Skip to main content

Production of Therapeutic Enzymes by Lentivirus Transgenesis

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1148))

Abstract

Since ERT for several LSDs treatment has emerged at the beginning of the 1980s with Orphan Drug approval, patients’ expectancy and life quality have been improved. Most LSDs treatment are based on the replaced of mutated or deficient protein with the natural or recombinant protein.

One of the main ERT drawback is the high drug prices. Therefore, different strategies trying to optimize the global ERT biotherapeutic production have been proposed. LVs, a gene delivery tool, can be proposed as an alternative method to generate stable cell lines in manufacturing of recombinant proteins. Since LVs have been used in human gene therapy, clinical trials, safety testing assays and procedures have been developed. Moreover, one of the main advantages of LVs strategy to obtain manufacturing cell line is the short period required as well as the high protein levels achieved.

In this chapter, we will focus on LVs as a recombinant protein production platform and we will present a case study that employs LVs to express in a manufacturing cell line, alpha-Galactosidase A (rhαGAL), which is used as ERT for Fabry disease treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

E. coli :

Escherichia coli

ER:

endothelial reticulum

PEG:

polyethylene glycol

FDA:

Food and Drug Administration

LSD:

lysosomal storage disease

MPS:

mucopolysaccaridosis

ERT:

enzyme replacement therapy

LVs:

lentiviral vectors

CHO:

Chinese Hamster Ovary

Neu5Gc:

N-glycolylneuraminic acid

BHK-21:

baby hamster kidney cells

HEK293:

Human Embryonic Kidney 293

EMA:

European Medicines Agency

CAP:

CEVEC´s Amniocyte Production

ICH:

International Conference of Harmonization

TGE:

transient gene expression

DHFR:

dihydrofolate reductase

GS:

glutamine synthetase

MTX:

methotrexate

MSX:

methionine sulfoximine

HPRT:

hypoxanthine phosphoribosyl transferase

RMCE:

recombinase-mediated cassette exchange

FRT:

flippase recognition target sites

ZFNs:

zinc finger nucleases

TALENs:

transcription activator-like effector nucleases

NHEJ:

non-homologous end-joining

HDR:

homology-directed repair

CRISPR:

clustered regularly interspaced short palindromic repeats

SpCas9:

Streptococcus pyogenes Cas9 endonuclease

gRNA:

guide RNA

trcRNA:

trans-acting antisense RNA

PAM:

protospacer adjacent motif

S/MARs:

matrix attachment regions

UCOEs:

Ubiquitous Chromatin Opening Elements

PEI:

Polyethylenimine

RT:

reverse transcriptase

IN:

integrase

TG:

transgene

VSV:

Vesicular Stomatitis Virus

LTR:

long terminal repeats

SIN:

self-inactivating

RRE:

rev response elements

cPPT:

Central Polypurine tract

WPRE:

post-transcriptional regulatory element of the woodchuck

qPCR:

real time polymerase chain reaction

MOI:

multiplicity of infection

CAR:

chimeric antigen receptor

RCL:

replication-competent lentivirus

ELISA:

enzyme-linked immunosorbent assay

PERT:

product-enhanced reverse transcriptase

LOD:

limit of detection

M6P:

phosphate-6-O-mannose

GlcNAc:

N-acetylglucosamine

M6PR:

M6P receptor

C6S:

chondroitin-6-sulfate

KS:

keratan sulfate

GALNS:

N-acetylgalactosamine-6-sulfate sulfatase

LAL:

Lysosomal acid lipase

Gb3:

globotriaosylceramide

rhαGAL:

recombinant human alpha galactosidase A

LP:

lentiviral particle

IEX:

ionic exchange

HIC:

Hydrophobic interaction chromatography

RP-HPLC:

reversed phase high performance liquid chromatography

IEF:

isoelectrofocusing

HPAEC-PAD:

high-pH anion-exchange chromatography with pulsed amperometric detection

WAX:

weak anion exchange

Man:

Mannose

Gal:

Galactose

GlcNAc:

N-acetylglucosamine

Fuc:

Fucose

4MU-α-Gal:

4-Methylumbelliferyl α-D-galactopyranoside

References

  • Bandaranayake AD, Almo SC (2014) Recent advances in mammalian protein production. FEBS Lett 588(2):253–260

    CAS  PubMed  Google Scholar 

  • Baranyi L, Roy A, Embree HD, Dropulic B (2010) Lentiviral vector-mediated genetic modification of cell substrates for the manufacture of proteins and other biologics. PDA J Pharm Sci Technol 64:379–385

    CAS  PubMed  Google Scholar 

  • Bennett LL, Mohan D (2013) Gaucher disease and its treatment options. Ann Pharmacother 47(9):1182–93

    Google Scholar 

  • Braulke T, Bonifacino JS (2009) Sorting of lysosomal proteins. BBA – Mol Cell Res 1793:605–614

    CAS  Google Scholar 

  • Braunlin E, Rosenfeld H, Kampmann C et al (2013) Enzyme replacement therapy for mucopolysaccharidosis VI: long-term cardiac effects of galsulfase (Naglazyme®) therapy. J Inherit Metab Dis 36(2):385–394

    CAS  PubMed  Google Scholar 

  • Butler M, Spearman M (2014) The choice of mammalian cell host and possibilities for glycosylation engineering. Curr Opin Biotechnol 30:107–112

    CAS  PubMed  Google Scholar 

  • Byrne B, Donohoe GG, O’Kennedy R (2007) Sialic acids: carbohydrate moieties that influence the biological and physical properties of biopharmaceutical proteins and living cells. Drug Discov Today 12(7–8):319–326

    CAS  PubMed  Google Scholar 

  • Cabrera I, Abasolo I, Corchero JL et al (2016) α -galactosidase-A-loaded Nanoliposomes with enhanced enzymatic activity and intracellular penetration. Adv Healthc Mater 5:829–840

    CAS  PubMed  Google Scholar 

  • Cappellino LA, Kratje RB, Etcheverrigaray M et al (2017) Strategy for erythroid differentiation in ex vivo cultures: lentiviral genetic modification of human hematopoietic stem cells with erythropoietin gene. J Biosci Bioeng 124(5):591–598

    CAS  PubMed  Google Scholar 

  • Cho MS, Yee H, Chan S (2002) Establishment of a human somatic hybrid cell line for recombinant protein production. J Biomed Sci 9:631–638

    CAS  PubMed  Google Scholar 

  • Chung YK, Sohn YB, Sohn JM et al (2014) A biochemical and physicochemical comparison of two recombinant enzymes used for enzyme replacement therapies of hunter syndrome. Glycoconj J 31(4):309–315

    CAS  PubMed  Google Scholar 

  • Clark DP, Pazdernik NJ (2016) Chapter 10- recombinant proteins. In: Clark DP, Pazdernik NJ (ed) Biotechnology, 2nd edn. Academic Cell, p 355–363

    Google Scholar 

  • Corchero JL, Mendoza R, Lorenzo J et al (2011) Integrated approach to produce a recombinant, his-tagged human α-galactosidase A in mammalian cells. Biotechnol Prog 27(5):1206–1217

    CAS  PubMed  Google Scholar 

  • Cornetta K, Yao J, Jasti A et al (2011) Replication-competent lentivirus analysis of clinical grade vector products. Mol Ther 19(3):557–566

    CAS  PubMed  Google Scholar 

  • Cornetta K, Duffy L, Turtle CJ et al (2017) Absence of replication-competent lentivirus in the clinic: analysis of infused T cell products. Mol Ther 25(12):1–9

    Google Scholar 

  • Cox MMJ (2012) Recombinant protein vaccines produced in insect cells. Vaccine 30(10):1759–1766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Desnick RJ (2004) Enzyme replacement therapy for Fabry disease: lessons from two alpha-galactosidase A orphan products and one FDA approval. Expert Opin Biol Ther 4(7):1167–1176

    CAS  PubMed  Google Scholar 

  • Ding K, Han L, Zong H et al (2017) Production process reproducibility and product quality consistency of transient gene expression in HEK293 cells with anti-PD1 antibody as the model protein. Appl Microbiol Biotechnol 101(5):1889–1898

    CAS  PubMed  Google Scholar 

  • Dumont J, Euwart D, Mei B et al (2016) Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit Rev Biotechnol 36(6):1110–1122

    CAS  PubMed  Google Scholar 

  • Dvorak-Ewell M, Wendt D, Hague C et al (2010) Enzyme replacement in a human model of mucopolysaccharidosis IVA in vitro and its biodistribution in the cartilage of wild type mice. PLoS One 5(8):1–11

    Google Scholar 

  • Escarpe P, Zayek N, Chin P et al (2003) Development of a sensitive assay for detection of replication-competent recombinant lentivirus in large-scale HIV-based vector preparations. Mol Ther 8(2):332–341

    CAS  PubMed  Google Scholar 

  • Espejo-Mojica ÁJ, Alméciga-Díaz CJ, Rodríguez A et al (2015) Human recombinant lysosomal enzymes produced in microorganisms. Mol Genet Metab 116(1–2):13–23

    CAS  PubMed  Google Scholar 

  • Frampton JE (2016) Sebelipase alfa: a review in lysosomal acid lipase deficiency. Am J Cardiovasc Drugs 16(6):461–468

    CAS  PubMed  Google Scholar 

  • Gaillet B, Gilbert R, Broussau S et al (2010) High-level recombinant protein production in CHO cells using lentiviral vectors and the cumate gene-switch. Biotechnol Bioeng 106(2):203–215

    CAS  PubMed  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta SK, Shukla P (2017) Gene editing for cell engineering: trends and applications. Crit Rev Biotechnol 37(5):672–684

    CAS  PubMed  Google Scholar 

  • Hacker DL, Balasubramanian S (2016) Recombinant protein production from stable mammalian cell lines and pools. Curr Opin Struct Biol 38:129–136

    CAS  PubMed  Google Scholar 

  • Harraghy N, Calabrese D, Fisch I et al (2015) Epigenetic regulatory elements: recent advances in understanding their mode of action and use for recombinant protein production in mammalian cells. Biotechnol J 10(7):967–978

    CAS  PubMed  Google Scholar 

  • Higgins E (2010) Carbohydrate analysis throughout the development of a protein therapeutic. Glycoconj J 27(2):211–225

    CAS  PubMed  Google Scholar 

  • Ioannou YA, Bishop DF, Desnick RJ (1992) Overexpression of human a-galactosidase a results in its intracellular aggregation, crystallization in lysosomes, and selective secretion. J Cell Biol 119:1137–50

    Google Scholar 

  • Jameson E, Jones S, Remmington T (2013) Enzyme replacement therapywith laronidase (Aldurazyme®) for treating mucopolysaccharidosis type I. Cochrane Database Syst Rev 9(4):CD009354

    Google Scholar 

  • Johnston JM, Denning G, Doering CB et al (2012) Generation of an optimized lentiviral vector encoding a high- expression factor VIII transgene for gene therapy of hemophilia A. Gene Ther 20(6):607–61576

    PubMed  PubMed Central  Google Scholar 

  • Kang J-Y, Kwon O, Gil JY et al (2016) Comparison of fluorescent tags for analysis of mannose-6-phosphate glycans. Anal Biochem 501:1–3

    CAS  PubMed  Google Scholar 

  • Khan KH (2013) Gene expression in mammalian cells and its applications. Adv Pharm Bull 3(2):257–263

    PubMed  PubMed Central  Google Scholar 

  • Kizhner T, Azulay Y, Hainrichson M et al (2015) Characterization of a chemically modified plant cell culture expressed human α-galactosidase-A enzyme for treatment of Fabry disease. Mol Genet Metab 114:259–267

    CAS  PubMed  Google Scholar 

  • Kumar Kakkar A, Dahiya N (2014) From Blockbusters to Niche Busters. Drug Dev Res 75:231–234

    Google Scholar 

  • Kumar S, Abdulhameed S (2017) Therapeutic enzymes. Bioresour Bioprocess Biotechnol 2:45–73

    Google Scholar 

  • Lagassé HAD, Alexaki A, Simhadri VL et al (2017) Recent advances in (therapeutic protein) drug development [version 1; referees: 2 approved]. F1000Res. 2017 6(113):1–7

    Google Scholar 

  • Lalonde ME, Durocher Y (2017) Therapeutic glycoprotein production in mammalian cells. J Biotechnol 251:128–140

    CAS  PubMed  Google Scholar 

  • Lee K, Jin X, Zhang K et al (2003) A biochemical and pharmacological comparison of enzyme replacement therapies for the glycolipid storage disorder Fabry disease. Glycobiology 13(4):305–313

    PubMed  Google Scholar 

  • Mahmood I, Green MD (2005) Pharmacokinetic and pharmacodynamic considerations in the development of therapeutic proteins. Clin Pharmacokinet 44(4):331–347

    CAS  PubMed  Google Scholar 

  • Mao Y, Yan R, Li A et al (2015) Lentiviral vectors mediate long-term and high efficiency transgene expression in HEK 293T cells. Int J Med Sci 12(5):407–415

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merkle FT, Neuhausser WM, Santos D et al (2015) Efficient CRISPR-Cas9-mediated generation of knockin human pluripotent stem cells lacking undesired mutations at the targeted locus. Cell Rep 11(6):875–883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merten O-W, Hebben M, Bovolenta C (2016) Production of lentiviral vectors. Mol Ther Methods Clin Dev 3:1–14

    Google Scholar 

  • Moreno AM, Mali P (2017) Therapeutic genome engineering via CRISPR-Cas systems. Syst Biol Med 9:e1380

    Google Scholar 

  • Mufarrege EF, Antuña S, Etcheverrigaray M et al (2014) Development of lentiviral vectors for transient and stable protein overexpression in mammalian cells. A new strategy for recombinant human FVIII (rhFVIII) production. Protein Expr Purif 95:50–56

    PubMed  Google Scholar 

  • Oberbek A, Matasci M, Hacker DL (2011) Generation of stable, high-producing cho cell lines by lentiviral vector-mediated gene transfer in serum-free suspension culture. Biotechnol Bioeng 108(3):600–610

    CAS  PubMed  Google Scholar 

  • Oh DB (2015) Glyco-engineering strategies for the development of therapeutic enzymes with improved efficacy for the treatment of lysosomal storage diseases. BMB Rep 48(8):438–444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parenti G, Andria G, Ballabio A (2015) Lysosomal storage diseases: from pathophysiology to therapy. Annu Rev Med 66(1):471–486

    CAS  PubMed  Google Scholar 

  • Picanço-Castro V, de Sousa Russo-Carbolante EM, Tadeu Covas D (2012) Advances in lentiviral vectors: a patent review. Recent Pat DNA Gene Seq 6(2):82–90

    PubMed  Google Scholar 

  • Plewa C (2010) Application of lentiviral vectors for development of production cell lines and safety testing of lentiviral-derived cells or products PDA. J Pharm Sci Technol 64:386–391

    CAS  Google Scholar 

  • Porter JL, Rusli RA, Ollis DL (2016) Directed evolution of enzymes for industrial biocatalysis. Chembiochem 17(3):197–203

    CAS  PubMed  Google Scholar 

  • Prieto C, Fontana D, Etcheverrigaray M et al (2011) A strategy to obtain recombinant cell lines with high expression levels. Lentiviral vector-mediated transgenesis. BMC Proc 5(Suppl 8):7–8

    Google Scholar 

  • Rodríguez MC, Ceaglio N, Antuña S et al (2017) High yield process for the production of active human a -galactosidase a in CHO-K1 cells through lentivirus transgenesis. Biotechnol Prog 33(5):1334–1345

    PubMed  Google Scholar 

  • Ronda C, Pedersen LE, Hansen HG et al (2014) Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool. Biotechnol Bioeng 111(8):1604–1616

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuma T, Barry MA, Ikeda Y (2012) Lentiviral vectors: basic to translational. Biochem J 443:603–618

    CAS  PubMed  Google Scholar 

  • Sakuraba H, Murata-Ohsawa M, Kawashima I et al (2006) Comparison of the effects of agalsidase alfa and agalsidase beta on cultured human Fabry fibroblasts and Fabry mice. J Hum Genet 51:180–188

    CAS  PubMed  Google Scholar 

  • Sastry L, Xu Y, Johnson T et al (2003) Certification assays for HIV-1-based vectors: frequent passage of gag sequences without evidence of replication-competent viruses. Mol Ther 8(5):830–839

    CAS  PubMed  Google Scholar 

  • Selden RF, Borowski M, Kinoshita CM et al (2000) Medical preparations for the treatment of alpha-galactosidase a deficiency. WO 00/53730 A3 14 Sept 2000

    Google Scholar 

  • Sestito S, Grisolia M, Concolino D (2015) Profile of idursulfase for the treatment of Hunter syndrome. Res Reports Endocr Disord 5:79–90

    Google Scholar 

  • Shestopal SA, Hao J-J, Karnaukhova E et al (2017) Expression and characterization of a codon-optimized blood coagulation factor VIII. J Thromb Haemost 15(4):709–720

    CAS  PubMed  Google Scholar 

  • Skrdlant LM, Armstrong RJ, Keidaisch BM et al (2017) Detection of replication competent lentivirus using a qPCR assay for VSV-G. Mol Ther Methods Clin Dev 8:1–7

    PubMed  PubMed Central  Google Scholar 

  • Sohn YB, Cho SY, Park SW et al (2013a) Phase I/II clinical trial of enzyme replacement therapy with idursulfase beta in patients with mucopolysaccharidosis II (Hunter syndrome). Orphanet J Rare Dis 8(1):2–9

    Google Scholar 

  • Sohn Y, Lee JM, Park H et al (2013b) Enhanced sialylation and in vivo efficacy of recombinant human α-galactosidase through in vitro glycosylation. BMB Rep 46(3):157–162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Solomon M, Muro S (2017) Lysosomal enzyme replacement therapies: historical development, clinical outcomes, and future perspectives Melani. Adv Drug Deliv Rev 118:109–134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer HT, Denning G, Gautney RE et al (2011) Lentiviral vector platform for production of bioengineered recombinant coagulation factor VIII. Mol Ther 19(2):302–309

    CAS  PubMed  Google Scholar 

  • Spencer S, Gugliotta A, Koenitzer J et al (2015) Stability of single copy transgene expression in CHOK1 cells is affected by histone modifications but not by DNA methylation. J Biotechnol 195(1):15–29

    CAS  PubMed  Google Scholar 

  • Swiech K, Picanço-Castro V, Covas DT (2012) Human cells: new platform for recombinant therapeutic protein production. Protein Expr Purif 84(1):147–153

    CAS  PubMed  Google Scholar 

  • Tomatsu S, Sawamoto K, Shimada T et al (2015) Enzyme replacement therapy for treating mucopolysaccharidosis type IVA (Morquio A syndrome): effect and limitations. Expert Opin Orphan Drugs 3(11):1279–1290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turan S, Zehe C, Kuehle J et al (2013) Recombinase-mediated cassette exchange (RMCE) – a rapidly-expanding toolbox for targeted genomic modifications. Gene 515(1):1–27

    CAS  PubMed  Google Scholar 

  • Van der Valk J, Brunner D, De Smet K et al (2010) Optimization of chemically defined cell culture media – replacing fetal bovine serum in mammalian in vitro methods. Toxicol In Vitro 24(4):1053–1063

    PubMed  Google Scholar 

  • Varki A (2008) Sialic acids in human health and disease. Trends Mol Med 14(8):351–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vernon HJ (2015) Inborn errors of metabolism: advances in diagnosis and therapy. JAMA Pediatr 169(8):778–782

    PubMed  Google Scholar 

  • Wirth D, Gama-Norton L, Riemer P et al (2007) Road to precision: recombinase-based targeting technologies for genome engineering. Curr Opin Biotechnol 18:411–419

    CAS  PubMed  Google Scholar 

  • Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22(11):1393–1398

    CAS  PubMed  Google Scholar 

  • Wurm FM (2013) CHO Quasispecies – implications for manufacturing processes. Processes 1(3):296–311

    Google Scholar 

  • Xu M, Motabar O, Ferrer M et al (2016) Disease models for the development of therapies for lysosomal storage diseases. Ann N Y Acad Sci 1371(1):15–29

    PubMed  PubMed Central  Google Scholar 

  • Zhang F, Liu M, Wan H (2014) Discussion about several potential drawbacks of PEGylated therapeutic proteins. Biol Pharm Bull 37(3):335–339

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Prieto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodríguez, M.C., Ceaglio, N., Antuña, S., Tardivo, M.B., Etcheverrigaray, M., Prieto, C. (2019). Production of Therapeutic Enzymes by Lentivirus Transgenesis. In: Labrou, N. (eds) Therapeutic Enzymes: Function and Clinical Implications. Advances in Experimental Medicine and Biology, vol 1148. Springer, Singapore. https://doi.org/10.1007/978-981-13-7709-9_2

Download citation

Publish with us

Policies and ethics