinucleotide


Nicotinamide adenine dinucleotide phosphate


National Collection of Plant Pathogenic Bacteria (UK)


Polymerase chain reaction


Poly(ethylene glycol)


Isoelectric point


Japanese Pharmaceuticals and Medical Devices Agency


Quaternary ammonium


Quality assurance


Quality by design


Quality control


Quality management system


Quantitative polymerase chain reaction


Research and development


Reversed-phase high-pressure liquid chromatography


Real-time polymerase chain reaction




Sodium dodecyl sulphate polyacrylamide gel electrophoresis


Size-exclusion chromatography


Standard operating procedures


Surface plasmon resonance


Tangential-flow filtration


Tangential-flow filtration – microfiltration


Tissue-nonspecific alkaline phosphatase


Units (of enzyme activity)


United States




Maximum enzymatic reaction velocity


  1. Aghaiypour K, Wlodawer A, Lubkowski J (2001) Structural basis for the activity and substrate specificity of Erwinia chrysanthemi L-asparaginase. Biochemistry 40(19):5655–5664PubMedCrossRefGoogle Scholar
  2. Allison N, Richards J (2014) Current status and future trends for disposable technology in the biopharmaceutical industry. J Chem Technol Biotechnol 89(9):1283–1287CrossRefGoogle Scholar
  3. Aviezer D, Brill-Almon E, Shaaltiel Y et al (2009) A plant-derived recombinant human glucocerebrosidase enzyme – a preclinical and phase I investigation. PLoS One 4(3):e4792PubMedPubMedCentralCrossRefGoogle Scholar
  4. Balasundaram B, Harrison S, Bracewell DG (2009) Advances in product release strategies and impact on bioprocess design. Trends Biotechnol 27(8):477–485PubMedCrossRefGoogle Scholar
  5. Bierau H, Hinton RJ, Lyddiatt A (2001) Direct process integration of cell disruption and fluidised bed adsorption in the recovery of labile microbial enzymes. Bioseparation 10(1):73–85PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bracewell DG, Boychyn M, Baldascini H et al (2008) Impact of clarification strategy on chromatographic separations: pre-processing of cell homogenates. Biotechnol Bioeng 100(5):941–949PubMedCrossRefPubMedCentralGoogle Scholar
  7. Broome JD (1968) Studies on the mechanism of tumor inhibition by L-asparaginase: effects of the enzyme on asparagine levels in the blood, normal tissues, and 6C3HED lymphomas of mice: differences in asparagine formation and utilization in asparaginase-sensitive and-resistant lymphoma cells. J Exp Med 127(6):1055–1072PubMedPubMedCentralCrossRefGoogle Scholar
  8. Buck PW, Elsworth R, Miller GA et al (1971) The batch production of L-asparaginase from Erwinia carotovora. J Gen Microbiol 65:iPubMedCrossRefPubMedCentralGoogle Scholar
  9. Burnouf T, Radosevich M, Goubran HA et al (2005) Place of nanofiltration for assuring viral safety of biologicals. Cur Nanosci 1(3):189–201CrossRefGoogle Scholar
  10. Carta G, Jungbauer A (2010) Protein chromatography: process development and scale-up. Wiley, HobokenCrossRefGoogle Scholar
  11. Clonis YD, Labrou NE, Kotsira VP et al (2000) Biomimetic dyes as affinity chromatography tools in enzyme purification. J Chromatogr A 891(1):33–44PubMedCrossRefGoogle Scholar
  12. Cuatrecasas P, Wilchek M, Anfinsen CB (1968) Selective enzyme purification by affinity chromatography. Proc Natl Acad Sci U S A 61(2):636–643PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cummins PM, O’Connor BF (2011) Hydrophobic interaction chromatography. In: Walls D, Loughran S (eds) Protein chromatography. Humana Press, New York, pp 431–437CrossRefGoogle Scholar
  14. Darling A (2002) Validation of biopharmaceutical purification processes for virus clearance evaluation. Mol Biotechnol 21(1):57–83PubMedCrossRefGoogle Scholar
  15. Darling AJ, Boose JA, Spaltro J (1998) Virus assay methods: accuracy and validation. Biologicals 26(2):105–110PubMedCrossRefGoogle Scholar
  16. Dewan SS, Sullivan LL (2016) Protein therapeutics market – technology advances spur market growth of protein therapies. Drug Dev Deliv 16(9):44–47Google Scholar
  17. DiPaolo B, Pennetti A, Nugent L et al (1999) Monitoring impurities in biopharmaceuticals produced by recombinant technology. Pharm Sci Technol Today 2(2):70–82PubMedCrossRefGoogle Scholar
  18. Dolník V (1997) Capillary zone electrophoresis of proteins. Electrophoresis 18(12–13):2353–2361PubMedCrossRefGoogle Scholar
  19. Doonan S (1996) Chromatography on hydroxyapatite. In: Doonan S (ed) Protein purification protocols. Humana Press, New York, pp 211–215CrossRefGoogle Scholar
  20. Dullah EC, Ongkudon CM (2017) Current trends in endotoxin detection and analysis of endotoxin–protein interactions. Crit Rev Biotechnol 37(2):251–261PubMedCrossRefGoogle Scholar
  21. Dvir H, Harel M, McCarthy AA et al (2003) X-ray structure of human acid-β-glucosidase, the defective enzyme in Gaucher disease. EMBO Rep 4(7):704–709PubMedPubMedCentralCrossRefGoogle Scholar
  22. Edmunds T (2005) β-glucocerebrosidase, ceredase and cerezyme. Dir Ther Enzymes 12:117–133Google Scholar
  23. Epshtein NA (2004) Validation of HPLC techniques for pharmaceutical analysis. Pharm Chem J 38(4):212–228CrossRefGoogle Scholar
  24. European Medicines Agency (2015) Public assessment report for Strensiq. Accessed 7 Mar 2018
  25. European Medicines Agency Public Assessment Report for Strensiq 25 June (2015). Accessed 7 Mar 2018
  26. Farshid M, Taffs RE, Scott D et al (2005) The clearance of viruses and transmissible spongiform encephalopathy agents from biologicals. Cur Opin Biotechnol 16(5):561–567CrossRefGoogle Scholar
  27. Fekete S, Beck A, Veuthey JL et al (2014) Theory and practice of size exclusion chromatography for the analysis of protein aggregates. J Pharm Biomed Anal 101:161–173PubMedCrossRefGoogle Scholar
  28. Fekete S, Beck A, Veuthey JL et al (2015) Ion-exchange chromatography for the characterization of biopharmaceuticals. J Pharm Biomed Anal 113:43–55PubMedCrossRefGoogle Scholar
  29. Gao Y, Allison N (2016) Extractables and leachables issues with the application of single use technology in the biopharmaceutical industry. J Chem Technol Biotechnol 91(2):289–295CrossRefGoogle Scholar
  30. Gervais D (2016) Protein deamidation in biopharmaceutical manufacture: understanding, control and impact. J Chem Technol Biotechnol 91(3):569–575CrossRefGoogle Scholar
  31. Gervais D, Foote N (2014) Recombinant deamidated mutants of Erwinia chrysanthemi L-asparaginase have similar or increased activity compared to wild-type enzyme. Mol Biotechnol 56(10):865–877PubMedCrossRefGoogle Scholar
  32. Gervais D, Allison N, Jennings A et al (2013) Validation of a 30-year-old process for the manufacture of L-asparaginase from Erwinia chrysanthemi. Bioprocess Biosyst Eng 36(4):453–460PubMedCrossRefGoogle Scholar
  33. Gervais D, King D, Kanda P et al (2015) Structural characterisation of non-deamidated acidic variants of Erwinia chrysanthemi L-asparaginase using small-angle X-ray scattering and ion-mobility mass spectrometry. Pharm Res 32(11):3636–3648PubMedCrossRefGoogle Scholar
  34. Gervais D, Downer A, King D et al (2017) Robust quantitation of basic-protein higher-order aggregates using size-exclusion chromatography. J Pharm Biomed Anal 139:215–220PubMedCrossRefGoogle Scholar
  35. Grabowski GA, Golembo M, Shaaltiel Y (2014) Taliglucerase alfa: an enzyme replacement therapy using plant cell expression technology. Mol Genet Metab 112(1):1–8PubMedCrossRefGoogle Scholar
  36. Graham ML (2003) Pegaspargase: a review of clinical studies. Adv Drug Del Rev 55(10):1293–1302CrossRefGoogle Scholar
  37. Hage DS, Cazes J (eds) (2005) Handbook of affinity chromatography. CRC Press, Boca RatonGoogle Scholar
  38. Hagel L (2001) Gel-filtration chromatography. Cur Prot Mol Biol 44(1):10.9.1–10.9.2Google Scholar
  39. Harmatz PR, Garcia P, Guffon N et al (2014) Galsulfase (Naglazyme®) therapy in infants with mucopolysaccharidosis VI. J Inherit Metab Dis 37(2):277–287PubMedCrossRefGoogle Scholar
  40. Hassan S, Van Dolleweerd CJ, Ioakeimidis F et al (2008) Considerations for extraction of monoclonal antibodies targeted to different subcellular compartments in transgenic tobacco plants. Plant Biotechnol J 6:733–748PubMedCrossRefGoogle Scholar
  41. Heartlein M, Kimura A (2014) Discovery and clinical development of idursulfase (Elaprase®) for the treatment of mucopolysaccharidosis II (Hunter syndrome). Orphan Drugs Rare Dis 38:164CrossRefGoogle Scholar
  42. Hentz NG (2013) Pharmaceutical bioburden testing. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology. Wiley, New York, pp 757–774. CrossRefGoogle Scholar
  43. Hermans MM, Wisselaar HA, Kroos MA et al (1993) Human lysosomal alpha-glucosidase: functional characterization of the glycosylation sites. Biochem J 289(3):681PubMedPubMedCentralCrossRefGoogle Scholar
  44. Holdgate G, Geschwindner S, Breeze A et al (2013) Biophysical methods in drug discovery from small molecule to pharmaceutical. In: Williams M, Daviter T (eds) Protein-ligand interactions. Methods in molecular biology (methods and protocols) 1008. Humana Press, TotowaGoogle Scholar
  45. Hong P, Koza S, Bouvier ES (2012) A review, size-exclusion chromatography for the analysis of protein biotherapeutics and their aggregates. J Liq Chromatogr Rel Technol 35(20):2923–2950CrossRefGoogle Scholar
  46. Houde D, Kauppinen P, Mhatre R et al (2006) Determination of protein oxidation by mass spectrometry and method transfer to quality control. J Chromatogr A 1123(2):189–198PubMedCrossRefGoogle Scholar
  47. Hu B, Sellers J, Kupec J et al (2014) Optimization and validation of DNA extraction and real-time PCR assay for the quantitative measurement of residual host cell DNA in biopharmaceutical products. J Pharm Biomed Anal 88:92–95PubMedCrossRefGoogle Scholar
  48. Hubert C, Houari S, Rozet E et al (2015) Towards a full integration of optimization and validation phases: an analytical-quality-by-design approach. J Chromatogr A 1395:88–98PubMedCrossRefGoogle Scholar
  49. International Conference on Harmonisation (2009) Q8(R2), Pharmaceutical DevelopmentGoogle Scholar
  50. Janson JC (ed) (2012) Protein purification: principles, high resolution methods, and applications. Wiley, New YorkGoogle Scholar
  51. Jin M, Szapiel N, Zhang J et al (2010) Profiling of host cell proteins by two-dimensional difference gel electrophoresis (2D-DIGE): implications for downstream process development. Biotechnol Bioeng 105(2):306–316PubMedCrossRefGoogle Scholar
  52. Kågedal L (2011) Immobilized metal ion affinity chromatography. In: Janson J (ed) Protein purification. Wiley-VCH, New York, pp 183–201CrossRefGoogle Scholar
  53. Kakkis E (2005) α-L-Iduronidase: the development of Aldurazyme (Laronidase). Dir Ther Enzymes 12:239–260Google Scholar
  54. Kennedy RM (1995) Hydrophobic-interaction chromatography. Cur Prot Protein Sci 00(1):8.4.1-8.4.21Google Scholar
  55. Kuberkar VT, Davis RH (2001) Microfiltration of protein-cell mixtures with crossflushing or backflushing. J Membr Sci 183(1):1–4CrossRefGoogle Scholar
  56. Labrou NE (2003 Jun 25) Design and selection of ligands for affinity chromatography. J Chromatogr B 790(1–2):67–78.CrossRefGoogle Scholar
  57. Lee SM, Wroble MH, Ross JT (1989) L-asparaginase from Erwinia carotovora. Appl Biochem Biotechnol 22(1):1–1PubMedCrossRefGoogle Scholar
  58. Lee K, Jin X, Zhang K et al (2003) A biochemical and pharmacological comparison of enzyme replacement therapies for the glycolipid storage disorder Fabry disease. Glycobiology 13(4):305–313PubMedCrossRefGoogle Scholar
  59. Lee JH, Shin JS, Bae JE (2010) Quantitative detection of residual E. coli host cell DNA by real-time PCR. J Microbiol Biotechnol 20(10):1463–1470PubMedCrossRefGoogle Scholar
  60. Levesley JA, Hoare M (1999) The effect of high frequency backflushing on the microfiltration of yeast homogenate suspensions for the recovery of soluble proteins. J Membr Sci 158(1):29–39CrossRefGoogle Scholar
  61. McGettrick AF, Worrall DM (2004) Dye-ligand affinity chromatography. In: Cutler P (ed) Protein purification protocols. Humana Press, Totowa, pp 151–157Google Scholar
  62. Middelberg AP (1995) Process-scale disruption of microorganisms. Biotechnol Adv 13(3):491–551PubMedCrossRefGoogle Scholar
  63. Millán JL, Whyte MP (2016) Alkaline phosphatase and hypophosphatasia. Calcif Tissue Int 98(4):398–416PubMedCrossRefGoogle Scholar
  64. Millán JL, Narisawa S, Lemire I et al (2008) Enzyme replacement therapy for murine hypophosphatasia. J Bone Miner Res 23(6):777–787PubMedCrossRefGoogle Scholar
  65. Minton NP, Bullman HM, Scawen MD et al (1986) Nucleotide sequence of the Erwinia chrysanthemi NCPPB 1066 L-asparaginase gene. Gene 46(1):25–35PubMedCrossRefGoogle Scholar
  66. Mor TS (2015) Molecular pharming’s foot in the FDA’s door: Protalix’s trailblazing story. Biotechnol Lett 37(11):2147–2150PubMedPubMedCentralCrossRefGoogle Scholar
  67. Noble JE, Knight AE, Reason AJ et al (2007) A comparison of protein quantitation assays for biopharmaceutical applications. Mol Biotechnol 37(2):99–111PubMedCrossRefGoogle Scholar
  68. Parnham CS, Davis RH (1996) Protein recovery from bacterial cell debris using crossflow microfiltration with backpulsing. J Membr Sci 118(2):259–268CrossRefGoogle Scholar
  69. Parr MK, Schmidt AH (2018) Life cycle management of analytical methods. J Pharm Biomed Anal 147:506–517PubMedCrossRefGoogle Scholar
  70. Patterson DM, Lee SM (2010) Glucarpidase following high-dose methotrexate: update on development. Expert Opin Biol Ther 10(1):105–111PubMedCrossRefGoogle Scholar
  71. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612CrossRefPubMedGoogle Scholar
  72. Porath J (1992) Immobilized metal ion affinity chromatography. Protein Expr Purif 3(4):263–281PubMedCrossRefGoogle Scholar
  73. Quirk AV, Woodrow JR (1984) Investigation of the parameters affecting the separation of bacterial enzymes from cell debris by tangential flow filtration. Enz Microb Technol 6(5):201–206CrossRefGoogle Scholar
  74. Rauenbusch E, Bauer K, Kaufmann W et al (1970) Isolation and crystallisation of L-asparaginase from E. coli. In: Grundmann E, Oettgen HF (eds) Experimental and clinical effects of L-Asparaginase. Springer, Berlin, pp 31–38CrossRefGoogle Scholar
  75. Razinkov VI, Treuheit MJ, Becker GW (2013) Methods of high throughput biophysical characterization in biopharmaceutical development. Cur Drug Disc Technol 10(1):59–70Google Scholar
  76. Rodriguez-Diaz R, Wehr T, Zhu M (1997) Capillary isoelectric focusing. Electrophoresis 18(12–13):2134–2144PubMedCrossRefGoogle Scholar
  77. Rustandi RR, Wang Y (2011) Use of CE-SDS gel for characterization of monoclonal antibody hinge region clipping due to copper and high pH stress. Electrophoresis 32(21):3078–3084PubMedCrossRefGoogle Scholar
  78. Salazar O, Asenjo JA (2007) Enzymatic lysis of microbial cells. Biotechnol Lett 29(7):985–994PubMedCrossRefGoogle Scholar
  79. Salzer WL, Asselin BL, Plourde PV et al (2014) Development of asparaginase Erwinia chrysanthemi for the treatment of acute lymphoblastic leukemia. Ann N Y Acad Sci 1329(1):81–92PubMedCrossRefGoogle Scholar
  80. Sanford M, Lo JH (2014) Elosulfase alfa: first global approval. Drugs 74(6):713–718PubMedCrossRefGoogle Scholar
  81. Santos JH, Flores-Santos JC, Meneguetti GP et al (2018) In situ purification of periplasmatic L-asparaginase by aqueous two phase systems with ionic liquids (ILs) as adjuvants. J Chem Technol Biotechnol 93(7):1871–1880CrossRefGoogle Scholar
  82. Schenauer MR, Flynn GC, Goetze AM (2012) Identification and quantification of host cell protein impurities in biotherapeutics using mass spectrometry. Anal Biochem 428(2):150–157PubMedCrossRefGoogle Scholar
  83. Scopes RK (2013) Protein purification: principles and practice. Springer, BerlinGoogle Scholar
  84. Shaaltiel Y, Bartfeld D, Hashmueli S et al (2007) Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol J 5(5):579–590PubMedCrossRefGoogle Scholar
  85. Shang TQ, Saati A, Toler KN et al (2014) Development and application of a robust N-glycan profiling method for heightened characterization of monoclonal antibodies and related glycoproteins. J Pharm Sci 103(7):1967–1978PubMedCrossRefGoogle Scholar
  86. Shukla AA, Jiang C, Ma J et al (2008) Demonstration of robust host cell protein clearance in biopharmaceutical downstream processes. Biotechnol Prog 24(3):615–622PubMedCrossRefGoogle Scholar
  87. Su K, Donaldson E, Sharma R (2016) Novel treatment options for lysosomal acid lipase deficiency: critical appraisal of sebelipase alfa. Appl Clin Genet 9:157PubMedPubMedCentralCrossRefGoogle Scholar
  88. Taverniers I, De Loose M, Van Bockstaele E (2004) Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. Trends Anal Chem 23(8):535–552CrossRefGoogle Scholar
  89. Tekoah Y, Tzaban S, Kizhner T et al (2013) Glycosylation and functionality of recombinant β-glucocerebrosidase from various production systems. Biosci Rep 33(5):e00071PubMedPubMedCentralCrossRefGoogle Scholar
  90. Tekoah Y, Shulman A, Kizhner T et al (2015) Large-scale production of pharmaceutical proteins in plant cell culture—the protalix experience. Plant Biotechnol J 13(8):1199–1208CrossRefGoogle Scholar
  91. Tobin JJ, Walsh G (2008) Good manufacturing practice. In: Tobin JJ, Walsh G (eds) Medical product regulatory affairs: pharmaceuticals, diagnostics, medical devices. Wiley, New York, pp 209–235CrossRefGoogle Scholar
  92. Torosantucci R, Schöneich C, Jiskoot W (2014) Oxidation of therapeutic proteins and peptides: structural and biological consequences. Pharm Res 31(3):541–553PubMedCrossRefGoogle Scholar
  93. Tscheliessnig AL, Konrath J, Bates R et al (2013) Host cell protein analysis in therapeutic protein bioprocessing–methods and applications. Biotechnol J 8(6):655–670PubMedCrossRefGoogle Scholar
  94. Valera CR, Chen JW, Xu Y (2003) Application of multivirus spike approach for viral clearance evaluation. Biotechnol Bioeng 84(6):714–722PubMedCrossRefGoogle Scholar
  95. Van Reis R, Zydney A (2001) Membrane separations in biotechnology. Curr Opin Biotechnol 12(2):208–211PubMedCrossRefGoogle Scholar
  96. van Tricht E, Geurink L, Pajic B et al (2015) New capillary gel electrophoresis method for fast and accurate identification and quantification of multiple viral proteins in influenza vaccines. Talanta 144:1030–1035PubMedCrossRefGoogle Scholar
  97. Voisard D, Meuwly F, Ruffieux PA et al (2003) Potential of cell retention techniques for large-scale high-density perfusion culture of suspended mammalian cells. Biotechnol Bioeng 82(7):751–765PubMedCrossRefGoogle Scholar
  98. Wade HE (1972) Extraction of asparaginase from bacterial culture. US Patent 3,660,238. 2 May 1972Google Scholar
  99. Wagener JS, Kupfer O (2012) Dornase alfa (Pulmozyme). Curr Opin Pulm Med 18(6):609–614PubMedCrossRefGoogle Scholar
  100. Wang X, Hunter AK, Mozier NM (2009) Host cell proteins in biologics development: identification, quantitation and risk assessment. Biotechnol Bioeng 103(3):446–458PubMedCrossRefGoogle Scholar
  101. Wang X, Morgan DM, Wang G et al (2012) Residual DNA analysis in biologics development: review of measurement and quantitation technologies and future directions. Biotechnol Bioeng 109(2):307–317PubMedCrossRefGoogle Scholar
  102. Wei Z, Tous G, Yim A et al (2005) Validation of peptide mapping with electrospray mass spectrometry for recombinant proteins of biopharmaceutical interest and its applications as an identity test and a characterization tool. Dev Biol 122:29–47Google Scholar
  103. Wilken LR, Nikolov ZL (2012) Recovery and purification of plant-made recombinant proteins. Biotechnol Adv 30(2):419–433PubMedCrossRefGoogle Scholar
  104. World Health Organisation (2013) Guidelines on the quality, safety and efficacy of biotherapeutic protein products prepared by recombinant DNA technology. GenevaGoogle Scholar
  105. Yang H (2013) Establishing acceptable limits of residual DNA. PDA J Pharm Sci Technol 67(2):155–163PubMedCrossRefGoogle Scholar
  106. Yang J, Wang S, Liu J et al (2007) Determination of tryptophan oxidation of monoclonal antibody by reversed phase high performance liquid chromatography. J Chromatogr A 1156(1–2):174–182PubMedCrossRefGoogle Scholar
  107. Yao H, Vancoillie J, D’Hondt M et al (2016) An analytical quality by design (QbD) approach for a l-asparaginase activity method. J Pharm Biomed Anal 117:232–239PubMedCrossRefGoogle Scholar
  108. Yao H, Vandenbossche J, Sänger-van de Griend CE et al (2018) Development of a capillary zone electrophoresis method to quantify E. coli l-asparaginase and its acidic variants. Talanta 182:83–91PubMedCrossRefGoogle Scholar
  109. Yu LX, Amidon G, Khan MA et al (2014) Understanding pharmaceutical quality by design. AAPS J 16(4):771–783PubMedPubMedCentralCrossRefGoogle Scholar
  110. Zhang L, Chou CP, Moo-Young M (2011) Disulfide bond formation and its impact on the biological activity and stability of recombinant therapeutic proteins produced by Escherichia coli expression system. Biotechnol Adv 29(6):923–929CrossRefGoogle Scholar
  111. Zhu-Shimoni J, Yu C, Nishihara J et al (2014) Host cell protein testing by ELISAs and the use of orthogonal methods. Biotechnol Bioeng 111(12):2367–2379PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Porton Biopharma LimitedSalisburyUK

Personalised recommendations