Production of Therapeutic Enzymes by Lentivirus Transgenesis

  • María Celeste Rodríguez
  • Natalia Ceaglio
  • Sebastián Antuña
  • María Belén Tardivo
  • Marina Etcheverrigaray
  • Claudio PrietoEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1148)


Since ERT for several LSDs treatment has emerged at the beginning of the 1980s with Orphan Drug approval, patients’ expectancy and life quality have been improved. Most LSDs treatment are based on the replaced of mutated or deficient protein with the natural or recombinant protein.

One of the main ERT drawback is the high drug prices. Therefore, different strategies trying to optimize the global ERT biotherapeutic production have been proposed. LVs, a gene delivery tool, can be proposed as an alternative method to generate stable cell lines in manufacturing of recombinant proteins. Since LVs have been used in human gene therapy, clinical trials, safety testing assays and procedures have been developed. Moreover, one of the main advantages of LVs strategy to obtain manufacturing cell line is the short period required as well as the high protein levels achieved.

In this chapter, we will focus on LVs as a recombinant protein production platform and we will present a case study that employs LVs to express in a manufacturing cell line, alpha-Galactosidase A (rhαGAL), which is used as ERT for Fabry disease treatment.


ERT LSDs Fabry disease Lentiviral Vectors (LVs) rhαGAL 


E. coli

Escherichia coli


endothelial reticulum


polyethylene glycol


Food and Drug Administration


lysosomal storage disease




enzyme replacement therapy


lentiviral vectors


Chinese Hamster Ovary


N-glycolylneuraminic acid


baby hamster kidney cells


Human Embryonic Kidney 293


European Medicines Agency


CEVEC´s Amniocyte Production


International Conference of Harmonization


transient gene expression


dihydrofolate reductase


glutamine synthetase




methionine sulfoximine


hypoxanthine phosphoribosyl transferase


recombinase-mediated cassette exchange


flippase recognition target sites


zinc finger nucleases


transcription activator-like effector nucleases


non-homologous end-joining


homology-directed repair


clustered regularly interspaced short palindromic repeats


Streptococcus pyogenes Cas9 endonuclease


guide RNA


trans-acting antisense RNA


protospacer adjacent motif


matrix attachment regions


Ubiquitous Chromatin Opening Elements




reverse transcriptase






Vesicular Stomatitis Virus


long terminal repeats




rev response elements


Central Polypurine tract


post-transcriptional regulatory element of the woodchuck


real time polymerase chain reaction


multiplicity of infection


chimeric antigen receptor


replication-competent lentivirus


enzyme-linked immunosorbent assay


product-enhanced reverse transcriptase


limit of detection






M6P receptor




keratan sulfate


N-acetylgalactosamine-6-sulfate sulfatase


Lysosomal acid lipase




recombinant human alpha galactosidase A


lentiviral particle


ionic exchange


Hydrophobic interaction chromatography


reversed phase high performance liquid chromatography




high-pH anion-exchange chromatography with pulsed amperometric detection


weak anion exchange










4-Methylumbelliferyl α-D-galactopyranoside


  1. Bandaranayake AD, Almo SC (2014) Recent advances in mammalian protein production. FEBS Lett 588(2):253–260PubMedCrossRefGoogle Scholar
  2. Baranyi L, Roy A, Embree HD, Dropulic B (2010) Lentiviral vector-mediated genetic modification of cell substrates for the manufacture of proteins and other biologics. PDA J Pharm Sci Technol 64:379–385PubMedGoogle Scholar
  3. Bennett LL, Mohan D (2013) Gaucher disease and its treatment options. Ann Pharmacother 47(9):1182–93PubMedCrossRefGoogle Scholar
  4. Braulke T, Bonifacino JS (2009) Sorting of lysosomal proteins. BBA – Mol Cell Res 1793:605–614Google Scholar
  5. Braunlin E, Rosenfeld H, Kampmann C et al (2013) Enzyme replacement therapy for mucopolysaccharidosis VI: long-term cardiac effects of galsulfase (Naglazyme®) therapy. J Inherit Metab Dis 36(2):385–394PubMedCrossRefGoogle Scholar
  6. Butler M, Spearman M (2014) The choice of mammalian cell host and possibilities for glycosylation engineering. Curr Opin Biotechnol 30:107–112PubMedCrossRefGoogle Scholar
  7. Byrne B, Donohoe GG, O’Kennedy R (2007) Sialic acids: carbohydrate moieties that influence the biological and physical properties of biopharmaceutical proteins and living cells. Drug Discov Today 12(7–8):319–326PubMedCrossRefGoogle Scholar
  8. Cabrera I, Abasolo I, Corchero JL et al (2016) α -galactosidase-A-loaded Nanoliposomes with enhanced enzymatic activity and intracellular penetration. Adv Healthc Mater 5:829–840PubMedCrossRefGoogle Scholar
  9. Cappellino LA, Kratje RB, Etcheverrigaray M et al (2017) Strategy for erythroid differentiation in ex vivo cultures: lentiviral genetic modification of human hematopoietic stem cells with erythropoietin gene. J Biosci Bioeng 124(5):591–598PubMedCrossRefGoogle Scholar
  10. Cho MS, Yee H, Chan S (2002) Establishment of a human somatic hybrid cell line for recombinant protein production. J Biomed Sci 9:631–638PubMedCrossRefGoogle Scholar
  11. Chung YK, Sohn YB, Sohn JM et al (2014) A biochemical and physicochemical comparison of two recombinant enzymes used for enzyme replacement therapies of hunter syndrome. Glycoconj J 31(4):309–315PubMedCrossRefGoogle Scholar
  12. Clark DP, Pazdernik NJ (2016) Chapter 10- recombinant proteins. In: Clark DP, Pazdernik NJ (ed) Biotechnology, 2nd edn. Academic Cell, p 355–363Google Scholar
  13. Corchero JL, Mendoza R, Lorenzo J et al (2011) Integrated approach to produce a recombinant, his-tagged human α-galactosidase A in mammalian cells. Biotechnol Prog 27(5):1206–1217PubMedCrossRefGoogle Scholar
  14. Cornetta K, Yao J, Jasti A et al (2011) Replication-competent lentivirus analysis of clinical grade vector products. Mol Ther 19(3):557–566PubMedCrossRefGoogle Scholar
  15. Cornetta K, Duffy L, Turtle CJ et al (2017) Absence of replication-competent lentivirus in the clinic: analysis of infused T cell products. Mol Ther 25(12):1–9Google Scholar
  16. Cox MMJ (2012) Recombinant protein vaccines produced in insect cells. Vaccine 30(10):1759–1766PubMedCrossRefGoogle Scholar
  17. Desnick RJ (2004) Enzyme replacement therapy for Fabry disease: lessons from two alpha-galactosidase A orphan products and one FDA approval. Expert Opin Biol Ther 4(7):1167–1176PubMedCrossRefGoogle Scholar
  18. Ding K, Han L, Zong H et al (2017) Production process reproducibility and product quality consistency of transient gene expression in HEK293 cells with anti-PD1 antibody as the model protein. Appl Microbiol Biotechnol 101(5):1889–1898PubMedCrossRefGoogle Scholar
  19. Dumont J, Euwart D, Mei B et al (2016) Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit Rev Biotechnol 36(6):1110–1122PubMedCrossRefGoogle Scholar
  20. Dvorak-Ewell M, Wendt D, Hague C et al (2010) Enzyme replacement in a human model of mucopolysaccharidosis IVA in vitro and its biodistribution in the cartilage of wild type mice. PLoS One 5(8):1–11CrossRefGoogle Scholar
  21. Escarpe P, Zayek N, Chin P et al (2003) Development of a sensitive assay for detection of replication-competent recombinant lentivirus in large-scale HIV-based vector preparations. Mol Ther 8(2):332–341PubMedCrossRefGoogle Scholar
  22. Espejo-Mojica ÁJ, Alméciga-Díaz CJ, Rodríguez A et al (2015) Human recombinant lysosomal enzymes produced in microorganisms. Mol Genet Metab 116(1–2):13–23PubMedCrossRefGoogle Scholar
  23. Frampton JE (2016) Sebelipase alfa: a review in lysosomal acid lipase deficiency. Am J Cardiovasc Drugs 16(6):461–468PubMedCrossRefGoogle Scholar
  24. Gaillet B, Gilbert R, Broussau S et al (2010) High-level recombinant protein production in CHO cells using lentiviral vectors and the cumate gene-switch. Biotechnol Bioeng 106(2):203–215PubMedGoogle Scholar
  25. Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405PubMedPubMedCentralCrossRefGoogle Scholar
  26. Gupta SK, Shukla P (2017) Gene editing for cell engineering: trends and applications. Crit Rev Biotechnol 37(5):672–684PubMedCrossRefGoogle Scholar
  27. Hacker DL, Balasubramanian S (2016) Recombinant protein production from stable mammalian cell lines and pools. Curr Opin Struct Biol 38:129–136PubMedCrossRefGoogle Scholar
  28. Harraghy N, Calabrese D, Fisch I et al (2015) Epigenetic regulatory elements: recent advances in understanding their mode of action and use for recombinant protein production in mammalian cells. Biotechnol J 10(7):967–978PubMedCrossRefGoogle Scholar
  29. Higgins E (2010) Carbohydrate analysis throughout the development of a protein therapeutic. Glycoconj J 27(2):211–225PubMedCrossRefGoogle Scholar
  30. Ioannou YA, Bishop DF, Desnick RJ (1992) Overexpression of human a-galactosidase a results in its intracellular aggregation, crystallization in lysosomes, and selective secretion. J Cell Biol 119:1137–50PubMedCrossRefGoogle Scholar
  31. Jameson E, Jones S, Remmington T (2013) Enzyme replacement therapywith laronidase (Aldurazyme®) for treating mucopolysaccharidosis type I. Cochrane Database Syst Rev 9(4):CD009354Google Scholar
  32. Johnston JM, Denning G, Doering CB et al (2012) Generation of an optimized lentiviral vector encoding a high- expression factor VIII transgene for gene therapy of hemophilia A. Gene Ther 20(6):607–61576PubMedPubMedCentralCrossRefGoogle Scholar
  33. Kang J-Y, Kwon O, Gil JY et al (2016) Comparison of fluorescent tags for analysis of mannose-6-phosphate glycans. Anal Biochem 501:1–3PubMedCrossRefGoogle Scholar
  34. Khan KH (2013) Gene expression in mammalian cells and its applications. Adv Pharm Bull 3(2):257–263PubMedPubMedCentralGoogle Scholar
  35. Kizhner T, Azulay Y, Hainrichson M et al (2015) Characterization of a chemically modified plant cell culture expressed human α-galactosidase-A enzyme for treatment of Fabry disease. Mol Genet Metab 114:259–267PubMedCrossRefGoogle Scholar
  36. Kumar Kakkar A, Dahiya N (2014) From Blockbusters to Niche Busters. Drug Dev Res 75:231–234Google Scholar
  37. Kumar S, Abdulhameed S (2017) Therapeutic enzymes. Bioresour Bioprocess Biotechnol 2:45–73CrossRefGoogle Scholar
  38. Lagassé HAD, Alexaki A, Simhadri VL et al (2017) Recent advances in (therapeutic protein) drug development [version 1; referees: 2 approved]. F1000Res. 2017 6(113):1–7Google Scholar
  39. Lalonde ME, Durocher Y (2017) Therapeutic glycoprotein production in mammalian cells. J Biotechnol 251:128–140PubMedCrossRefGoogle Scholar
  40. Lee K, Jin X, Zhang K et al (2003) A biochemical and pharmacological comparison of enzyme replacement therapies for the glycolipid storage disorder Fabry disease. Glycobiology 13(4):305–313PubMedCrossRefGoogle Scholar
  41. Mahmood I, Green MD (2005) Pharmacokinetic and pharmacodynamic considerations in the development of therapeutic proteins. Clin Pharmacokinet 44(4):331–347PubMedCrossRefGoogle Scholar
  42. Mao Y, Yan R, Li A et al (2015) Lentiviral vectors mediate long-term and high efficiency transgene expression in HEK 293T cells. Int J Med Sci 12(5):407–415PubMedPubMedCentralCrossRefGoogle Scholar
  43. Merkle FT, Neuhausser WM, Santos D et al (2015) Efficient CRISPR-Cas9-mediated generation of knockin human pluripotent stem cells lacking undesired mutations at the targeted locus. Cell Rep 11(6):875–883PubMedPubMedCentralCrossRefGoogle Scholar
  44. Merten O-W, Hebben M, Bovolenta C (2016) Production of lentiviral vectors. Mol Ther Methods Clin Dev 3:1–14CrossRefGoogle Scholar
  45. Moreno AM, Mali P (2017) Therapeutic genome engineering via CRISPR-Cas systems. Syst Biol Med 9:e1380Google Scholar
  46. Mufarrege EF, Antuña S, Etcheverrigaray M et al (2014) Development of lentiviral vectors for transient and stable protein overexpression in mammalian cells. A new strategy for recombinant human FVIII (rhFVIII) production. Protein Expr Purif 95:50–56PubMedCrossRefGoogle Scholar
  47. Oberbek A, Matasci M, Hacker DL (2011) Generation of stable, high-producing cho cell lines by lentiviral vector-mediated gene transfer in serum-free suspension culture. Biotechnol Bioeng 108(3):600–610PubMedCrossRefGoogle Scholar
  48. Oh DB (2015) Glyco-engineering strategies for the development of therapeutic enzymes with improved efficacy for the treatment of lysosomal storage diseases. BMB Rep 48(8):438–444PubMedPubMedCentralCrossRefGoogle Scholar
  49. Parenti G, Andria G, Ballabio A (2015) Lysosomal storage diseases: from pathophysiology to therapy. Annu Rev Med 66(1):471–486PubMedCrossRefGoogle Scholar
  50. Picanço-Castro V, de Sousa Russo-Carbolante EM, Tadeu Covas D (2012) Advances in lentiviral vectors: a patent review. Recent Pat DNA Gene Seq 6(2):82–90PubMedCrossRefGoogle Scholar
  51. Plewa C (2010) Application of lentiviral vectors for development of production cell lines and safety testing of lentiviral-derived cells or products PDA. J Pharm Sci Technol 64:386–391Google Scholar
  52. Porter JL, Rusli RA, Ollis DL (2016) Directed evolution of enzymes for industrial biocatalysis. Chembiochem 17(3):197–203PubMedCrossRefGoogle Scholar
  53. Prieto C, Fontana D, Etcheverrigaray M et al (2011) A strategy to obtain recombinant cell lines with high expression levels. Lentiviral vector-mediated transgenesis. BMC Proc 5(Suppl 8):7–8CrossRefGoogle Scholar
  54. Rodríguez MC, Ceaglio N, Antuña S et al (2017) High yield process for the production of active human a -galactosidase a in CHO-K1 cells through lentivirus transgenesis. Biotechnol Prog 33(5):1334–1345PubMedCrossRefGoogle Scholar
  55. Ronda C, Pedersen LE, Hansen HG et al (2014) Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool. Biotechnol Bioeng 111(8):1604–1616PubMedPubMedCentralCrossRefGoogle Scholar
  56. Sakuma T, Barry MA, Ikeda Y (2012) Lentiviral vectors: basic to translational. Biochem J 443:603–618PubMedCrossRefGoogle Scholar
  57. Sakuraba H, Murata-Ohsawa M, Kawashima I et al (2006) Comparison of the effects of agalsidase alfa and agalsidase beta on cultured human Fabry fibroblasts and Fabry mice. J Hum Genet 51:180–188PubMedCrossRefGoogle Scholar
  58. Sastry L, Xu Y, Johnson T et al (2003) Certification assays for HIV-1-based vectors: frequent passage of gag sequences without evidence of replication-competent viruses. Mol Ther 8(5):830–839PubMedCrossRefGoogle Scholar
  59. Selden RF, Borowski M, Kinoshita CM et al (2000) Medical preparations for the treatment of alpha-galactosidase a deficiency. WO 00/53730 A3 14 Sept 2000Google Scholar
  60. Sestito S, Grisolia M, Concolino D (2015) Profile of idursulfase for the treatment of Hunter syndrome. Res Reports Endocr Disord 5:79–90Google Scholar
  61. Shestopal SA, Hao J-J, Karnaukhova E et al (2017) Expression and characterization of a codon-optimized blood coagulation factor VIII. J Thromb Haemost 15(4):709–720PubMedCrossRefGoogle Scholar
  62. Skrdlant LM, Armstrong RJ, Keidaisch BM et al (2017) Detection of replication competent lentivirus using a qPCR assay for VSV-G. Mol Ther Methods Clin Dev 8:1–7PubMedPubMedCentralCrossRefGoogle Scholar
  63. Sohn YB, Cho SY, Park SW et al (2013a) Phase I/II clinical trial of enzyme replacement therapy with idursulfase beta in patients with mucopolysaccharidosis II (Hunter syndrome). Orphanet J Rare Dis 8(1):2–9CrossRefGoogle Scholar
  64. Sohn Y, Lee JM, Park H et al (2013b) Enhanced sialylation and in vivo efficacy of recombinant human α-galactosidase through in vitro glycosylation. BMB Rep 46(3):157–162PubMedPubMedCentralCrossRefGoogle Scholar
  65. Solomon M, Muro S (2017) Lysosomal enzyme replacement therapies: historical development, clinical outcomes, and future perspectives Melani. Adv Drug Deliv Rev 118:109–134PubMedPubMedCentralCrossRefGoogle Scholar
  66. Spencer HT, Denning G, Gautney RE et al (2011) Lentiviral vector platform for production of bioengineered recombinant coagulation factor VIII. Mol Ther 19(2):302–309PubMedCrossRefGoogle Scholar
  67. Spencer S, Gugliotta A, Koenitzer J et al (2015) Stability of single copy transgene expression in CHOK1 cells is affected by histone modifications but not by DNA methylation. J Biotechnol 195(1):15–29PubMedCrossRefGoogle Scholar
  68. Swiech K, Picanço-Castro V, Covas DT (2012) Human cells: new platform for recombinant therapeutic protein production. Protein Expr Purif 84(1):147–153PubMedCrossRefGoogle Scholar
  69. Tomatsu S, Sawamoto K, Shimada T et al (2015) Enzyme replacement therapy for treating mucopolysaccharidosis type IVA (Morquio A syndrome): effect and limitations. Expert Opin Orphan Drugs 3(11):1279–1290PubMedPubMedCentralCrossRefGoogle Scholar
  70. Turan S, Zehe C, Kuehle J et al (2013) Recombinase-mediated cassette exchange (RMCE) – a rapidly-expanding toolbox for targeted genomic modifications. Gene 515(1):1–27PubMedCrossRefGoogle Scholar
  71. Van der Valk J, Brunner D, De Smet K et al (2010) Optimization of chemically defined cell culture media – replacing fetal bovine serum in mammalian in vitro methods. Toxicol In Vitro 24(4):1053–1063PubMedCrossRefGoogle Scholar
  72. Varki A (2008) Sialic acids in human health and disease. Trends Mol Med 14(8):351–360PubMedPubMedCentralCrossRefGoogle Scholar
  73. Vernon HJ (2015) Inborn errors of metabolism: advances in diagnosis and therapy. JAMA Pediatr 169(8):778–782PubMedCrossRefGoogle Scholar
  74. Wirth D, Gama-Norton L, Riemer P et al (2007) Road to precision: recombinase-based targeting technologies for genome engineering. Curr Opin Biotechnol 18:411–419PubMedCrossRefGoogle Scholar
  75. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22(11):1393–1398PubMedCrossRefGoogle Scholar
  76. Wurm FM (2013) CHO Quasispecies – implications for manufacturing processes. Processes 1(3):296–311CrossRefGoogle Scholar
  77. Xu M, Motabar O, Ferrer M et al (2016) Disease models for the development of therapies for lysosomal storage diseases. Ann N Y Acad Sci 1371(1):15–29PubMedPubMedCentralCrossRefGoogle Scholar
  78. Zhang F, Liu M, Wan H (2014) Discussion about several potential drawbacks of PEGylated therapeutic proteins. Biol Pharm Bull 37(3):335–339PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • María Celeste Rodríguez
    • 1
  • Natalia Ceaglio
    • 1
  • Sebastián Antuña
    • 2
  • María Belén Tardivo
    • 2
  • Marina Etcheverrigaray
    • 1
  • Claudio Prieto
    • 3
    Email author
  1. 1.Cell Culture LaboratoryUNL, CONICET, FBCBSanta FeArgentina
  2. 2.Zelltek S.A.Santa FeArgentina
  3. 3.Cell Culture LaboratoryUNL, FBCBSanta FeArgentina

Personalised recommendations