Fibrinolytic Enzymes for Thrombolytic Therapy

  • Swaroop S. Kumar
  • Abdulhameed Sabu
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1148)


Cardiovascular diseases are a group of disorders consisting importantly of coronary heart disease, peripheral arterial disease, cerebrovascular disease, rheumatic heart disease, congenital heart disease, deep vein thrombosis and pulmonary embolism. Severe cardiovascular disease conditions lead to acute myocardial infarction and stroke. One of the reasons for this is formation of blood clots inside the vessel. Anticoagulants and antiplatelet drugs are used for managing cardiovascular diseases for a long time. However, they were unable to dissolve an existing thrombus. Fibrinolytic enzymes have become more substantial for treating cardiovascular diseases since they could lyse the fibrin clot within the blood vessel. Inability of plasma fibrinolytic system demands better thrombolytic drugs. Major thrombolytic enzymes belonging to plasminogen activators and plasmin like enzymes. Currently used fibrinolytic enzymes and their limitations are revisited in the present chapter. Reported enzymes from various sources with potential to be used as cardiovascular therapeutic is also discussed here.


Fibrinolytic enzymes Plasminogen activators Microbial thrombolytic enzymes Nattokinase Serrapeptase 



Degree celsius


Adenosine diphosphate


Acute ischemic stroke




Acute myocardial infarction


p-amidinophenyl p-anisate hydrochloride


Anisoylated plasminogen streptokinase activator complex






Aspartic acid


Assessment of Safety and Efficacy of a New Thrombolytic agent


Antithrombin III




Bacillopeptidase DJ-2


Coronary care units


Codium diaricatum protease


Chinese Hasmster Ovary


Codium intricatum protease


Codium latum protease


Comparative Trial of Saruplase Versus Streptokinase






Desmoteplase in Acute Ischemic Stroke


Deoxyribo nucleic acid


Desmodus salivary plasminogen activators


Euglobulin clot lysis time


Eethylene diamine tetraacetic acid


Eisenia fetida enzymes


Epidermal growth factor


European/Australasian Stroke Prevention in Reversible Ischaemia Trial


Food and Drug Administration


Fomitella fraxinea proteases


Gruppo Italiano per la Sperimentazione della Streptochinasi nell’Infarto Miocardico




Glutamic acid




Glycoproteins (IIb-IIIa)


Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries




Heparin induced thrombocytopenia




Intravenous NPA for the treatment of infarcting myocardium early


International Study of Infarct Survival Collaborative Group


Kilo daltons






Low molecular weight heparins






Myocardial infarction




Nitric oxide


Novel plasminogen activator


Puronogenic ADP receptors


Polyacrylamide gel electrophoresis


Plasminogen activator inhibitors


Plasminogen activators


Partial thromboplastin time


PERsistence Study of Ibandronate verSus alendronaTe


Hydrogen ion


Prostaglnadin H2






Prolyse in Acute Cerebral Thromboembolism




Recombinant plasminogen activator


Recombinant prourokinase


Recombinant staphylokinase


Recombinant streptokinase


Recombinant tissue plasminogen activator




Single chain urokinase plasminogen activator


Sodium dodecyl sulphate




Serine protease inhibitors


Study in Europe with Saruplase and Alteplase in Myocardial Infarction






Thrombin-activatable fibrinolysis inhibitor




Thrombolysis in Myocardial Infarction




Tissue-type plasminogen activator




Thromboxane A2




Urokinase plasminogen activator


United States of America


United States Food and Drug Administration




vonWillebrand factor


World Health Organization


Wild type staphylokinase




  1. Abdel-Fattah AF, Ismail AM (1984) Purification and some properties of pure Cochliobolus lunatus fibrinolytic enzyme. Biotechnol Bioeng 26:407–411PubMedCrossRefPubMedCentralGoogle Scholar
  2. Agnelli G, Pascucci C, Nenci GG, Mele A, Burgi R, Heim J (1993) Thrombolytic and haemorrhagic effects of bolus doses of tissue-type plasminogen activator and a hybrid plasminogen activator with prolonged plasma half-life (K2tu-PA: CGP 42935). Thromb Haemost 70:294–300PubMedCrossRefPubMedCentralGoogle Scholar
  3. Agrebi R, Haddar A, Hmidet N, Jellouli K, Manni L, Nasri M (2009) BSF1 fibrinolytic enzyme from a marine bacterium Bacillus subtilis A26: purification, biochemical and molecular characterization. Process Biochem 44:1252–1259CrossRefGoogle Scholar
  4. Agrebi R, Hmidet N, Hajji M, Ktari N, Haddar A, Fakhfakh-Zouari N, Nasri M (2010) Fibrinolytic serine protease isolation from Bacillus amyloliquefaciens An6 grown on Mirabilis jalapa tuber powders. Appl Biochem Biotechnol 162:75–88PubMedCrossRefPubMedCentralGoogle Scholar
  5. Aguilar MI, Hart R (2005) Oral anticoagulants for preventing stroke in patients with non-valvular atrial fibrillation and no previous history of stroke or transient ischemic attacks. Cochrane Database Syst Rev 3:CD001927Google Scholar
  6. Ahn MY, Hahn BS, Ryu KS, Kim JW, Kim I, Kim YS (2003) Purification and characterization of a serine protease with fibrinolytic activity from the dung beetles, Catharsius molossus. Thromb Res 112:339–347PubMedCrossRefPubMedCentralGoogle Scholar
  7. Ahrens I, Smith BK, Bode C, Peter K (2007) Direct thrombin inhibition with bivalirudin as an antithrombotic strategy in general and interventional cardiology. Expert Opin Drug Metab Toxicol 3:609–620PubMedCrossRefGoogle Scholar
  8. Albers GW, von Kummer R, Truelsen T, Jensen JKS, Ravn GM, Gronning BA, Chabriat H, Chang KC, Davalos AE, Ford GA, Grotta J, Kaste M, Schwamm LH, Shuaib A, DIAS-3 Investigators (2015) Safety and efficacy of desmoteplase given 3-9 h after ischaemic stroke in patients with occlusion or high-grade stenosis in major cerebral arteries (DIAS-3): a double-blind, randomised, placebo-controlled phase 3 trial. Lancet Neurol 14:575–584PubMedCrossRefPubMedCentralGoogle Scholar
  9. Ali MR, Salim Hossain M, Islam MA, Saiful Islam Arman M, Sarwar Raju G, Dasgupta P, Noshin TF (2014) Aspect of thrombolytic therapy: a review. Sci World J 2014:586510Google Scholar
  10. Alkjaersig N, Fletcher AP, Sherry S (1959) The mechanism of clot dissolution by plasmin. J Clin Invest 38:1086–1095PubMedPubMedCentralCrossRefGoogle Scholar
  11. Ansell J, Hirsh J, Hylek E, Jacobson A, Crowther M, Palareti G (2008) Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th edition). Chest 133:160S–198SPubMedCrossRefGoogle Scholar
  12. Appella E, Robinson EA, Ullrich SJ, Stoppelli MP, Corti A, Cassani G, Blasi F (1987) The receptor-binding sequence of urokinase. A biological function for the growth-factor module of proteases. J Biol Chem 262:4437–4440PubMedGoogle Scholar
  13. Armstrong PW, Burton JR, Palisaitis D, Thompson CR, Van de Werf F, Rose B, Collen D, Teo KK (2000) Collaborative angiographic patency trial of recombinant staphylokinase (CAPTORS). Am Heart J 139:820–823PubMedCrossRefGoogle Scholar
  14. Armstrong PW, Burton J, Pakola S, Molhoek PG, Betriu A, Tendera M, Bode C, Adgey AA, Bar F, Vahanian A, Van de Werf F, CAPTORS II Investigators (2003) Collaborative angiographic patency trial of recombinant staphylokinase (CAPTORS II). Am Heart J 146:484–488PubMedCrossRefGoogle Scholar
  15. Arnout J, Hoylaerts MF, Lijnen HR (2006) Haemostasis. In: Moncada S, Higgs A (eds) The vascular endothelium II. Handbook of experimental pharmacology, vol 176/II. Springer, Berlin, pp 1–41CrossRefGoogle Scholar
  16. Aubry M, Bieth J (1977) Kinetics of the inactivation of human and bovine trypsins and chymotrypsins by α1-proteinase inhibitor and of their reactivation by α2-macroglobulin. Clin Chim Acta 78:371–380PubMedCrossRefGoogle Scholar
  17. Bar FW, Meyer J, Vermeer F, Michels R, Charbonnier B, Haerten K, Spiecker M, Macaya C, Hanssen M, Heras M, Boland JP, Morice MC, Dunn FG, Uebis R, Hamm C, Ayzenberg O, Strupp G, Withagen AJ, Klein W, Windeler J, Hopkins G, Barth H, von Fisenne MJ, SESAM Study Group (1997) Comparison of saruplase and alteplase in acute myocardial infarction. The Study in Europe with Saruplase and Alteplase in Myocardial Infarction. Am J Cardiol 79:727–732PubMedCrossRefGoogle Scholar
  18. Batomunkueva BP, Egorov NS (2001) Isolation, purification, and resolution of the extracellular proteinase complex of Aspergillus ochraceus 513 with fibrinolytic and anticoagulant activities. Microbiology 70:519–523CrossRefGoogle Scholar
  19. Bauer KA (2006) New anticoagulants. Hematology 1:450–456CrossRefGoogle Scholar
  20. Bek H, Hak-Seob L, Kyung Kae C, Choi Y, Byung Tae C, Min-Jeong S, Ji-Eun K, Eun-Ju R, Man Kyu H, Joo WH, Young Kee J (2005) Characterization of a novel fibrinolytic enzyme produced from Bacillus subtilis BK-17. J Life Sci 15:987–993CrossRefGoogle Scholar
  21. Bernik MB (1973) Increased plasminogen activator (urokinase) in tissue culture after fibrin deposition. J Clin Invest 52:823–834PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bernik MB, Kwaan HC (1967) Origin of fibrinolytic activity in cultures of the human kidney. J Lab Clin Med 70:650–661PubMedGoogle Scholar
  23. Bernik MB, Kwaan HC (1969) Plasminogen activator activity in cultures from human tissues. An immunological and histochemical study. J Clin Invest 48:1740–1753PubMedPubMedCentralCrossRefGoogle Scholar
  24. Bhagat S, Agarwal M, Roy V (2013) Serratiopeptidase: a systematic review of the existing evidence. Int J Surg 11:209–217PubMedCrossRefGoogle Scholar
  25. Bick RL, Fareed J (1999) Low molecular weight heparins: differences and similarities in approved preparations in the United States. Clin Appl Thromb Hemost 5:S63–S66PubMedCrossRefGoogle Scholar
  26. Bringmann P, Gruber D, Liese A, Toschi L, Kratzschmar J, Schleuning WD, Donner P (1995) Structural features mediating fibrin selectivity of vampire bat plasminogen activators. J Biol Chem 270:25596–25603PubMedCrossRefGoogle Scholar
  27. Cannon CP, McCabe CH, Gibson CM, Ghali M, Sequeira RF, McKendall GR, Breed J, Modi NB, Fox NL, Tracy RP, Love TW, Braunwald E (1997) TNK-tissue plasminogen activator in acute myocardial infarction. Results of the thrombolysis in myocardial infarction (TIMI) 10A dose-ranging trial. Circulation 95:351–356PubMedCrossRefGoogle Scholar
  28. Cannon CP, Gibson CM, McCabe CH, Adgey AA, Schweiger MJ, Sequeira RF, Grollier G, Giugliano RP, Frey M, Mueller HS, Steingart RM, Weaver WD, Van de Werf F, Braunwald E (1998) Thrombolysis in Myocardial Infarction (TIMI) 10B Investigators. TNK-tissue plasminogen activator compared with front-loaded alteplase in acute myocardial infarction: results of the TIMI 10B trial. Circulation 98:2805–2814PubMedCrossRefGoogle Scholar
  29. Carswell CI, Plosker GL (2002) Bivalirudin: a review of its potential place in the management of acute coronary syndromes. Drugs 62:841–870PubMedCrossRefGoogle Scholar
  30. Cha WS, Park SS, Kim SJ, Choi D (2010) Biochemical and enzymatic properties of a fibrinolytic enzyme from Pleurotus eryngii cultivated under solid-state conditions using corn cob. Bioresour Technol 101:6475–6481PubMedCrossRefGoogle Scholar
  31. Chen F, Suzuki Y, Nagai N, Sun X, Wang H, Yu J, Marchal G, Ni Y (2007) Microplasmin and tissue plasminogen activator: comparison of therapeutic effects in rat stroke model at multiparametric MR imaging. Radiology 244:429–438PubMedCrossRefGoogle Scholar
  32. Chen W, Huang X, Ma XW, Mo W, Wang WJ, Song HY (2008) Enzymatic vitreolysis with recombinant microplasminogen and tissue plasminogen activator. Eye 22:300–307PubMedCrossRefGoogle Scholar
  33. Cheng G, He L, Sun Z, Cui Z, Du Y, Kong Y (2015) Purification and biochemical characterization of a novel fibrinolytic enzyme from Streptomyces sp. P3. J Microbiol Biotechnol 25:1449–1459PubMedCrossRefGoogle Scholar
  34. Chitte RR, Dey S (2000) Potent fibrinolytic enzyme from a thermophilic Streptomyces megasporus strain SD5. Lett Appl Microbiol 31:405–410PubMedCrossRefGoogle Scholar
  35. Cho IH, Choi ES, Lim HG, Lee HH (2004) Purification and characterization of six fibrinolytic serine-proteases from earthworm Lumbricus rubellus. J Biochem Mol Biol 37:199–205PubMedGoogle Scholar
  36. Choi HS, Sa YS (2000) Fibrinolytic and antithrombotic protease from Ganoderma lucidum. Mycologia 92:545–552CrossRefGoogle Scholar
  37. Choi HS, Sa YS (2001) Fibrinolytic and antithrombotic protease from Spirodela polyrhiza. Biosci Biotechnol Biochem 65:781–786PubMedCrossRefGoogle Scholar
  38. Choi HS, Shin HH (1998) Purification and partial characterization of a fibrinolytic protease in Pleurotus ostreatus. Mycologia 90:674–679CrossRefGoogle Scholar
  39. Choi NS, Yoo KH, Hahm JH, Yoon KS, Hyun BH, Maeng PJ, Kim SH (2005) Purification and characterization of a new peptidase, bacillopeptidase DJ-2, having fibrinolytic activity: produced by Bacillus sp. DJ-2 from Doen-Jang. J Microbiol Biotechnol 15:72–79Google Scholar
  40. Christensen LR (1945) Streptococcal fibrinolysis: a proteolytic reaction due to a serum enzyme activated by streptococcal fibrinolysin. J Gen Physiol 28:363–383PubMedPubMedCentralCrossRefGoogle Scholar
  41. Christensen LR (1947) Protamine purification of streptokinase and effect of pH and temperature on reversible inactivation. J Gen Physiol 30:465–473PubMedPubMedCentralCrossRefGoogle Scholar
  42. Cliffton EE, Cannamela DA, Grossi C (1953) In vivo studies of human plasmin. Intravenous injection in dogs and rabbits. J Appl Physiol 6:143–150PubMedCrossRefGoogle Scholar
  43. Cohen M (1999) Heparin-induced thrombocytopenia and the clinical use of low molecular weight heparins in acute coronary syndromes. Semin Hematol 36:33–36PubMedGoogle Scholar
  44. Collen D, Stassen JM, Larsen G (1988) Pharmacokinetics and thrombolytic properties of deletion mutants of human tissue-type plasminogen activator in rabbits. Blood 71:216–219PubMedGoogle Scholar
  45. Collen D, Van de Werf F (1993) Coronary thrombolysis with recombinant staphylokinase in patients with evolving myocardial infarction. Circulation 87:1850–1853PubMedCrossRefGoogle Scholar
  46. Collen D, Moreau H, Stockx L, Vanderschueren S (1996) Recombinant staphylokinase variants with altered immunoreactivity: II: thrombolytic properties and antibody induction. Circulation 94:207–216PubMedCrossRefGoogle Scholar
  47. Craven LL (1950) Acetylsalicylic acid, possible preventive of coronary thrombosis. Ann West Med Surg 4:95PubMedGoogle Scholar
  48. Craven LL (1953) Experiences with aspirin (acetylsalicylic acid) in the nonspecific prophylaxis of coronary thrombosis. Miss Valley Med J 75:38–44PubMedGoogle Scholar
  49. Cui L, Dong MS, Chen XH, Jiang M, Lv X, Yan G (2008) A novel fibrinolytic enzyme from Cordyceps militaris, a Chinese traditional medicinal mushroom. World J Microbiol Biotechnol 24:483–489CrossRefGoogle Scholar
  50. Dantas GC, Thompson BV, Manson JA, Tracy CS, Upshur REG (2004) Patients’ perspectives on taking warfarin: qualitative study in family practice. BMC Fam Pract 5:15PubMedPubMedCentralCrossRefGoogle Scholar
  51. Davies MC, Englert ME, Derenzo EC (1964) Interaction of streptokinase and human plasminogen. I. Combining of streptokinase and plasminogen observed in the ultracentrifuge under a variety of experimental conditions. J Biol Chem 239:2651–2656PubMedGoogle Scholar
  52. De Renzo EC, Siiteri PK, Hutchings BL, Bell PH (1967) Preparation and certain properties of highly purified streptokinase. J Biol Chem 242:533–542PubMedGoogle Scholar
  53. de Smet MD, Valmaggia C, Zarranz-Ventura J, Willekens B (2009) Microplasmin: ex vivo characterization of its activity in porcine vitreous. Invest Ophthalmol Vis Sci 50:814–819PubMedCrossRefGoogle Scholar
  54. Deepak V, Kalishwaralal K, Ramkumarpandian S, Babu SV, Senthilkumar SR, Sangiliyandi G (2008) Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology. Bioresour Technol 99:8170–8174PubMedCrossRefGoogle Scholar
  55. Deepak V, Ilangovan S, Sampathkumar MV, Victoria MJ, Pasha SPBS, Pandian SBRK, Gurunathan S (2010) Medium optimization and immobilization of purified fibrinolytic URAK from Bacillus cereus NK1 on PHB nanoparticles. Enzym Microb Technol 47:297–304CrossRefGoogle Scholar
  56. Deitcher SR, Funk WD, Buchanan J, Liu S, Levy MD, Toombs CF (2006) Alfimeprase: a novel recombinant direct-acting fibrinolytic. Expert Opin Biol Ther 6:1361–1369PubMedCrossRefGoogle Scholar
  57. del Zoppo GJ, Higashida RT, Furlan AJ, Pessin MS, Rowley HA, Gent M (1998) PROACT: a phase II randomized trial of recombinant pro-urokinase by direct arterial delivery in acute middle cerebral artery stroke. Stroke 29:4–11PubMedCrossRefGoogle Scholar
  58. den Heijer P, Vermeer F, Ambrosioni E, Sadowski Z, López Sendón JL, von Essen R, Beaufils P, Thadani U, Adgey J, Pierard L, Brinker J, Davies RF, Smalling RW, Wallentin L, Caspi A, Pangerl A, Trickett L, Hauck C, Henry D, Chew P (1998) Evaluation of a weight-adjusted single-bolus plasminogen activator in patients with myocardial infarction: a double-blind, randomized angiographic trial of lanoteplase versus alteplase. Circulation 98:2117–2125CrossRefGoogle Scholar
  59. El-Aassar SA (1995) Production and properties of fibrinolytic enzyme in solid state cultures of Fusarium pallidoroseum. Biotechnol Lett 17:943–948CrossRefGoogle Scholar
  60. El-Aassar SA, El-Badry HM, Abdel-Fattah AF (1990) The biosynthesis of proteases with fibrinolytic activity in immobilized cultures of Penicillium chrysogenum H9. Appl Microbiol Biotechnol 33:26–30PubMedCrossRefGoogle Scholar
  61. Emran TB, Rahman MA, Uddin MMN, Rahman MM, Uddin MZ, Dash R, Layzu C (2015) Effects of organic extracts and their different fractions of five Bangladeshi plants on in vitro thrombolysis. BMC Complement Altern Med 15:128PubMedPubMedCentralCrossRefGoogle Scholar
  62. Eriksson BI, Borris L, Dahl OE, Haas S, Huisman MV, Kakkar AK, Misselwitz F, Kälebo P, ODIXa-HIP Study Investigators (2006) Oral, direct factor Xa inhibition with BAY 59-7939 for the prevention of venous thromboembolism after total hip replacement. J Thromb Haemost 4:121–128PubMedCrossRefGoogle Scholar
  63. Errasti ME, Prospitti A, Viana CA, Gonzalez MM, Ramos MV, Rotelli AE, Caffini NO (2016) Effects on fibrinogen, fibrin, and blood coagulation of proteolytic extracts from fruits of Pseudananas macrodontes, Bromelia balansae, and B. hieronymi (Bromeliaceae) in comparison with bromelain. Blood Coagul Fibrinolysis 27:441–449PubMedCrossRefGoogle Scholar
  64. Fareed J, Walenga JM, Hoppensteadt D, Kaiser B, Jeske W (1999) Factor Xa inhibitors in the control of thrombogenesis. Hamostaseologie 19:55–62CrossRefGoogle Scholar
  65. Flemmig M, Melzig MF (2012) Serine-proteases as plasminogen activators in terms of fibrinolysis. J Pharm Pharmacol 64:1025–1039PubMedCrossRefGoogle Scholar
  66. Fletcher AP, Alkjaersig N, Smyrniotis FE, Sherry S (1958) The treatment of patients suffering from early myocardial infarction with massive and prolonged streptokinase therapy. Trans Assoc Am Phys 71:287–296PubMedGoogle Scholar
  67. Fletcher AP, Alkjaersig N, Sherry S (1959a) The maintenance of a sustained thrombolytic state in man. I. Induction and effects. J Clin Invest 38:1096–1110PubMedPubMedCentralCrossRefGoogle Scholar
  68. Fletcher AP, Sherry S, Alkjaersig N, Smyrniotis FE, Jick S (1959b) The maintenance of a sustained thrombolytic state in man. II. Clinical observations on patients with myocardial infarction and other thromboembolic disorders. J Clin Invest 38:1111–1119PubMedPubMedCentralCrossRefGoogle Scholar
  69. Fleury V, Angles-Cano E (1991) Characterization of the binding of plasminogen to fibrin surfaces: the role of carboxy-terminal lysines. Biochemistry 30:7630–7638PubMedCrossRefGoogle Scholar
  70. Fonseca KC, Morais NCG, Queiroz MR, Silva MC, Gomes MS, Costa JO, Mamede CCN, Torres FS, Penha-Silva N, Beletti ME, Canabrava HAN, Oliveira F (2010) Purification and biochemical characterization of Eumiliin from Euphorbia milii var. hislopii latex. Phytochemistry 71:708–715PubMedCrossRefGoogle Scholar
  71. Fu J, Ren J, Zou L, Bian G, Li R, Lu Q (2008) The thrombolytic effect of miniplasmin in a canine model of femoral artery thrombosis. Thromb Res 122:683–690PubMedCrossRefGoogle Scholar
  72. Fujita M, Nomura K, Hong K, Ito Y, Asada A, Nishimuro S (1993) Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese natto, a popular soybean fermented food in Japan. Biochem Biophys Res Commun 197:1340–1347PubMedCrossRefPubMedCentralGoogle Scholar
  73. Fujita M, Hong K, Ito Y, Fujii R, Kariya K, Nishimuro S (1995a) Thrombolytic effect of nattokinase on a chemically induced thrombosis model in rat. Biol Pharm Bull 18:1387–1391PubMedCrossRefPubMedCentralGoogle Scholar
  74. Fujita M, Hong K, Ito Y, Misawa S, Takeuchi N, Kariya K, Nishimuro S (1995b) Transport of nattokinase across the rat intestinal tract. Biol Pharm Bull 18:1194–1196PubMedCrossRefPubMedCentralGoogle Scholar
  75. Fujita M, Ito Y, Hong K, Nishimuro S (1995c) Characterization of nattokinase-degraded products from human fibrinogen or cross-linked fibrin. Fibrinolysis 9:157–164CrossRefGoogle Scholar
  76. Furlan A, Higashida R, Wechsler L, Gent M, Rowley H, Kase C, Pessin M, Ahuja A, Callahan F, Clark WM, Silver F, Rivera F (1999) Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: a randomized controlled trial. Prolyse in Acute Cerebral Thromboembolism. JAMA 282:2003–2011PubMedCrossRefPubMedCentralGoogle Scholar
  77. Ge T, Sun ZJ, Fu SH, Liang GD (2005) Cloning of thrombolytic enzyme (lumbrokinase) from earthworm and its expression in the yeast Pichia pastoris. Protein Expr Purif 42:20–28PubMedCrossRefPubMedCentralGoogle Scholar
  78. Gerheim EB (1948) Staphylococcal coagulation and fibrinolysis. Nature 162:732PubMedCrossRefPubMedCentralGoogle Scholar
  79. Gerlach D, Kraft R, Behnke D (1988) Purification and characterization of the bacterial plasminogen activator staphylokinase secreted by a recombinant Bacillus subtilis. Zentralbl Bakteriol Mikrobiol Hyg A 269:314–322PubMedPubMedCentralGoogle Scholar
  80. Gershlick AH, More RS (1998) Treatment of myocardial infarction. BMJ 316:280–284PubMedPubMedCentralCrossRefGoogle Scholar
  81. GISSI (1986) Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction. Gruppo Italiano per la Sperimentazione della Streptochinasi nell’Infarto Miocardico (GISSI). Lancet 327:397–402Google Scholar
  82. GISSI-2 (1990) A factorial randomised trial of alteplase versus streptokinase and heparin versus no heparin among 12,490 patients with acute myocardial infarction. Gruppo Italiano per lo studio della Sopravvivenza nell’Infarto Miocardico. Lancet 336:65–71Google Scholar
  83. Goldhaber SZ, Bounameaux H (2001) Thrombolytic therapy in pulmonary embolism. Semin Vasc Med 01:213–220CrossRefGoogle Scholar
  84. Gore JM, Sloan M, Price TR, Randall AM, Bovill E, Collen D, Forman S, Knatterud GL, Sopko G, Terrin ML (1991) Intracerebral hemorrhage, cerebral infarction, and subdural hematoma after acute myocardial infarction and thrombolytic therapy in the Thrombolysis in Myocardial Infarction study. Thrombolysis in Myocardial Infarction, phase II, pilot and clinical trial. Circulation 83:448–459PubMedCrossRefGoogle Scholar
  85. Guimaraes AHC, Barrett-Bergshoeff MM, Criscuoli M, Evangelista S, Rijken DC (2006) Fibrinolytic efficacy of Amediplase, Tenecteplase and scu-PA in different external plasma clot lysis models: sensitivity to the inhibitory action of thrombin activatable fibrinolysis inhibitor (TAFI). Thromb Haemost 96:325–330PubMedCrossRefGoogle Scholar
  86. GUSTO Angiographic Investigators (1993) The effects of tissue plasminogen activator, streptokinase, or both on coronary-artery patency, ventricular function, and survival after acute myocardial infarction. N Engl J Med 329:1615–1622CrossRefGoogle Scholar
  87. GUSTO III Investigators (1997) Global Use of Strategies to Open Occluded Coronary Arteries (GUSTO III). A comparison of reteplase with alteplase for acute myocardial infarction. N Engl J Med 337:1118–1123CrossRefGoogle Scholar
  88. Hacke W, Albers G, Al-Rawi Y, Bogousslavsky J, Davalos A, Eliasziw M, Fischer M, Furlan A, Kaste M, Lees KR, Soehngen M, Warach S, DIAS Study Group (2005) The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke 36:66–73PubMedCrossRefGoogle Scholar
  89. Hacke W, Furlan AJ, Al-Rawi Y, Davalos A, Fiebach JB, Gruber F, Kaste M, Lipka LJ, Pedraza S, Ringleb PA, Rowley HA, Schneider D, Schwamm LH, Leal JS, Söhngen M, Teal PA, Wilhelm-Ogunbiyi K, Wintermark M, Warach S (2009) Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion–diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study. Lancet Neurol 8:141–150PubMedCrossRefGoogle Scholar
  90. Harenberg J, Fenyvesi T (2004) Heparin, thrombin and factor Xa inhibitors. Hamostaseologie 24:261–278PubMedCrossRefGoogle Scholar
  91. Hassanein WA, Kotb E, Awny NM, El-Zawahry YA (2011) Fibrinolysis and anticoagulant potential of a metallo protease produced by Bacillus subtilis K42. J Biosci 36:773–779PubMedCrossRefGoogle Scholar
  92. Herrick JB (1912) Certain clinical features of sudden obstruction of the coronary arteries. JAMA 59:2012Google Scholar
  93. Hildebrand M, Bhargava AS, Bringmann P, Schutt A, Verhallen P (1996) Pharmacokinetics of the novel plasminogen activator Desmodus rotundus plasminogen activator in animals and extrapolation to man. Fibrinolysis 10:269–276CrossRefGoogle Scholar
  94. Hirahara K, Saitoh T, Terada I, Uno K, Nagai A, Kioi S, Arakawa M (1989) A case of pneumonitis due to serrapeptase. Nihon Kyobu Shikkan Gakkai Zasshi 27:1231–1236PubMedGoogle Scholar
  95. Hirsh J, Anand SS, Halperin JL, Fuster V (2001) Guide to anticoagulant therapy: heparin: a statement for healthcare professionals from the American Heart Association. Circulation 103:2994–3018PubMedCrossRefGoogle Scholar
  96. Hoefer IE, Stroes ESG, Pasterkamp G, Levi MM, Reekers JA, Verhagen HJM, Meijers JC, Humphries JE, Rotmans JI (2009) Locally applied recombinant plasmin results in effective thrombolysis in a porcine model of arteriovenous graft thrombosis. J Vasc Interv Radiol 20:951–958PubMedCrossRefGoogle Scholar
  97. Hoppensteadt DA, Jeske W, Walenga J, Fareed J (2008) The future of anticoagulation. Semin Respir Crit Care Med 29:90–99PubMedCrossRefGoogle Scholar
  98. Howell W, Holt E (1918) Two new factors in blood coagulation-heparin and pro-antithrombin. Am J Phys 47:328–341CrossRefGoogle Scholar
  99. Hoylaerts M, Rijken DC, Lijnen HR, Collen D (1982) Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J Biol Chem 257:2912–2919PubMedGoogle Scholar
  100. Hsia CH, Shen MC, Lin JS, Wen YK, Hwang KL, Cham TM, Yang NC (2009) Nattokinase decreases plasma levels of fibrinogen, factor VII, and factor VIII in human subjects. Nutr Res 29:190–196PubMedCrossRefGoogle Scholar
  101. Hunt JA, Petteway SR, Scuderi P, Novokhatny V (2008) Simplified recombinant plasmin: production and functional comparison of a novel thrombolytic molecule with plasma-derived plasmin. Thromb Haemost 100:413–419PubMedCrossRefGoogle Scholar
  102. Inatsu Y, Nakamura N, Yuriko Y, Fushimi T, Watanasiritum L, Kawamoto S (2006) Characterization of Bacillus subtilis strains in Thua nao, a traditional fermented soybean food in northern Thailand. Lett Appl Microbiol 43:237–242PubMedCrossRefGoogle Scholar
  103. InTIME-II Investigators (2000) Intravenous NPA for the treatment of infarcting myocardium early; InTIME-II, a double-blind comparison of single-bolus lanoteplase vs accelerated alteplase for the treatment of patients with acute myocardial infarction. Eur Heart J 21:2005–2013CrossRefGoogle Scholar
  104. ISIS-3 (1992) A randomised comparison of streptokinase vs tissue plasminogen activator vs anistreplase and of aspirin plus heparin vs aspirin alone among 41,299 cases of suspected acute myocardial infarction. ISIS-3 (Third International Study of Infarct Survival) Collaborative Group. Lancet 339:753–770CrossRefGoogle Scholar
  105. Jackson KW, Tang J (1982) Complete amino acid sequence of streptokinase and its homology with serine proteases. Biochemistry 21:6620–6625PubMedCrossRefGoogle Scholar
  106. Jahan R, Stewart D, Vinters HV, Yong W, Vinuela F, Vandeberg P, Marder VJ (2008) Middle cerebral artery occlusion in the rabbit using selective angiography: application for assessment of thrombolysis. Stroke 39:1613–1615PubMedPubMedCentralCrossRefGoogle Scholar
  107. Jensen GS, Lenninger M, Ero MP, Benson KF (2016) Consumption of nattokinase is associated with reduced blood pressure and von Willebrand factor, a cardiovascular risk marker: results from a randomized, double-blind, placebo-controlled, multicenter North American clinical trial. Integr Blood Press Control 9:95–104PubMedPubMedCentralCrossRefGoogle Scholar
  108. Jeong YK, Park JU, Baek H, Park SH, Kong IS, Kim DW, Joo WH (2001) Purification and biochemical characterization of a fibrinolytic enzyme from Bacillus subtilis BK-17. World J Microbiol Biotechnol 17:89–92CrossRefGoogle Scholar
  109. Jeong SJ, Cho KM, Lee CK, Kim GM, Shin JH, Kim JS, Kim JH (2014) Overexpression of aprE2, a fibrinolytic enzyme gene from Bacillus subtilis CH3-5, in Escherichia coli and the properties of AprE2. J Microbiol Biotechnol 24:969–978PubMedCrossRefGoogle Scholar
  110. Jeong SJ, Heo K, Park JY, Lee KW, Park JY, Joo SH, Kim JH (2015) Characterization of AprE176, a fibrinolytic enzyme from Bacillus subtilis HK176. J Microbiol Biotechnol 25:89–97PubMedCrossRefGoogle Scholar
  111. Jhample SB, Bhagwat PK, Dandge PB (2015) Statistical media optimization for enhanced production of fibrinolytic enzyme from newly isolated Proteus penneri SP-20. Biocatal Agric Biotechnol 4:370–379CrossRefGoogle Scholar
  112. Johnson AJ, Tillett WS (1952) The lysis in rabbits of intravascular blood clots by the streptococcal fibrinolytic system (streptokinase). J Exp Med 95:449–464PubMedPubMedCentralCrossRefGoogle Scholar
  113. Ju X, Cao X, Sun Y, Wang Z, Cao C, Liu J, Jiang J (2012) Purification and characterization of a fibrinolytic enzyme from Streptomyces sp. XZNUM 00004. World J Microbiol Biotechnol 28:2479–2486PubMedCrossRefGoogle Scholar
  114. Julian DG (1961) Treatment of cardiac arrest in acute myocardial ischæmia and infarction. Lancet 278:840–844CrossRefGoogle Scholar
  115. Kalbfleisch J, Thadani U, LittleJohn JK, Brown G, Magorien R, Kutcher M, Taylor G, Maddox WT, Campbell WB, Perry J, Spann JF, Vetrovec G, Kent R, Armstrong PW (1992) Evaluation of a prolonged infusion of recombinant tissue-type plasminogen activator (Duteplase) in preventing reclusion following successful thrombolysis in acute myocardial infarction. Am J Cardiol 69:1120–1127PubMedCrossRefGoogle Scholar
  116. Kasai S, Arimura H, Nishida M, Suyama T (1985) Primary structure of single-chain pro-urokinase. J Biol Chem 260:12382–12389PubMedGoogle Scholar
  117. Kaur J, Zhao Z, Klein GM, Lo EH, Buchan AM (2004) The neurotoxicity of tissue plasminogen activator. J Cereb Blood Flow Metab 24:945–963PubMedCrossRefGoogle Scholar
  118. Kawai C, Yui Y, Hosoda S, Nobuyoshi M, Suzuki S, Sato H, Takatsu F, Motomiya T, Kanmatsuse K, Kodama K, Yabe Y, Minamino T, Kimata S, Nakashima M (1997) A prospective, randomized, double-blind multicenter trial of a single bolus injection of the novel modified t-PA E6010 in the treatment of acute myocardial infarction: comparison with native t-PA. E6010 Study Group. J Am Coll Cardiol 29:1447–1453PubMedCrossRefGoogle Scholar
  119. Kawasaki T, Katoh M, Kaku S, Gushima H, Takenaka T, Yui Y, Kawai C (1993) Thrombolytic activity of a novel modified tissue-type plasminogen activator, YM866, in a canine model of coronary artery thrombosis. Jpn J Pharmacol 63:9–16PubMedCrossRefGoogle Scholar
  120. Kim JH, Kim YS (2001) Characterization of a metalloenzyme from a wild mushroom, Tricholoma saponaceum. Biosci Biotechnol Biochem 65:356–362PubMedCrossRefGoogle Scholar
  121. Kim JS, Kim JE, Choi BS, Park SE, Sapkota K, Kim S, Lee HH, Kim CS, Park Y, Kim MK, Kim YS, Kim SJ (2008) Purification and characterization of fibrinolytic metalloprotease from Perenniporia fraxinea mycelia. Mycol Res 112:990–998PubMedCrossRefGoogle Scholar
  122. Kim HC, Choi BS, Sapkota K, Kim S, Lee HJ, Yoo JC, Kim SJ (2011) Purification and characterization of a novel, highly potent fibrinolytic enzyme from Paecilomyces tenuipes. Process Biochem 46:1545–1553CrossRefGoogle Scholar
  123. Kline DL (1953) The purification and crystallization of plasminogen (profibrinolysin). J Biol Chem 204:949–955PubMedGoogle Scholar
  124. Ko JH, Yan JP, Zhu L, Qi YP (2004) Identification of two novel fibrinolytic enzymes from Bacillus subtilis QK02. Comp Biochem Physiol C Toxicol Pharmacol 137:65–74PubMedCrossRefGoogle Scholar
  125. Kohnert U, Rudolph R, Verheijen JH, Weening-Verhoeff EJ, Stern A, Opitz U, Martin U, Lill H, Prinz H, Lechner M (1992) Biochemical properties of the kringle 2 and protease domains are maintained in the refolded t-PA deletion variant BM 06.022. Protein Eng 5:93–100PubMedCrossRefGoogle Scholar
  126. Kolev K, Komorowicz E, Owen WG, Machovich R (1996) Quantitative comparison of fibrin degradation with plasmin, miniplasmin, neurophil leukocyte elastase and cathepsin G. Thromb Haemost 75:140–146PubMedCrossRefGoogle Scholar
  127. Komorowicz E, Kolev K, Lerant I, Machovich R (1998) Flow rate-modulated dissolution of fibrin with clot-embedded and circulating proteases. Circ Res 82:1102–1108PubMedCrossRefGoogle Scholar
  128. Koren G, Weiss AT, Hasin Y, Appelbaum D, Welber S, Rozenman Y, Lotan C, Mosseri M, Sapoznikov D, Luria MH (1985) Prevention of myocardial damage in acute myocardial ischemia by early treatment with intravenous streptokinase. N Engl J Med 313:1384–1389PubMedCrossRefGoogle Scholar
  129. Kotb E (2013) Activity assessment of microbial fibrinolytic enzymes. Appl Microbiol Biotechnol 97:6647–6665PubMedCrossRefGoogle Scholar
  130. Kotb E (2014) The biotechnological potential of fibrinolytic enzymes in the dissolution of endogenous blood thrombi. Biotechnol Prog 30:656–672PubMedCrossRefGoogle Scholar
  131. Kovalenko TA, Panteleev MA, Sveshnikova AN (2017) The mechanisms and kinetics of initiation of blood coagulation by the extrinsic tenase complex. Biophysics 62:291–300CrossRefGoogle Scholar
  132. Kratzschmar J, Haendler B, Langer G, Boidol W, Bringmann P, Alagon A, Donner P, Schleuning WD (1991) The plasminogen activator family from the salivary gland of the vampire bat Desmodus rotundus: cloning and expression. Gene 105:229–237PubMedCrossRefGoogle Scholar
  133. Krehl L (1901) Diseases of the heart muscle and nervous heart disease. Alfred Holder, ViennaGoogle Scholar
  134. Kumar SS, Sabu A (2017) Therapeutic enzymes. In: Sugathan S, Pradee NS, Sabu A (eds) Bioresources and bioprocess in biotechnology: volume 2: exploring potential biomolecules. Springer Singapore, Singapore, pp 45–73CrossRefGoogle Scholar
  135. Kurosawa Y, Nirengi S, Homma T, Esaki K, Ohta M, Clark JF, Hamaoka T (2015) A single-dose of oral nattokinase potentiates thrombolysis and anti-coagulation profiles. Sci Rep 5:11601PubMedPubMedCentralCrossRefGoogle Scholar
  136. Lakshmi BP, Prakasham RS (2013) A fibrinolytic, alkaline and thermostable metalloprotease from the newly isolated Serratia sp RSPB11. Int J Biol Macromol 61:479–486CrossRefGoogle Scholar
  137. Lane DA, Philippou H, Huntington JA (2005) Directing thrombin. Blood 106:2605–2612PubMedCrossRefGoogle Scholar
  138. Lange K, Boyd LJ, Loewe L (1945) The functional pathology of frostbite and the prevention of gangrene in experimental animals and humans. Science 102:151–152PubMedCrossRefGoogle Scholar
  139. Laroche Y, Heymans S, Capaert S, De Cock F, Demarsin E, Collen D (2000) Recombinant staphylokinase variants with reduced antigenicity due to elimination of B-lymphocyte epitopes. Blood 96:1425–1432PubMedGoogle Scholar
  140. Larsen GR, Metzger M, Henson K, Blue Y, Horgan P (1989) Pharmacokinetic and distribution analysis of variant forms of tissue-type plasminogen activator with prolonged clearance in rat. Blood 73:1842–1850PubMedGoogle Scholar
  141. Larsen GR, Timony GA, Horgan PG, Barone KM, Henson KS, Angus LB, Stoudemire JB (1991) Protein engineering of novel plasminogen activators with increased thrombolytic potency in rabbits relative to activase. J Biol Chem 266:8156–8161PubMedGoogle Scholar
  142. Lee CJ, Ansell JE (2011) Direct thrombin inhibitors. Br J Clin Pharmacol 72:581–592PubMedPubMedCentralCrossRefGoogle Scholar
  143. Lee SY, Kim JS, Kim JE, Sapkota K, Shen MH, Kim S, Chun HS, Yoo JC, Choi HS, Kim MK, Kim SJ (2005) Purification and characterization of fibrinolytic enzyme from cultured mycelia of Armillaria mellea. Protein Expr Purif 43:10–17PubMedCrossRefGoogle Scholar
  144. Lee JS, Hyung-Suk B, Sang-Shin P (2006) Purification and characterization of two novel fibrinolytic proteases from mushroom, Fomitella fraxinea. J Microbiol Biotechnol 16:264–271Google Scholar
  145. Lee CK, Shin JS, Kim BS, Cho IH, Kim YS, Lee EB (2007) Antithrombotic effects by oral administration of novel proteinase fraction from earthworm Eisenia andrei on venous thrombosis model in rats. Arch Pharm Res 30:475–480PubMedCrossRefGoogle Scholar
  146. Leone G, Rossi E, Leone AM, De Stefano V (2004) Novel antithrombotic agents: indirect synthetic inhibitors of factor Xa and direct thrombin inhibitors. Evidences from clinical studies. Curr Med Chem Cardiovasc Hematol Agents 2:311–326PubMedCrossRefGoogle Scholar
  147. Lewis BE, Wallis DE, Berkowitz SD, Matthai WH, Fareed J, Walenga JM, Bartholomew J, Sham R, Lerner RG, Zeigler ZR, Rustagi PK, Jang IK, Rifkin SD, Moran J, Hursting MJ, Kelton JG (2001) Argatroban anticoagulant therapy in patients with heparin-induced thrombocytopenia. Circulation 103:1838–1843PubMedCrossRefGoogle Scholar
  148. Lewis BE, Wallis DE, Leya F, Hursting MJ, Kelton JG, Argatroban-915 Investigators (2003) Argatroban anticoagulation in patients with heparin-induced thrombocytopenia. Arch Intern Med 163:1849–1856PubMedCrossRefGoogle Scholar
  149. Li H, Hu Z, Yuan J, Fan H, Chen W, Wang S, Zheng S, Zheng Z, Zou G (2007) A novel extracellular protease with fibrinolytic activity from the culture supernatant of Cordyceps sinensis: purification and characterization. Phytother Res 21:1234–1241PubMedCrossRefGoogle Scholar
  150. Li X, Ling L, Li C, Ma Q (2017) Efficacy and safety of desmoteplase in acute ischemic stroke patients: a systematic review and meta-analysis. Medicine 96:e6667PubMedPubMedCentralCrossRefGoogle Scholar
  151. Lijnen HR, Van Hoef B, De Cock F, Okada K, Ueshima S, Matsuo O, Collen D (1991) On the mechanism of fibrin-specific plasminogen activation by staphylokinase. J Biol Chem 266:11826–11832PubMedGoogle Scholar
  152. Louis D, Bernillon J, Wallach JM (1998) Specificity of Pseudomonas aeruginosa serralysin revisited, using biologically active peptides as substrates. Biochim Biophys Acta Protein Struct Mol Enzymol 1387:378–386CrossRefGoogle Scholar
  153. Lu CL, Chen S, Chen SN (2010a) Purification and characterization of a novel fibrinolytic protease from Schizophyllum commune. J Food Drug Anal 18:69–76Google Scholar
  154. Lu F, Lu Z, Bie X, Yao Z, Wang Y, Lu Y, Guo Y (2010b) Purification and characterization of a novel anticoagulant and fibrinolytic enzyme produced by endophytic bacterium Paenibacillus polymyxa EJS-3. Thromb Res 126:349–355CrossRefGoogle Scholar
  155. Lubenow N, Eichler P, Lietz T, Farner B, Greinacher A (2004) Lepirudin for prophylaxis of thrombosis in patients with acute isolated heparin-induced thrombocytopenia: an analysis of 3 prospective studies. Blood 104:3072–3077PubMedCrossRefGoogle Scholar
  156. Lucas MA, Fretto LJ, McKee PA (1983) The binding of human plasminogen to fibrin and fibrinogen. J Biol Chem 258:4249–4256PubMedGoogle Scholar
  157. Ma Z, Lu W, Wu S, Chen J, Sun Z, Liu JN (2007) Expression and characterization of recombinant human micro-plasminogen. Biotechnol Lett 29:517–523PubMedCrossRefGoogle Scholar
  158. Macfarlane RG (1964) An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier. Nature 202:498–499PubMedCrossRefGoogle Scholar
  159. Macfarlane RG, Pilling J (1947) Fibrinolytic activity of normal urine. Nature 159:779PubMedCrossRefGoogle Scholar
  160. Madison EL, Coombs GS, Corey DR (1995) Substrate specificity of tissue type plasminogen activator characterization of the fibrin independent specificity of t-PA for plasminogen. J Biol Chem 270:7558–7562PubMedCrossRefGoogle Scholar
  161. Mahajan PM, Nayak S, Lele SS (2012) Fibrinolytic enzyme from newly isolated marine bacterium Bacillus subtilis ICTF-1: media optimization, purification and characterization. J Biosci Bioeng 113:307–314PubMedCrossRefGoogle Scholar
  162. Malcolm A, Keltai M, Walsh M (1996) ESPRIT: a european study of the prevention of reocclusion after initial thrombolysis with duteplase in acute myocardial infarction. Eur Heart J 17:1522–1531PubMedCrossRefGoogle Scholar
  163. Malke H, Ferretti JJ (1984) Streptokinase: cloning, expression, and excretion by Escherichia coli. Proc Natl Acad Sci U S A 81:3557–3561PubMedPubMedCentralCrossRefGoogle Scholar
  164. Mander P, Cho SS, Simkhada JR, Choi YH, Yoo JC (2011) A low molecular weight chymotrypsin-like novel fibrinolytic enzyme from Streptomyces sp. CS624. Process Biochem 46:1449–1455CrossRefGoogle Scholar
  165. Marcum JA (2000) The origin of the dispute over the discovery of heparin. J Hist Med Allied Sci 55:37–66PubMedCrossRefGoogle Scholar
  166. Marder VJ (1979) The use of thrombolytic agents: choice of patient, drug administration, laboratory monitoring. Ann Intern Med 90:802–808PubMedCrossRefGoogle Scholar
  167. Marder VJ (2011) Historical perspective and future direction of thrombolysis research: the re-discovery of plasmin. J Thromb Haemost 1:364–373CrossRefGoogle Scholar
  168. Marder VJ, Novokhatny V (2010) Direct fibrinolytic agents: biochemical attributes, preclinical foundation and clinical potential. J Thromb Haemost 8:433–444PubMedCrossRefGoogle Scholar
  169. Marder VJ, Sherry S (1988) Thrombolytic therapy: current status (1). N Engl J Med 318:1512–1520PubMedCrossRefGoogle Scholar
  170. Marder VJ, Landskroner K, Novokhatny V, Zimmerman TP, Kong M, Kanouse JJ, Jesmok G (2001) Plasmin induces local thrombolysis without causing hemorrhage: a comparison with tissue plasminogen activator in the rabbit. Thromb Haemost 86:739–745PubMedCrossRefGoogle Scholar
  171. Markland FS (1998) Snake venoms and the hemostatic system. Toxicon 36:1749–1800PubMedCrossRefGoogle Scholar
  172. Martin U, von Mollendorff E, Akpan W, Kientsch-Engel R, Kaufmann B, Neugebauer G (1991a) Dose-ranging study of the novel recombinant plasminogen activator BM 06.022 in healthy volunteers. Clin Pharmacol Ther 50:429–436PubMedCrossRefGoogle Scholar
  173. Martin U, von Mollendorff E, Akpan W, Kientsch-Engel R, Kaufmann B, Neugebauer G (1991b) Pharmacokinetic and hemostatic properties of the recombinant plasminogen activator BM 06.022 in healthy volunteers. Thromb Haemost 66:569–574PubMedCrossRefGoogle Scholar
  174. Mason EC (1924) A note on the use of heparin in blood transfusion. J Lab Clin Med 10:203–206Google Scholar
  175. Massaoud MK, Marokházi J, Venekei I (2011) Enzymatic characterization of a serralysin-like metalloprotease from the entomopathogen bacterium, Xenorhabdus. Biochim Biophys Acta, Proteins Proteomics 1814:1333–1339CrossRefGoogle Scholar
  176. Matsubara K, Sumi H, Hori K, Miyazawa K (1998) Purification and characterization of two fibrinolytic enzymes from a marine green alga, Codium intricatum. Comp Biochem Physiol B Biochem Mol Biol 119:177–181CrossRefGoogle Scholar
  177. Matsubara K, Hori K, Matsuura Y, Miyazawa K (1999) A fibrinolytic enzyme from a marine green alga, Codium latum. Phytochemistry 52:993–999PubMedCrossRefGoogle Scholar
  178. Matsubara K, Hori K, Matsuura Y, Miyazawa K (2000) Purification and characterization of a fibrinolytic enzyme and identification of fibrinogen clotting enzyme in a marine green alga, Codium divaricatum. Comp Biochem Physiol B Biochem Mol Biol 125:137–143PubMedCrossRefGoogle Scholar
  179. McLean J, Johnson AB (1946) Gangrene following fracture treated with heparin; papaverine, and intermittent venous occlusion; report of a case; reasons for using heparin. Surgery 20:324–336PubMedGoogle Scholar
  180. Mellott MJ, Stabilito II, Holahan MA, Cuca GC, Wang S, Li P, Barrett JS, Lynch JJ, Gardell SJ (1992) Vampire bat salivary plasminogen activator promotes rapid and sustained reperfusion without concomitant systemic plasminogen activation in a canine model of arterial thrombosis. Arterioscler Thromb 12:212–221PubMedCrossRefGoogle Scholar
  181. Mihara H, Sumi H, Yoneta T, Mizumoto H, Ikeda R, Seiki M, Maruyama M (1991) A novel fibrinolytic enzyme extracted from the earthworm, Lumbricus rubellus. Jpn J Physiol 41:461–472PubMedCrossRefGoogle Scholar
  182. Miyata K, Maejima K, Tomoda K, Isono M (1970) Serratia protease. Part I. Purification and general properties of the enzyme. Agric Biol Chem 34:310–318Google Scholar
  183. Miyata K, Tomoda K, Isono M (1971) Serratia protease. Part III. Characteristics of the enzyme as metalloenzyme. Agric Biol Chem 35:460–467Google Scholar
  184. Moon SM, Kim JS, Kim HJ, Choi MS, Park BR, Kim SG, Ahn H, Chun HS, Shin YK, Kim JJ, Kim DK, Lee SY, Seo YW, Kim YH, Kim CS (2014) Purification and characterization of a novel fibrinolytic α chymotrypsin like serine metalloprotease from the edible mushroom, Lyophyllum shimeji. J Biosci Bioeng 117:544–550PubMedCrossRefGoogle Scholar
  185. Moriya N, Nakata M, Nakamura M, Takaoka M, Iwasa S, Kato K, Kakinuma A (1994) Intestinal absorption of serrapeptase (TSP) in rats. Biotechnol Appl Biochem 20:101–108PubMedGoogle Scholar
  186. Moroz LA (1981) Mini-plasminogen: a mechanism for leukocyte modulation of plasminogen activation by urokinase. Blood 58:97–104PubMedGoogle Scholar
  187. Moussa M, Ibrahim M, El Ghazaly M, Rohde J, Gnoth S, Anton A, Kensy F, Mueller F (2012) Expression of recombinant staphylokinase in the methylotrophic yeast Hansenula polymorpha. BMC Biotechnol 12:96PubMedPubMedCentralCrossRefGoogle Scholar
  188. Mukherjee AK, Rai SK, Thakur R, Chattopadhyay P, Kar SK (2012) Bafibrinase: a non-toxic, non-hemorrhagic, direct-acting fibrinolytic serine protease from Bacillus sp. strain AS-S20-I exhibits in vivo anticoagulant activity and thrombolytic potency. Biochimie 94:1300–1308PubMedCrossRefGoogle Scholar
  189. Muller J, Reinert H, Malke H (1989) Streptokinase mutations relieving Escherichia coli K-12 (prlA4) of detriments caused by the wild-type skc gene. J Bacteriol 171:2202–2208PubMedPubMedCentralCrossRefGoogle Scholar
  190. Muller D, Domon B, Karas M, van Oostrum J, Richter WJ (1994) Characterization and direct glycoform profiling of a hybrid plasminogen activator by matrix-assisted laser desorption and electrospray mass spectrometry: correlation with high-performance liquid chromatographic and nuclear magnetic resonance analyses of the released glycans. Biol Mass Spectrom 23:330–338PubMedCrossRefGoogle Scholar
  191. Munger MA, Forrence EA (1990) Anistreplase: a new thrombolytic for the treatment of acute myocardial infarction. Clin Pharm 9:530–540PubMedGoogle Scholar
  192. Murray DWG, Jaques LB, Perrett TS, Best CH (1937) Heparin and the thrombosis of veins following injury. Surgery 2:163–187Google Scholar
  193. Nagai N, Demarsin E, Van Hoef B, Wouters S, Cingolani D, Laroche Y, Collen D (2003) Recombinant human microplasmin: production and potential therapeutic properties. J Thromb Haemost 1:307–313PubMedCrossRefGoogle Scholar
  194. Nakahama K, Yoshimura K, Marumoto R, Kikuchi M, Lee IS, Hase T, Matsubara H (1986) Cloning and sequencing of serratia protease gene. Nucleic Acids Res 14:5843–5855PubMedPubMedCentralCrossRefGoogle Scholar
  195. Nakamura T, Yamagata Y, Ichishima E (1992) Nucleotide sequence of the subtilisin NAT gene, aprN, of Bacillus subtilis (natto). Biosci Biotechnol Biochem 56:1869–1871PubMedCrossRefGoogle Scholar
  196. Niego B, Horvath A, Coughlin PB, Pugsley MK, Medcalf RL (2008) Desmoteplase-mediated plasminogen activation and clot lysis are inhibited by the lysine analogue tranexamic acid. Blood Coagul Fibrinolysis 19:322–324PubMedCrossRefGoogle Scholar
  197. Nordt TK, Moser M, Kohler B, Kubler W, Bode C (1999) Pharmacokinetics and pharmacodynamics of lanoteplase (n-PA). Thromb Haemost 82:121–123PubMedGoogle Scholar
  198. Omura K, Hitosugi M, Kaketani K, Zhu X, Maeda H, Tokudome S (2004) Fibrinolytic and anti-thrombotic effect of NKCP, the protein layer from Bacillus subtilis (natto). Biofactors 22:185–187PubMedCrossRefGoogle Scholar
  199. Oprea AD, Popescu WM (2013) Perioperative management of antiplatelet therapy. Br J Anaesth 111:i3–i17PubMedCrossRefGoogle Scholar
  200. Ouriel K (2002) Current status of thrombolysis for peripheral arterial occlusive disease. Ann Vasc Surg 16:797–804PubMedCrossRefGoogle Scholar
  201. Pan R, Zhang ZJ, He RQ (2010) Earthworm protease. Appl Environ Soil Sci 2010:294258CrossRefGoogle Scholar
  202. Park SE, Li MH, Kim JS, Sapkota K, Kim JE, Choi BS, Yoon YH, Lee JC, Lee HH, Kim CS, Kim SJ (2007) Purification and characterization of a fibrinolytic protease from a culture supernatant of Flammulina velutipes mycelia. Biosci Biotechnol Biochem 71:2214–2222PubMedCrossRefPubMedCentralGoogle Scholar
  203. Park KJ, Kang JI, Kim TS, Yeo IH (2012) The antithrombotic and fibrinolytic effect of natto in hypercholesterolemia rats. Prev Nutr Food Sci 17:78–82PubMedPubMedCentralCrossRefGoogle Scholar
  204. Parkinson J, Bedford DE (1928) Cardiac infarction and coronary thrombosis. Lancet 211:4–11CrossRefGoogle Scholar
  205. Patel GK, Kawale AA, Sharma AK (2012) Purification and physicochemical characterization of a serine protease with fibrinolytic activity from latex of a medicinal herb Euphorbia hirta. Plant Physiol Biochem 52:104–111PubMedCrossRefGoogle Scholar
  206. Patthy L, Trexler M, Vali Z, Banyai L, Varadi A (1984) Kringles: modules specialized for protein binding. Homology of the gelatin-binding region of fibronectin with the kringle structures of proteases. FEBS Lett 171:131–136PubMedCrossRefGoogle Scholar
  207. Pearson JD (1994) Endothelial cell function and thrombosis. Baillieres Clin Haematol 7:441–452PubMedCrossRefGoogle Scholar
  208. Peng Y, Huang Q, Zhang R, Zhang Y (2003) Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food. Comp Biochem Physiol B Biochem Mol Biol 134:45–52PubMedCrossRefGoogle Scholar
  209. Peng Y, Yang X, Zhang Y (2005) Microbial fibrinolytic enzymes: an overview of source, production, properties, and thrombolytic activity in vivo. Appl Microbiol Biotechnol 69:126–132PubMedCrossRefGoogle Scholar
  210. Pennica D, Holmes WE, Kohr WJ, Harkins RN, Vehar GA, Ward CA, Bennett WF, Yelverton E, Seeburg PH, Heyneker HL, Goeddel DV, Collen D (1983) Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature 301:214–221PubMedCrossRefGoogle Scholar
  211. PERSIST investigators (2004) A novel long-acting synthetic factor Xa inhibitor (SanOrg34006) to replace warfarin for secondary prevention in deep vein thrombosis. A phase II evaluation. J Thromb Haemost 2:47–53CrossRefGoogle Scholar
  212. Petersen LC, Lund LR, Nielsen LS, Dano K, Skriver L (1988) One-chain urokinase-type plasminogen activator from human sarcoma cells is a proenzyme with little or no intrinsic activity. J Biol Chem 263:11189–11195PubMedGoogle Scholar
  213. Pirmohamed M (2006) Warfarin: almost 60 years old and still causing problems. Br J Clin Pharmacol 62:509–511PubMedPubMedCentralCrossRefGoogle Scholar
  214. Ploug J, Kjeldgaard NO (1957) Urokinase an activator of plasminogen from human urine I. Isolation and properties. Biochim Biophys Acta 24:278–282PubMedCrossRefGoogle Scholar
  215. Prasad S, Kashyap RS, Deopujari JY, Purohit HJ, Taori GM, Daginawala HF (2007) Effect of Fagonia arabica (Dhamasa) on in vitro thrombolysis. BMC Complement Altern Med 7:36PubMedPubMedCentralCrossRefGoogle Scholar
  216. Rahman MA, Sultana R, Bin Emran T, Islam MS, Rahman MA, Chakma JS, Rashid H, Hasan CMM (2013) Effects of organic extracts of six Bangladeshi plants on in vitro thrombolysis and cytotoxicity. BMC Complement Altern Med 13:25PubMedPubMedCentralCrossRefGoogle Scholar
  217. Rajesh R, Shivaprasad HV, Gowda CD, Nataraju A, Dhananjaya BL, Vishwanath BS (2007) Comparative study on plant latex proteases and their involvement in hemostasis: a special emphasis on clot inducing and dissolving properties. Planta Med 73:1061–1067PubMedCrossRefGoogle Scholar
  218. Ranby M, Bergsdorf N, Pohl G, Wallen P (1982) Isolation of two variants of native one-chain tissue plasminogen activator. FEBS Lett 146:289–292PubMedCrossRefGoogle Scholar
  219. Randolph A, Chamberlain SH, Chu HL, Retzios AD, Markland FS, Masiarz FR (1992) Amino acid sequence of fibrolase, a direct-acting fibrinolytic enzyme from Agkistrodon contortrix contortrix venom. Protein Sci 1:590–600PubMedPubMedCentralCrossRefGoogle Scholar
  220. Reddrop C, Moldrich RX, Beart PM, Farso M, Liberatore GT, Howells DW, Petersen KU, Schleuning WD, Medcalf RL (2005) Vampire bat salivary plasminogen activator (desmoteplase) inhibits tissue-type plasminogen activator-induced potentiation of excitotoxic injury. Stroke 36:1241–1246PubMedCrossRefGoogle Scholar
  221. Rijken DC, Groeneveld E (1986) Isolation and functional characterization of the heavy and light chains of human tissue-type plasminogen activator. J Biol Chem 261:3098–3102PubMedGoogle Scholar
  222. Rijken DC, Wijngaards G, Zaal-de Jong M, Welbergen J (1979) Purification and partial characterization of plasminogen activator from human uterine tissue. Biochim Biophys Acta 580:140–153PubMedCrossRefGoogle Scholar
  223. Rijken DC, Wijngaards G, Welbergen J (1980) Relationship between tissue plasminogen activator and the activators in blood and vascular wall. Thromb Res 18:815–830PubMedCrossRefGoogle Scholar
  224. Rijken DC, Barrett-Bergshoeff MM, Jie AFH, Criscuoli M, Sakharov DV (2004) Clot penetration and fibrin binding of amediplase, a chimeric plasminogen activator (K2 tu-PA). Thromb Haemost 91:52–60PubMedCrossRefGoogle Scholar
  225. Robbins KC, Summaria L, Hsieh B, Shah RJ (1967) The peptide chains of human plasmin. Mechanism of activation of human plasminogen to plasmin. J Biol Chem 242:2333–2342PubMedGoogle Scholar
  226. Roch P (1979) Protein analysis of earthworm coelomic fluid: 1. polymorphic system of the natural hemolysin of Eisenia fetida andrei. Dev Comp Immunol 3:599–608PubMedCrossRefGoogle Scholar
  227. Rosen G, Naor R, Kutner S, Sela MN (1994) Characterization of fibrinolytic activities of Treponema denticola. Infect Immun 62:1749–1754PubMedPubMedCentralGoogle Scholar
  228. Ruegsegger P, Nydick I, Hutter RC, Freiman AH, Bang NU, Cliffton EE, Ladue JS (1959) Fibrinolytic (plasmin) therapy of experimental coronary thrombi with alteration of the evolution of myocardial infarction. Circulation 19:7–13PubMedCrossRefGoogle Scholar
  229. Sadeghi S, Marder VJ, Stewart D, Kong M, Humphries J, Baumbach GA, Jesmok G (2003) Safety of plasmin in the setting of concomitant aspirin and heparin administration in an animal model of bleeding. J Thromb Haemost 1:2621–2625PubMedCrossRefGoogle Scholar
  230. Sakharov DV, Lijnen HR, Rijken DC (1996) Interactions between staphylokinase, plasmin (ogen), and fibrin. Staphylokinase discriminates between free plasminogen and plasminogen bound to partially degraded fibrin. J Biol Chem 271:27912–27918PubMedCrossRefGoogle Scholar
  231. Sako T (1985) Overproduction of staphylokinase in Escherichia coli and its characterization. Eur J Biochem 149:557–563PubMedCrossRefGoogle Scholar
  232. Samama M, Walenga J, Kaiser B, Fareed J (1997) Specific factor Xa inhibitors. In: Verstraete M, Fuster V, Topol E (eds) Cardiovascular thrombosis: thrombocardiology. Lippincott-Raven, Brussels, pp 173–188Google Scholar
  233. Sarkar NK (1960) Mechanism of clot lysis. Nature 185:624–625PubMedCrossRefGoogle Scholar
  234. Sasaki S, Kawanami R, Motizuki Y, Nakahara Y, Kawamura T, Tanaka A, Watanabe S (2000) Serrapeptase-induced lung injury manifesting as acute eosiniphilic pneumonia. Nihon Kokyuki Gakkai Zasshi 38:540–544PubMedGoogle Scholar
  235. Sherry S (1954) The fibrinolytic activity of streptokinase activated human plasmin. J Clin Invest 33:1054–1063PubMedPubMedCentralCrossRefGoogle Scholar
  236. Sherry S (1981) Personal reflections on the development of thrombolytic therapy and its application to acute coronary thrombosis. Am Heart J 102:1134–1138PubMedCrossRefGoogle Scholar
  237. Sherry S (1990) Pharmacology of anistreplase. Clin Cardiol 13:3–10CrossRefGoogle Scholar
  238. Shirasaka N, Naitou M, Okamura K, Fukuta Y, Terashita T, Kusuda M (2012) Purification and characterization of a fibrinolytic protease from Aspergillus oryzae KSK-3. Mycoscience 53:354–364CrossRefGoogle Scholar
  239. Shivaprasad HV, Riyaz M, Venkatesh Kumar R, Dharmappa KK, Tarannum S, Siddesha JM, Rajesh R, Vishwanath BS (2009) Cysteine proteases from the Asclepiadaceae plants latex exhibited thrombin and plasmin like activities. J Thromb Thrombolysis 28:304–308PubMedCrossRefGoogle Scholar
  240. Shlansky-Goldberg RD, Matsumoto AH, Baumbach GA, Siegel JB, Raabe RD, Murphy TP, Deng C, Ray Dawkins J, Marder VJ (2008) A first-in-human phase I trial of locally delivered human plasmin for hemodialysis graft occlusion. J Thromb Haemost 6:944–950PubMedPubMedCentralCrossRefGoogle Scholar
  241. Siigur E, Siigur J (1991) Purification and characterization of lebetase, a fibrinolytic enzyme from Vipera lebetina (snake) venom. Biochim Biophys Acta 1074:223–229PubMedCrossRefGoogle Scholar
  242. Sikri N, Bardia A (2007) A history of streptokinase use in acute myocardial infarction. Tex Heart Inst J 34:318–327PubMedPubMedCentralGoogle Scholar
  243. Silva GMM, Bezerra RP, Teixeira JA, Silva FO, Correia JM, Porto TS, Lima-Filho JL, Porto ALF (2016) Screening, production and biochemical characterization of a new fibrinolytic enzyme produced by Streptomyces sp. (Streptomycetaceae) isolated from Amazonian lichens. Acta Amazon 46:323–332CrossRefGoogle Scholar
  244. Simkhada JR, Mander P, Cho SS, Yoo JC (2010) A novel fibrinolytic protease from Streptomyces sp. CS684. Process Biochem 45:88–93CrossRefGoogle Scholar
  245. Siritapetawee J, Thumanu K, Sojikul P, Thammasirirak S (2012) A novel serine protease with human fibrino(geno)lytic activities from Artocarpus heterophyllus latex. Biochim Biophys Acta 1824:907–912PubMedCrossRefGoogle Scholar
  246. Siritapetawee J, Sojikul P, Klaynongsruang S (2015) Biochemical characterization of a new glycosylated protease from Euphorbia cf. lactea latex. Plant Physiol. Biochemist 92:30–38Google Scholar
  247. Smalling RW (1996) Molecular biology of plasminogen activators: what are the clinical implications of drug design? The am. J Cardiol 78:2–7CrossRefGoogle Scholar
  248. Smith JB, Willis AL (1971) Aspirin selectively inhibits prostaglandin production in human platelets. Nat New Biol 231:235PubMedCrossRefGoogle Scholar
  249. Smith RA, Dupe RJ, English PD, Green J (1981) Fibrinolysis with acyl-enzymes: a new approach to thrombolytic therapy. Nature 290:505–508PubMedCrossRefGoogle Scholar
  250. Sottrup-Jensen L, Claeys H, Zajdel M, Petersen T, Magnusson S (1978) The primary structure of human plasminogen: isolation of two lysine binding fragments and one mini plasminogen (MW 38000) by elastase catalyzed specific limited proteolysis. In: Davidson JF, Rowan RM, Samama MM, Desnoyers PC (eds) Progress in chemical fibrinolysis and thrombolysis. Raven Press, New York, pp 191–209Google Scholar
  251. Stage A, Astrup T (1952) Isolation of a soluble fibrinolytic activator from animal tissue. Nature 170:929PubMedGoogle Scholar
  252. Stahmann MA, Huebner CF, Link KP (1941) Studies on the hemorrhagic sweet clover disease: v. Identification and synthesis of the hemorrhagic agent. J Biol Chem 138:513–527Google Scholar
  253. Stassen JM, Arnout J, Deckmyn H (2004) The hemostatic system. Curr Med Chem 11:2245–2260PubMedCrossRefGoogle Scholar
  254. Sturzebecher J, Neumann U, Kohnert U, Kresse GB, Fischer S (1992) Mapping of the catalytic site of CHO-t-PA and the t-PA variant BM 06.022 by synthetic inhibitors and substrates. Protein Sci 1:1007–1013PubMedPubMedCentralCrossRefGoogle Scholar
  255. Sumi H, Hamada H, Tsushima H, Mihara H, Muraki H (1987) A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet. Experientia 43:1110–1111PubMedCrossRefGoogle Scholar
  256. Sumi H, Hamada H, Nakanishi K, Hiratani H (1990) Enhancement of the fibrinolytic activity in plasma by oral administration of nattokinase. Acta Haematol 84:139–143PubMedCrossRefGoogle Scholar
  257. Sun AL, Hua ZC, Yao J, Yang YH, Yin DQ (1998) Fusion expression of human pro-urokinase with E. coli thioredoxin. Biochem Mol Biol Int 46:479–486PubMedGoogle Scholar
  258. Sung YY, Yang WK, Kim HK (2012) Antiplatelet, anticoagulant and fibrinolytic effects of Litchi chinensis Sonn. extract. Mol Med Rep 5:721–724PubMedGoogle Scholar
  259. Suzuki S, Saito M, Suzuki N, Kato H, Nagaoka N, Yoshitake S, Mizuo H, Yuzuriha T, Yui Y, Kawai C (1991) Thrombolytic properties of a novel modified human tissue-type plasminogen activator (E6010): a bolus injection of E6010 has equivalent potency of lysing young and aged canine coronary thrombi. J Cardiovasc Pharmacol 17:738–746PubMedCrossRefGoogle Scholar
  260. Suzuki Y, Nagai N, Collen D (2004) Comparative effects of microplasmin and tissue-type plasminogen activator (tPA) on cerebral hemorrhage in a middle cerebral artery occlusion model in mice. J Thromb Haemost 2:1617–1621PubMedCrossRefGoogle Scholar
  261. Szemraj J, Walkowiak B, Kawecka I, Janiszewska G, Buczko W, Bartkowiak J, Chabielska E (2005) A new recombinant thrombolytic and antithrombotic agent with higher fibrin affinity-a staphylokinase variant. I. In vitro study. J Thromb Haemost 3:2156–2165PubMedCrossRefGoogle Scholar
  262. Szemraj J, Zakrzeska A, Brown G, Stankiewicz A, Gromotowicz A, Grędzinski T, Chabielska E (2011) New derivative of staphylokinase SAK-RGD-K2-Hirul exerts thrombolytic effects in the arterial thrombosis model in rats. Pharmacol Rep 63:1169–1179PubMedCrossRefGoogle Scholar
  263. Taneja K, Bajaj BK, Kumar S, Dilbaghi N (2017) Production, purification and characterization of fibrinolytic enzyme from Serratia sp. KG-2-1 using optimized media. 3 Biotech 7:184PubMedPubMedCentralCrossRefGoogle Scholar
  264. Tao S, Peng L, Beihui L, Deming L, Zuohu L (1997) Solid state fermentation of rice chaff for fibrinolytic enzyme production by Fusarium oxysporum. Biotechnol Lett 19:465–467CrossRefGoogle Scholar
  265. Tao S, Peng L, Beihui L, Deming L, Zuohu L (1998) Successive cultivation of Fusarium oxysporum on rice chaff for economic production of fibrinolytic enzyme. Bioprocess Eng 18:379–381Google Scholar
  266. Tebbe U, Michels R, Adgey J, Boland J, Caspi A, Charbonnier B, Windeler J, Barth H, Groves R, Hopkins GR, Fennell W, Betriu A, Ruda M, Mlczoch J (1998) Randomized, double-blind study comparing saruplase with streptokinase therapy in acute myocardial infarction: the COMPASS equivalence trial. Comparison Trial of Saruplase and Streptokinase (COMASS) Investigators. J Am Coll Cardiol 31:487–493PubMedCrossRefGoogle Scholar
  267. Tharwat N (2006) Purification and biochemical characterization of fibrinolytic enzyme produced by thermophilic fungus Oidiodendron flavum. Biotechnology 5:160–165CrossRefGoogle Scholar
  268. Thijs VNS, Peeters A, Vosko M, Aichner F, Schellinger PD, Schneider D, Neumann-Haefelin T, Rother J, Davalos A, Wahlgren N, Verhamme P (2009) Randomized, placebo-controlled, dose-ranging clinical trial of intravenous microplasmin in patients with acute ischemic stroke. Stroke 40:3789–3795PubMedCrossRefGoogle Scholar
  269. Tillett WS, Garner RL (1933) The fibrinolytic activity of hemolytic Streptococci. J Exp Med 58:485–502PubMedPubMedCentralCrossRefGoogle Scholar
  270. Tillett WS, Sherry S (1949) The effect in patients of streptococcal fibrinolysin (streptokinase) and streptococcal desoxyribonuclease on fibrinous, purulent, and sanguinous pleural exudations. J Clin Invest 28:173–190PubMedPubMedCentralCrossRefGoogle Scholar
  271. Tjandrawinata RR, Yunaidi DA, Susanto LW (2016) The safety and tolerability of lumbrokinase DLBS1033 in healthy adult subjects. Drug Res (Stuttg) 66:293–299CrossRefGoogle Scholar
  272. Tough J (2005) Thrombolytic therapy in acute myocardial infarction. Nurs Stand 19:55–64PubMedCrossRefGoogle Scholar
  273. Turpie AGG, Fisher WD, Bauer KA, Kwong LM, Irwin MW, Kalebo P, Misselwitz F, Gent M, OdiXa-Knee Study Group (2005) BAY 59-7939: an oral, direct factor Xa inhibitor for the prevention of venous thromboembolism in patients after total knee replacement. A phase II dose-ranging study. J Thromb Haemost 3:2479–2486PubMedCrossRefGoogle Scholar
  274. Ueda M, Kubo T, Miyatake K, Nakamura T (2007) Purification and characterization of fibrinolytic alkaline protease from Fusarium sp. BLB Appl Microbiol Biotechnol 74:331PubMedCrossRefGoogle Scholar
  275. Uesugi Y, Usuki H, Iwabuchi M, Hatanaka T (2011) Highly potent fibrinolytic serine protease from Streptomyces. Enzym Microb Technol 48:7–12CrossRefGoogle Scholar
  276. Urano T, Ihara H, Umemura K, Suzuki Y, Oike M, Akita S, Tsukamoto Y, Suzuki I, Takada A (2001) The profibrinolytic enzyme subtilisin NAT purified from Bacillus subtilis cleaves and inactivates plasminogen activator inhibitor type 1. J Biol Chem 276:24690–24696PubMedCrossRefGoogle Scholar
  277. Van De Werf F, Adgey J, Ardissino D, Armstrong PW, Aylward P, Barbash G, Betriu A, Binbrek AS, Califf R, Diaz R, Fanebust R, Fox K, Granger C, Heikkila J, Husted S, Jansky P, Langer A, Lupi E, Maseri A, Meyer J, Mlczoch J, Mocceti D, Myburgh D, Oto A, Paolasso E, Pehrsson K, Seabra-Gomes R, Soares-Piegas L, Sùgrue D, Tendera M, Topol E, Toutouzas P, Vahanian A, Verheugt F, Wallentin L, White H (1999a) Single-bolus tenecteplase compared with front-loaded alteplase in acute myocardial infarction: the ASSENT-2 double-blind randomised trial. Lancet 354:716–722CrossRefGoogle Scholar
  278. Van de Werf F, Cannon CP, Luyten A, Houbracken K, McCabe CH, Berioli S, Bluhmki E, Sarelin H, Wang-Clow F, Fox NL, Braunwald E (1999b) Safety assessment of single-bolus administration of TNK tissue-plasminogen activator in acute myocardial infarction: the ASSENT-1 trial. The ASSENT-1 Investigators. Am Heart J 137:786–791PubMedCrossRefGoogle Scholar
  279. van Zonneveld AJ, Veerman H, MacDonald ME, van Mourik JA, Pannekoek H (1986) Structure and function of human tissue-type plasminogen activator (t-PA). J Cell Biochem 32:169–178PubMedCrossRefGoogle Scholar
  280. Vanderschueren S, Barrios L, Kerdsinchai P, Van den Heuvel P, Hermans L, Vrolix M, De Man F, Benit E, Muyldermans L, Collen D (1995a) A randomized trial of recombinant staphylokinase versus alteplase for coronary artery patency in acute myocardial infarction. The STAR Trial Group. Circulation 92:2044–2049PubMedCrossRefGoogle Scholar
  281. Vanderschueren S, Stockx L, Wilms G, Lacroix H, Verhaeghe R, Vermylen J, Collen D (1995b) Thrombolytic therapy of peripheral arterial occlusion with recombinant staphylokinase. Circulation 92:2050–2057PubMedCrossRefGoogle Scholar
  282. Vanderschueren S, Collen D, van de Werf F (1996) A pilot study on bolus administration of recombinant staphylokinase for coronary artery thrombolysis. Thromb Haemost 76:541–544PubMedCrossRefGoogle Scholar
  283. Vanderschueren S, Dens J, Kerdsinchai P, Desmet W, Vrolix M, De Man F, Van den Heuvel P, Hermans L, Collen D, Van de Werf F (1997) Randomized coronary patency trial of double-bolus recombinant staphylokinase versus front-loaded alteplase in acute myocardial infarction. Am Heart J 134:213–219PubMedCrossRefGoogle Scholar
  284. Vane JR (1971) Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol 231:232–235PubMedCrossRefGoogle Scholar
  285. Verstraete M (2000) Third-generation thrombolytic drugs. Am J Med 109:52–58PubMedCrossRefGoogle Scholar
  286. Viana CA, Oliveira JS, Freitas CDT, Alencar NMN, Carvalho CPS, Nishi BC, Ramos MV (2013) Thrombin and plasmin-like activities in the latices of Cryptostegia grandiflora and Plumeria rubra. Blood Coagul Fibrinolysis 24:386–392PubMedCrossRefGoogle Scholar
  287. Vijayaraghavan P, Vincent SGP (2014) Statistical optimization of fibrinolytic enzyme production using agroresidues by Bacillus cereus IND1 and its thrombolytic activity in vitro. Biomed Res Int 2014:725064PubMedPubMedCentralCrossRefGoogle Scholar
  288. Vijayaraghavan P, Vincent SGP (2015) A low cost fermentation medium for potential fibrinolytic enzyme production by a newly isolated marine bacterium, Shewanella sp. IND20. Biotechnol Rep 7:135–142CrossRefGoogle Scholar
  289. Vijayaraghavan P, Raj F, Vincent SGP (2015) Purification and characterization of fibrinolytic enzyme from Pseudoalteromonas sp. IND11 and its in vitro activity on blood clot. Int J Biol Chem 9:11–20CrossRefGoogle Scholar
  290. Vijayaraghavan P, Vincent SGP, Arasu MV (2016a) Purification, characterization of a novel fibrinolytic enzyme from Paenibacillus sp. IND8, and its in vitro thrombolytic activity. SIJBS 2:434–444CrossRefGoogle Scholar
  291. Vijayaraghavan P, Vincent SGP, Arasu MV, Al-Dhabi NA (2016b) Bioconversion of agro-industrial wastes for the production of fibrinolytic enzyme from Bacillus halodurans IND18: purification and biochemical characterization. Electron J Biotechnol 20:1–8CrossRefGoogle Scholar
  292. Violand BN, Castellino FJ (1976) Mechanism of the urokinase-catalyzed activation of human plasminogen. J Biol Chem 251:3906–3912PubMedGoogle Scholar
  293. von Kummer R, Mori E, Truelsen T, Jensen JKS, Gronning BA, Fiebach JB, Lovblad KO, Pedraza S, Romero JM, Chabriat H, Chang KC, Davalos A, Ford GA, Grotta J, Kaste M, Schwamm LH, Shuaib A, Albers GW (2016) Desmoteplase 3 to 9 hours after major artery occlusion stroke: the DIAS-4 trial (efficacy and safety study of desmoteplase to treat acute ischemic stroke). Stroke 47:2880–2887CrossRefGoogle Scholar
  294. Walenga JM, Jeske WP, Samama MM, Frapaise FX, Bick RL, Fareed J (2002) Fondaparinux: a synthetic heparin pentasaccharide as a new antithrombotic agent. Expert Opin Investig Drugs 11:397–407PubMedCrossRefGoogle Scholar
  295. Wang J, Wang M, Wang Y (1999) Purification and characterization of a novel fibrinolytic enzyme from Streptomyces spp. Chin J Biotechnol 15:83–89PubMedGoogle Scholar
  296. Wang F, Wang C, Li M, Gui L, Zhang J, Chang W (2003) Purification, characterization and crystallization of a group of earthworm fibrinolytic enzymes from Eisenia fetida. Biotechnol Lett 25:1105–1109PubMedCrossRefGoogle Scholar
  297. Wang C, Du M, Zheng D, Kong F, Zu G, Feng Y (2009a) Purification and characterization of nattokinase from Bacillus subtilis natto B-12. J Agric Food Chem 57:9722–9729PubMedCrossRefGoogle Scholar
  298. Wang SL, Chen HJ, Liang TW, Lin YD (2009b) A novel nattokinase produced by Pseudomonas sp. TKU015 using shrimp shells as substrate. Process Biochem 44:70–76CrossRefGoogle Scholar
  299. Weiss HJ, Aledort LM (1967) Impaired platelet-connective-tissue reaction in man after aspirin ingestion. Lancet 2:495–497PubMedCrossRefGoogle Scholar
  300. Weng Y, Yao J, Sparks S, Wang KY (2017) Nattokinase: an oral antithrombotic agent for the prevention of cardiovascular disease. Int J Mol Sci 18:523PubMedCentralCrossRefPubMedGoogle Scholar
  301. WHO (2017) World Health Organization fact sheet fs317 cardiovascular diseases (CVDs) updated May 2017Google Scholar
  302. Wiman B (1977) Primary structure of the B-chain of human plasmin. Eur J Biochem 76:129–137PubMedCrossRefGoogle Scholar
  303. Wiman B, Wallen P (1977) The specific interaction between plasminogen and fibrin. A physiological role of the lysine binding site in plasminogen. Thromb Res 10:213–222PubMedCrossRefGoogle Scholar
  304. Wiman B, Boman L, Collen D (1978) On the kinetics of the reaction between human antiplasmin and a low-molecular-weight form of plasmin. Eur J Biochem 87:143–146PubMedCrossRefGoogle Scholar
  305. Wiman B, Lijnen HR, Collen D (1979) On the specific interaction between the lysine-binding sites in plasmin and complementary sites in alpha2-antiplasmin and in fibrinogen. Biochim Biophys Acta 579:142–154PubMedCrossRefGoogle Scholar
  306. Wong SL, Ye R, Nathoo S (1994) Engineering and production of streptokinase in a Bacillus subtilis expression-secretion system. Appl Environ Microbiol 60:517–523PubMedPubMedCentralGoogle Scholar
  307. Wu HL, Shi GY, Wohl RC, Bender ML (1987) Structure and formation of microplasmin. Proc Natl Acad Sci U S A 84:8793–8795PubMedPubMedCentralCrossRefGoogle Scholar
  308. Wu TP, Padmanabhan KP, Tulinsky A (1994) The structure of recombinant plasminogen kringle 1 and the fibrin binding site. Blood Coagul Fibrinolysis 5:157–166PubMedCrossRefGoogle Scholar
  309. Wu B, Wu L, Chen D, Yang Z, Luo M (2009) Purification and characterization of a novel fibrinolytic protease from Fusarium sp. CPCC 480097. J Ind Microbiol Biotechnol 36:451–459PubMedCrossRefGoogle Scholar
  310. Wu D, Li P, Zhou J, Gao M, Lou X, Ran T, Wu S, Wang W, Xu D (2016) Identification of a toxic serralysin family protease with unique thermostable property from S. marcescens FS14. Int J Biol Macromol 93:98–106PubMedCrossRefGoogle Scholar
  311. Xiao-lan L, Lian-xiang D, Fu-ping L, Xi-qun Z, Jing X (2005) Purification and characterization of a novel fibrinolytic enzyme from Rhizopus chinensis 12. Appl Microbiol Biotechnol 67:209–214PubMedCrossRefGoogle Scholar
  312. Yan XM, Kim CH, Lee CK, Shin JS, Cho IH, Sohn UD (2010) Intestinal absorption of fibrinolytic and proteolytic lumbrokinase extracted from earthworm, Eisenia andrei. Korean J Physiol Pharmacol 14:71–75PubMedPubMedCentralCrossRefGoogle Scholar
  313. Yokota M, Tanji Y (2008) Analysis of cell-cycle-dependent production of tissue plasminogen activator analogue (pamiteplase) by CHO cells. Biochem Eng J 39:297–304CrossRefGoogle Scholar
  314. Zamarron C, Lijnen HR, Van Hoef B, Collen D (1984) Biological and thrombolytic properties of proenzyme and active forms of human urokinase-I. Fibrinolytic and fibrinogenolytic properties in human plasma in vitro of urokinases obtained from human urine or by recombinant DNA technology. Thromb Haemost 52:19–23PubMedGoogle Scholar
  315. Zeymer U, Neuhaus KL (1999) Clinical trials in acute myocardial infarction. Curr Opin Cardiol 14:392PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Swaroop S. Kumar
    • 1
  • Abdulhameed Sabu
    • 1
  1. 1.Department of Biotechnology & Microbiology, School of Life SciencesKannur UniversityPalayadIndia

Personalised recommendations