Alkaline Phosphatase Replacement Therapy for Hypophosphatasia in Development and Practice

  • S. A. BowdenEmail author
  • B. L. Foster
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1148)


Hypophosphatasia (HPP) is an inherited disorder that affects bone and tooth mineralization characterized by low serum alkaline phosphatase. HPP is caused by loss-of-function mutations in the ALPL gene encoding the protein, tissue-nonspecific alkaline phosphatase (TNSALP). TNSALP is expressed by mineralizing cells of the skeleton and dentition and is associated with the mineralization process. Generalized reduction of activity of the TNSALP leads to accumulation of its substrates, including inorganic pyrophosphate (PPi) that inhibits physiological mineralization. This leads to defective skeletal mineralization, with manifestations including rickets, osteomalacia, fractures, and bone pain, all of which can result in multi-systemic complications with significant morbidity, as well as mortality in severe cases. Dental manifestations are nearly universal among affected individuals and feature most prominently premature loss of deciduous teeth. Management of HPP has been limited to supportive care until the introduction of a TNSALP enzyme replacement therapy (ERT), asfotase alfa (AA). AA ERT has proven to be transformative, improving survival in severely affected infants and increasing overall quality of life in children and adults with HPP. This chapter provides an overview of TNSALP expression and functions, summarizes HPP clinical types and pathologies, discusses early attempts at therapies for HPP, summarizes development of HPP mouse models, reviews design and validation of AA ERT, and provides up-to-date accounts of AA ERT efficacy in clinical trials and case reports, including therapeutic response, adverse effects, limitations, and potential future directions in therapy.


Hypophosphatasia Alkaline phosphatase Asfotase alfa Bone mineralization Rickets Osteomalacia Teeth 





Alkaline phosphatase gene


Tissue-nonspecific isoenzyme of alkaline phosphatase


Alkaline phosphatase enzyme activity, circulating


Intestinal alkaline phosphatase protein


Intestinal alkaline phosphatase gene


Placental alkaline phosphatase protein


Placental alkaline phosphatase gene


Germ cell alkaline phosphatase protein


Germ cell alkaline phosphatase gene


Asfotase alfa


Enzyme replacement therapy


Inorganic phosphate


Inorganic pyrophosphate


Pyridoxal 5′-phosphate








Chinese hamster ovary cells


Bone sialoprotein




Dentin sialoprotein


Phosphate-regulating endopeptidase


X-linked hypophosphatemia


Paget’s disease of the bone


Periodontal ligament


Online Mendelian Inheritance in Man compendium


Progressive ankylosis protein


Ectonucleotide pyrophosphatase phosphodiesterase 1 protein


Parathyroid hormone




Bone marrow transplantation


Stromal cell boost









We thank the subjects and their families for their cooperation and assistance with this research. This research was supported by research grants from Soft Bones, Inc. to BLF and grant AR 066110 to BLF from the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS). We thank Dr. Jose Luis Millán for providing images for reproduction. We thank Mr. Michael B. Chavez for adaptation of the TNSALP 2D model in Fig. 13.2m. For more information on hypophosphatasia for affected individuals, researchers, or health care professionals, see the Soft Bones, Inc. website at

Conflict of Interest

BLF has served as a consultant and speaker for Alexion Pharmaceuticals, Inc., and received two research grants from Soft Bones, Inc., a nonprofit patient advocacy, support, and education group for families with hypophosphatsia. The authors report no other conflicts of interest in this work.


  1. Akiyama T, Kubota T, Ozono K, Michigami T, Kobayashi D, Takeyari S, Sugiyama Y, Noda M, Harada D, Namba N et al (2018) Pyridoxal 5′-phosphate and related metabolites in hypophosphatasia: effects of enzyme replacement therapy. Mol Genet Metab 125(1–2):174–180PubMedCrossRefGoogle Scholar
  2. Albeggiani A, Cataldo F (1982) Infantile hypophosphatasia diagnosed at 4 months and surviving at 2 years. Helv Paediatr Acta 37(1):49–58PubMedGoogle Scholar
  3. Anderson HC, Sipe JB, Hessle L, Dhanyamraju R, Atti E, Camacho NP, Millan JL, Dhamyamraju R (2004) Impaired calcification around matrix vesicles of growth plate and bone in alkaline phosphatase-deficient mice. Am J Pathol 164(3):841–847PubMedPubMedCentralCrossRefGoogle Scholar
  4. Anderson HC, Harmey D, Camacho NP, Garimella R, Sipe JB, Tague S, Bi X, Johnson K, Terkeltaub R, Millan JL (2005) Sustained osteomalacia of long bones despite major improvement in other hypophosphatasia-related mineral deficits in tissue nonspecific alkaline phosphatase/nucleotide pyrophosphatase phosphodiesterase 1 double-deficient mice. Am J Pathol 166(6):1711–1720PubMedPubMedCentralCrossRefGoogle Scholar
  5. Armstrong L, Jett K, Birch P, Kendler DL, McKay H, Tsang E, Stevenson DA, Hanley DA, Egeli D, Burrows M et al (2013) The generalized bone phenotype in children with neurofibromatosis 1: a sibling matched case-control study. Am J Med Genet A 161A(7):1654–1661PubMedCrossRefGoogle Scholar
  6. Arun R, Khazim R, Webb JK, Burn J (2005) Scoliosis in association with infantile hypophosphatasia: a case study in two siblings. Spine 30(16):E471–E476PubMedCrossRefGoogle Scholar
  7. Baumgartner-Sigl S, Haberlandt E, Mumm S, Scholl-Burgi S, Sergi C, Ryan L, Ericson KL, Whyte MP, Hogler W (2007) Pyridoxine-responsive seizures as the first symptom of infantile hypophosphatasia caused by two novel missense mutations (c.677t>c, p.M226t; c.1112c>t, p.T371i) of the tissue-nonspecific alkaline phosphatase gene. Bone 40(6):1655–1661PubMedCrossRefPubMedCentralGoogle Scholar
  8. Beck C, Morbach H, Richl P, Stenzel M, Girschick H (2009) How can calcium pyrophosphate crystals induce inflammation in hypophosphatasia or chronic inflammatory joint diseases? Rheumatol Int 29(3):229–238PubMedCrossRefPubMedCentralGoogle Scholar
  9. Beertsen W, VandenBos T, Everts V (1999) Root development in mice lacking functional tissue non-specific alkaline phosphatase gene: inhibition of acellular cementum formation. J Dent Res 78(6):1221–1229PubMedCrossRefPubMedCentralGoogle Scholar
  10. Berkseth KE, Tebben PJ, Drake MT, Hefferan TE, Jewison DE, Wermers RA (2013) Clinical spectrum of hypophosphatasia diagnosed in adults. Bone 54(1):21–27PubMedCrossRefPubMedCentralGoogle Scholar
  11. Biosse Duplan M, Coyac BR, Bardet C, Zadikian C, Rothenbuhler A, Kamenicky P, Briot K, Linglart A, Chaussain C (2017) Phosphate and vitamin d prevent periodontitis in x-linked hypophosphatemia. J Dent Res 96(4):388–395PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bisaz S, Russell RG, Fleisch H (1968) Isolation of inorganic pyrophosphate from bovine and human teeth. Arch Oral Biol 13(6):683–696PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bloch-Zupan A (2016) Hypophosphatasia: diagnosis and clinical signs – a dental surgeon perspective. Int J Paediatr Dent 26(6):426–438PubMedCrossRefPubMedCentralGoogle Scholar
  14. Boileau G, Tenenhouse HS, Desgroseillers L, Crine P (2001) Characterization of phex endopeptidase catalytic activity: identification of parathyroid-hormone-related peptide107–139 as a substrate and osteocalcin, ppi and phosphate as inhibitors. Biochem J 355(Pt 3):707–713PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bowden SA, Adler BH (2018a) Asfotase alfa treatment for 1 year in a 16 year-old male with severe childhood hypophosphatasia. Osteoporos Int 29(2):511–515PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bowden SA, Adler BH (2018b) Reappearance of hypomineralized bone after discontinuation of asfotase alfa treatment for severe childhood hypophosphatasia. Osteoporos Int 29(9):2155–2156PubMedCrossRefPubMedCentralGoogle Scholar
  17. Bruckner R, Rickles N, Porter D (1962) Hypophosphatasia with premature shedding of teeth and aplasia of cementum. Oral Surg Oral Med Oral Pathol 15:1351–1369PubMedCrossRefPubMedCentralGoogle Scholar
  18. Cahill RA, Wenkert D, Perlman SA, Steele A, Coburn SP, McAlister WH, Mumm S, Whyte MP (2007) Infantile hypophosphatasia: transplantation therapy trial using bone fragments and cultured osteoblasts. J Clin Endocrinol Metab 92(8):2923–2930PubMedCrossRefPubMedCentralGoogle Scholar
  19. Campos M, Couture C, Hirata IY, Juliano MA, Loisel TP, Crine P, Juliano L, Boileau G, Carmona AK (2003) Human recombinant endopeptidase phex has a strict s1’ specificity for acidic residues and cleaves peptides derived from fibroblast growth factor-23 and matrix extracellular phosphoglycoprotein. Biochem J 373(Pt 1):271–279PubMedPubMedCentralCrossRefGoogle Scholar
  20. Castells L, Cassanello P, Muñiz F, de Castro M-J, Couce ML (2018) Neonatal lethal hypophosphatasia: a case report and review of literature. Medicine 97(48):e13269PubMedPubMedCentralCrossRefGoogle Scholar
  21. Clubb JS, Neale FC, Posen S (1965) The behavior of infused human placental alkaline phosphatase in human subjects. J Lab Clin Med 66(3):493–507PubMedGoogle Scholar
  22. Colazo JM, Hu JR, Dahir KM, Simmons JH (2018) Correction to: neurological symptoms in hypophosphatasia. Osteoporos Int: J Established Result Cooperation Between Eur Found Osteoporos Natl Osteoporos Found USA 30:535CrossRefGoogle Scholar
  23. Collins MT (2006) Spectrum and natural history of fibrous dysplasia of bone. J Bone Miner Res 21(S2):P99–P104PubMedCrossRefGoogle Scholar
  24. Collmann H, Mornet E, Gattenlohner S, Beck C, Girschick H (2009) Neurosurgical aspects of childhood hypophosphatasia. Childs Nerv Syst 25(2):217–223PubMedCrossRefGoogle Scholar
  25. Costain G, Moore AM, Munroe L, Williams A, Shaul RZ, Rockman-Greenberg C, Offringa M, Kannu P (2018) Enzyme replacement therapy in perinatal hypophosphatasia: case report of a negative outcome and lessons for clinical practice. Mol Genet Metab Rep 14:22–26PubMedCrossRefGoogle Scholar
  26. Cruz T, Gleizes M, Balayssac S, Mornet E, Marsal G, Millan JL, Malet-Martino M, Nowak LG, Gilard V, Fonta C (2017) Identification of altered brain metabolites associated with tnap activity in a mouse model of hypophosphatasia using untargeted nmr-based metabolomics analysis. J Neurochem 140(6):919–940PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cundy T, Michigami T, Tachikawa K, Dray M, Collins JF, Paschalis EP, Gamsjaeger S, Roschger A, Fratzl-Zelman N, Roschger P et al (2015) Reversible deterioration in hypophosphatasia caused by renal failure with bisphosphonate treatment. J Bone Miner Res 30(9):1726–1737PubMedCrossRefGoogle Scholar
  28. Davit-Beal T, Gabay J, Antoniolli P, Masle-Farquhar J, Wolikow M (2014) Dental complications of rickets in early childhood: case report on 2 young girls. Pediatrics 133(4):e1077–e1081PubMedCrossRefGoogle Scholar
  29. de la Croix Ndong J, Makowski AJ, Uppuganti S, Vignaux G, Ono K, Perrien DS, Joubert S, Baglio SR, Granchi D, Stevenson DA et al (2014) Asfotase-alpha improves bone growth, mineralization and strength in mouse models of neurofibromatosis type-1. Nat Med 20(8):904–910PubMedPubMedCentralCrossRefGoogle Scholar
  30. Deeb AA, Bruce SN, Morris AA, Cheetham TD (2000) Infantile hypophosphatasia: disappointing results of treatment. Acta Paediatr (Oslo, Norway: 1992) 89(6):730–733CrossRefGoogle Scholar
  31. Doetschman T, Gregg RG, Maeda N, Hooper ML, Melton DW, Thompson S, Smithies O (1987) Targetted correction of a mutant hprt gene in mouse embryonic stem cells. Nature 330(6148):576–578PubMedCrossRefPubMedCentralGoogle Scholar
  32. Doshi KB, Hamrahian AH, Licata AA (2009) Teriparatide treatment in adult hypophosphatasia in a patient exposed to bisphosphonate: a case report. Clin Cases Miner Bone Metab 6(3):266–269PubMedPubMedCentralGoogle Scholar
  33. Duman O, Ozdem S, Turkkahraman D, Olgac ND, Gungor F, Haspolat S (2008) Bone metabolism markers and bone mineral density in children with neurofibromatosis type-1. Brain Dev 30(9):584–588PubMedCrossRefPubMedCentralGoogle Scholar
  34. Durussel J, Liu J, Campbell C, Nam HK, Hatch NE (2016) Bone mineralization-dependent craniosynostosis and craniofacial shape abnormalities in the mouse model of infantile hypophosphatasia. Dev Dyn 245(2):175–182PubMedCrossRefPubMedCentralGoogle Scholar
  35. Elefteriou F, Kolanczyk M, Schindeler A, Viskochil DH, Hock JM, Schorry EK, Crawford AH, Friedman JM, Little D, Peltonen J et al (2009) Skeletal abnormalities in neurofibromatosis type 1: approaches to therapeutic options. Am J Med Genet A 149A(10):2327–2338PubMedCrossRefPubMedCentralGoogle Scholar
  36. El-Gharbawy AH, Peeden JN Jr, Lachman RS, Graham JM Jr, Moore SR, Rimoin DL (2010) Severe cleidocranial dysplasia and hypophosphatasia in a child with microdeletion of the c-terminal region of runx2. Am J Med Genet A 152a(1):169–174PubMedPubMedCentralCrossRefGoogle Scholar
  37. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156PubMedCrossRefGoogle Scholar
  38. Fedde KN, Blair L, Silverstein J, Coburn SP, Ryan LM, Weinstein RS, Waymire K, Narisawa S, Millan JL, MacGregor GR et al (1999) Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J Bone Miner Res 14(12):2015–2026PubMedPubMedCentralCrossRefGoogle Scholar
  39. Feeney C, Stanford N, Lee S, Barry S (2018) Hypophosphatasia and the importance of the general dental practitioner – a case series and discussion of upcoming treatments. Br Dent J 224(12):937–943PubMedCrossRefPubMedCentralGoogle Scholar
  40. Fisher LW, Fedarko NS (2003) Six genes expressed in bones and teeth encode the current members of the sibling family of proteins. Connect Tissue Res 44(Suppl 1):33–40PubMedCrossRefPubMedCentralGoogle Scholar
  41. Fleisch H, Bisaz S (1962a) Isolation from urine of pyrophosphate, a calcification inhibitor. Am J Physiol 203:671–675PubMedCrossRefPubMedCentralGoogle Scholar
  42. Fleisch H, Bisaz S (1962b) Mechanism of calcification: inhibitory role of pyrophosphate. Nature 195:911PubMedCrossRefPubMedCentralGoogle Scholar
  43. Fleisch H, Schibler D, Maerki J, Frossard I (1965) Inhibition of aortic calcification by means of pyrophosphate and polyphosphates. Nature 207(5003):1300–1301PubMedCrossRefPubMedCentralGoogle Scholar
  44. Fleisch H, Russell RG, Straumann F (1966) Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis. Nature 212(5065):901–903PubMedCrossRefPubMedCentralGoogle Scholar
  45. Foster BL, Hujoel PP (2018) Vitamin d in dentoalveolar and oral health. In: Feldman D, Pike JW, Bouillon R (eds) Vitamin d, 4th edn. Academic, London, pp 497–520CrossRefGoogle Scholar
  46. Foster BL, Nagatomo KJ, Nociti FH Jr, Fong H, Dunn D, Tran AB, Wang W, Narisawa S, Millan JL, Somerman MJ (2012) Central role of pyrophosphate in acellular cementum formation. PLoS One 7(6):e38393PubMedPubMedCentralCrossRefGoogle Scholar
  47. Foster BL, Nagatomo KJ, Tso HW, Tran AB, Nociti FH Jr, Narisawa S, Yadav MC, McKee MD, Millan JI, Somerman MJ (2013) Tooth root dentin mineralization defects in a mouse model of hypophosphatasia. J Bone Miner Res 28(2):271–282PubMedPubMedCentralCrossRefGoogle Scholar
  48. Foster BL, Sheen CR, Hatch NE, Liu J, Cory E, Narisawa S, Kiffer-Moreira T, Sah RL, Whyte MP, Somerman MJ et al (2015) Periodontal defects in the a116t knock-in murine model of odontohypophosphatasia. J Dent Res 94(5):706–714PubMedPubMedCentralCrossRefGoogle Scholar
  49. Foster BL, Kuss P, Yadav MC, Kolli TN, Narisawa S, Lukashova L, Cory E, Sah RL, Somerman MJ, Millan JL (2017) Conditional alpl ablation phenocopies dental defects of hypophosphatasia. J Dent Res 96(1):81–91PubMedCrossRefPubMedCentralGoogle Scholar
  50. Freitas TQ, Franco AS, Pereira RMR (2018) Improvement of bone microarchitecture parameters after 12 months of treatment with asfotase alfa in adult patient with hypophosphatasia: case report. Medicine 97(48):e13210PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gasque KC, Foster BL, Kuss P, Yadav MC, Liu J, Kiffer-Moreira T, van Elsas A, Hatch N, Somerman MJ, Millan JL (2015) Improvement of the skeletal and dental hypophosphatasia phenotype in alpl−/− mice by administration of soluble (non-targeted) chimeric alkaline phosphatase. Bone 72:137–147PubMedCrossRefPubMedCentralGoogle Scholar
  52. Genest F, Seefried L (2018) Subtrochanteric and diaphyseal femoral fractures in hypophosphatasia—not atypical at all. Osteoporos Int 1–11Google Scholar
  53. Girschick H, Schneider P, Haubitz I, Hiort O, Collmann H, Beer M, Shin Y, Seyberth H (2006) Effective nsaid treatment indicates that hyperprostaglandinism is affecting the clinical severity of childhood hypophosphatasia. Orphanet J Rare Dis 1(1):24PubMedPubMedCentralCrossRefGoogle Scholar
  54. Girschick HJ, Mornet E, Beer M, Warmuth-Metz M, Schneider P (2007) Chronic multifocal non-bacterial osteomyelitis in hypophosphatasia mimicking malignancy. BMC Pediatr 7(1):3PubMedPubMedCentralCrossRefGoogle Scholar
  55. Goodwin HW, Robison R (1924) The possible significance of hexosephosphoric esters in ossification. Part iv. The phosphoric esters of the blood: preliminary communication. Biochem J 18(5):1161–1162PubMedPubMedCentralCrossRefGoogle Scholar
  56. Greenberg CR, Taylor CL, Haworth JC, Seargeant LE, Philipps S, Triggs-Raine B, Chodirker BN (1993) A homoallelic gly317 – >asp mutation in alpl causes the perinatal (lethal) form of hypophosphatasia in Canadian mennonites. Genomics 17(1):215–217PubMedCrossRefPubMedCentralGoogle Scholar
  57. Gurley K, Chen H, Guenther C, Nguyen E, Rountree R, Schoor M, Kingsley D (2006) Mineral formation in joints caused by complete or joint-specific loss of ank function. J Bone Miner Res 21(8):1238–1247PubMedCrossRefPubMedCentralGoogle Scholar
  58. Gutman AB, Gutman EB (1938) An “acid” phosphatase occurring in the serum of patients with metastasizing carcinoma of the prostate gland. J Clin Invest 17(4):473–478PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hacihamdioglu B, Ozgurhan G, Pereira C, Tepeli E, Acar G, Comert S (2018) Perinatal form hypophosphatasia caused by a novel large duplication of alpl gene and one year follow-up under enzyme replacement therapy; a case report. J Clin Res Pediatr Endocrinol 10:175–178CrossRefGoogle Scholar
  60. Hall B, Limaye A, Kulkarni AB (2009) Overview: generation of gene knockout mice. Curr Protoct Cell Biol. Chapter 19:Unit 19 12 19 12 11–17Google Scholar
  61. Harmey D, Hessle L, Narisawa S, Johnson KA, Terkeltaub R, Millan JL (2004) Concerted regulation of inorganic pyrophosphate and osteopontin by akp2, enpp1, and ank: an integrated model of the pathogenesis of mineralization disorders. Am J Pathol 164(4):1199–1209PubMedPubMedCentralCrossRefGoogle Scholar
  62. Harmey D, Johnson KA, Zelken J, Camacho NP, Hoylaerts MF, Noda M, Terkeltaub R, Millan JL (2006) Elevated skeletal osteopontin levels contribute to the hypophosphatasia phenotype in akp2(−/−) mice. J Bone Miner Res 21(9):1377–1386PubMedCrossRefPubMedCentralGoogle Scholar
  63. Hessle L, Johnson KA, Anderson HC, Narisawa S, Sali A, Goding JW, Terkeltaub R, Millan JL (2002) Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci U S A 99(14):9445–9449PubMedPubMedCentralCrossRefGoogle Scholar
  64. Ho A, Johnson M, Kingsley D (2000) Role of the mouse ank gene in control of tissue calcification and arthritis. Science 289(5477):265–270PubMedCrossRefPubMedCentralGoogle Scholar
  65. Hu JC, Plaetke R, Mornet E, Zhang C, Sun X, Thomas HF, Simmer JP (2000) Characterization of a family with dominant hypophosphatasia. Eur J Oral Sci 108(3):189–194PubMedCrossRefPubMedCentralGoogle Scholar
  66. Iijima O, Miyake K, Watanabe A, Miyake N, Igarashi T, Kanokoda C, Nakamura-Takahashi A, Kinoshita H, Noguchi T, Abe S et al (2015) Prevention of lethal murine hypophosphatasia by neonatal ex vivo gene therapy using lentivirally transduced bone marrow cells. Hum Gene Ther 26(12):801–812PubMedPubMedCentralCrossRefGoogle Scholar
  67. Ikeue R, Nakamura-Takahashi A, Nitahara-Kasahara Y, Watanabe A, Muramatsu T, Sato T, Okada T (2018) Bone-targeted alkaline phosphatase treatment of mandibular bone and teeth in lethal hypophosphatasia via an scaav8 vector. Mol Ther Methods Clin Dev 10:361–370PubMedPubMedCentralCrossRefGoogle Scholar
  68. Johnson KA, Hessle L, Vaingankar S, Wennberg C, Mauro S, Narisawa S, Goding JW, Sano K, Millan JL, Terkeltaub R (2000) Osteoblast tissue-nonspecific alkaline phosphatase antagonizes and regulates pc-1. Am J Physiol Regul Integr Comp Physiol 279(4):R1365–R1377PubMedCrossRefPubMedCentralGoogle Scholar
  69. Jung A, Russel RG, Bisaz S, Morgan DB, Fleisch H (1970) Fate of intravenously injected pyrophosphate-32p in dogs. Am J Physiol 218(6):1757–1764PubMedCrossRefPubMedCentralGoogle Scholar
  70. Kay HD, Robison R (1924) The possible significance of hexosephosphoric esters in ossification. Part iii: the action of the bone enzyme on the organic phosphorus compounds in blood. Biochem J 18(3–4):755–764PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kiffer-Moreira T, Sheen CR, Gasque KC, Bolean M, Ciancaglini P, van Elsas A, Hoylaerts MF, Millan JL (2014) Catalytic signature of a heat-stable, chimeric human alkaline phosphatase with therapeutic potential. PLoS One 9(2):e89374PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kishnani PS, Madson KL, Whyte MP, Gayron M, Fujita K, Rockman-Greenberg C (2016) Biochemical and physical function outcomes in adolescents and adults with hypophosphatasia treated with asfotase alfa for up to 4 years: interim results from a phase ii study. Metabolic and genetic bone disorders. Endocrine Society, pp OR26-23-OR26-23Google Scholar
  73. Kishnani PS, Rockman-Greenberg C, Denker AE, Moseley S, Whyte MP (2017a) Biochemical and physical function outcomes after 5 years of treatment with asfotase alfa in adolescents and adults with hypophosphatasia: phase 2 study results. Paper presented at: International conference on Children’s Bone Health (ICCBH). WurzbergGoogle Scholar
  74. Kishnani PS, Rush ET, Arundel P, Bishop N, Dahir K, Fraser W, Harmatz P, Linglart A, Munns CF, Nunes ME (2017b) Monitoring guidance for patients with hypophosphatasia treated with asfotase alfa. Mol Genet Metab 122(1):4–17PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kitaoka T, Tajima T, Nagasaki K, Kikuchi T, Yamamoto K, Michigami T, Okada S, Fujiwara I, Kokaji M, Mochizuki H et al (2017) Safety and efficacy of treatment with asfotase alfa in patients with hypophosphatasia: results from a japanese clinical trial. Clin Endocrinol 87(1):10–19CrossRefGoogle Scholar
  76. Klidaras P, Severt J, Aggers D, Payne J, Miller PD, Ing SW (2018) Fracture healing in two adult patients with hypophosphatasia after asfotase alfa therapy. JBMR Plus 2(5):304–307PubMedPubMedCentralCrossRefGoogle Scholar
  77. Lawrence JE, Saeed D, Bartlett J, Carrothers AD (2017) Adult-onset hypophosphatasia diagnosed following bilateral atypical femoral fractures in a 55-year-old woman. Clin Cases Miner Bone Metab 14(3):347–353PubMedPubMedCentralCrossRefGoogle Scholar
  78. Libby Kosnik-Infinger M, Gendron C, Gordon CB (2015) Enzyme replacement therapy for congenital hypophosphatasia allows for surgical treatment of related complex craniosynostosis: a case series. Neurosurg Focus 38(5):E10PubMedCrossRefPubMedCentralGoogle Scholar
  79. Liu J, Nam HK, Campbell C, Gasque KC, Millan JL, Hatch NE (2014) Tissue-nonspecific alkaline phosphatase deficiency causes abnormal craniofacial bone development in the alpl(−/−) mouse model of infantile hypophosphatasia. Bone 67:81–94PubMedPubMedCentralCrossRefGoogle Scholar
  80. Liu J, Campbell C, Nam HK, Caron A, Yadav MC, Millan JL, Hatch NE (2015) Enzyme replacement for craniofacial skeletal defects and craniosynostosis in murine hypophosphatasia. Bone 78:203–211PubMedPubMedCentralCrossRefGoogle Scholar
  81. Lodish MB, Dagalakis U, Sinaii N, Bornstein E, Kim A, Lokie KB, Baldwin AM, Reynolds JC, Dombi E, Stratakis CA et al (2012) Bone mineral density in children and young adults with neurofibromatosis type 1. Endocr Relat Cancer 19(6):817–825PubMedPubMedCentralCrossRefGoogle Scholar
  82. Lopez-Delgado L, Riancho-Zarrabeitia L, Garcia-Unzueta MT, Tenorio JA, Garcia-Hoyos M, Lapunzina P, Valero C, Riancho JA (2018) Abnormal bone turnover in individuals with low serum alkaline phosphatase. Osteoporos Int: J Established Result Cooperation Between Eur Found Osteoporos Natl Osteoporos Found USA 29(9):2147–2150CrossRefGoogle Scholar
  83. Mak TW (2007) Gene targeting in embryonic stem cells scores a knockout in Stockholm. Cell 131(6):1027–1031PubMedCrossRefPubMedCentralGoogle Scholar
  84. Martland M, Robison R (1924) The possible significance of hexosephosphoric esters in ossification: part v. the enzyme in the early stages of bone development. Biochem J 18(6):1354–1357PubMedPubMedCentralCrossRefGoogle Scholar
  85. Martland M, Robison R (1926) Possible significance of hexosephosphoric esters in ossification: part vi. Phosphoric esters in blood-plasma. Biochem J 20(4):847–855PubMedPubMedCentralCrossRefGoogle Scholar
  86. Martland M, Robison R (1927) The possible significance of hexosephosphoric esters in ossification: part vii. The bone phosphatase. Biochem J 21(3):665–674PubMedPubMedCentralCrossRefGoogle Scholar
  87. Martland M, Robison R (1929) The preparation and use of the bone phosphatase. Biochem J 23(2):237–242PubMedPubMedCentralCrossRefGoogle Scholar
  88. Matsumoto T, Miyake K, Yamamoto S, Orimo H, Miyake N, Odagaki Y, Adachi K, Iijima O, Narisawa S, Millan JL et al (2011) Rescue of severe infantile hypophosphatasia mice by aav-mediated sustained expression of soluble alkaline phosphatase. Hum Gene Ther 22(11):1355–1364PubMedPubMedCentralCrossRefGoogle Scholar
  89. McKee MD, Nakano Y, Masica DL, Gray JJ, Lemire I, Heft R, Whyte MP, Crine P, Millan JL (2011) Enzyme replacement therapy prevents dental defects in a model of hypophosphatasia. J Dent Res 90(4):470–476PubMedPubMedCentralCrossRefGoogle Scholar
  90. Meyer JL (1984) Can biological calcification occur in the presence of pyrophosphate? Arch Biochem Biophys 231(1):1–8PubMedCrossRefPubMedCentralGoogle Scholar
  91. Meyer JL, Fleisch H (1984) Calcification inhibitors in rat and human serum and plasma. Biochim Biophys Acta 799(2):115–121PubMedCrossRefGoogle Scholar
  92. Millán JL (2006) Mammalian alkaline phosphatases: from biology to applications in medicine and biotechnology. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  93. Millan JL (2013) The role of phosphatases in the initiation of skeletal mineralization. Calcif Tissue Int 93(4):299–306PubMedCrossRefGoogle Scholar
  94. Millan JL, Whyte MP (2016) Alkaline phosphatase and hypophosphatasia. Calcif Tissue Int 98(4):398–416PubMedCrossRefGoogle Scholar
  95. Millan JL, Narisawa S, Lemire I, Loisel TP, Boileau G, Leonard P, Gramatikova S, Terkeltaub R, Camacho NP, McKee MD et al (2008) Enzyme replacement therapy for murine hypophosphatasia. J Bone Miner Res 23(6):777–787PubMedCrossRefGoogle Scholar
  96. Mori M, DeArmey SL, Weber TJ, Kishnani PS (2016) Case series: odontohypophosphatasia or missed diagnosis of childhood/adult-onset hypophosphatasia?–call for a long-term follow-up of premature loss of primary teeth. Bone Rep 5:228–232PubMedPubMedCentralCrossRefGoogle Scholar
  97. Mornet E (2017) Genetics of hypophosphatasia. Arch Pediatr 24(5S2):5S51–55S56PubMedCrossRefGoogle Scholar
  98. Mornet E, Yvard A, Taillandier A, Fauvert D, Simon-Bouy B (2011) A molecular-based estimation of the prevalence of hypophosphatasia in the european population. Ann Hum Genet 75(3):439–445PubMedCrossRefGoogle Scholar
  99. Murshed M, Harmey D, Millan JL, McKee MD, Karsenty G (2005) Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ecm mineralization to bone. Genes Dev 19(9):1093–1104PubMedPubMedCentralCrossRefGoogle Scholar
  100. Nakamura-Takahashi A, Miyake K, Watanabe A, Hirai Y, Iijima O, Miyake N, Adachi K, Nitahara-Kasahara Y, Kinoshita H, Noguchi T et al (2016) Treatment of hypophosphatasia by muscle-directed expression of bone-targeted alkaline phosphatase via self-complementary aav8 vector. Mol Ther Methods Clin Dev 3:15059PubMedPubMedCentralCrossRefGoogle Scholar
  101. Nam HK, Sharma M, Liu J, Hatch NE (2017) Tissue nonspecific alkaline phosphatase (tnap) regulates cranial base growth and synchondrosis maturation. Front Physiol 8:161PubMedPubMedCentralCrossRefGoogle Scholar
  102. Narisawa S, Frohlander N, Millan JL (1997) Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev Dyn 208(3):432–446PubMedCrossRefGoogle Scholar
  103. Narisawa S, Wennberg C, Millan JL (2001) Abnormal vitamin b6 metabolism in alkaline phosphatase knock-out mice causes multiple abnormalities, but not the impaired bone mineralization. J Pathol 193(1):125–133PubMedCrossRefGoogle Scholar
  104. Narisawa S, Huang L, Iwasaki A, Hasegawa H, Alpers D, Millán J (2003) Accelerated fat absorption in intestinal alkaline phosphatase knockout mice. Mol Cell Biol 23(21):7525–7530PubMedPubMedCentralCrossRefGoogle Scholar
  105. Nishioka T, Tomatsu S, Gutierrez MA, Miyamoto K, Trandafirescu GG, Lopez PL, Grubb JH, Kanai R, Kobayashi H, Yamaguchi S et al (2006) Enhancement of drug delivery to bone: characterization of human tissue-nonspecific alkaline phosphatase tagged with an acidic oligopeptide. Mol Genet Metab 88(3):244–255PubMedPubMedCentralCrossRefGoogle Scholar
  106. Nociti FH Jr, Berry JE, Foster BL, Gurley KA, Kingsley DM, Takata T, Miyauchi M, Somerman MJ (2002) Cementum: a phosphate-sensitive tissue. J Dent Res 81(12):817–821PubMedCrossRefGoogle Scholar
  107. Offiah AC, Vockley J, Munns CF, Murotsuki J. 2018. Differential diagnosis of perinatal hypophosphatasia: radiologic perspectives. Pediatr RadiolGoogle Scholar
  108. Oikawa H, Tomatsu S, Haupt B, Montano AM, Shimada T, Sly WS (2014) Enzyme replacement therapy on hypophosphatasia mouse model. J Inherit Metab Dis 37(2):309–317PubMedCrossRefPubMedCentralGoogle Scholar
  109. Okawa R, Iijima O, Kishino M, Okawa H, Toyosawa S, Sugano-Tajima H, Shimada T, Okada T, Ozono K, Ooshima T et al (2017a) Gene therapy improves dental manifestations in hypophosphatasia model mice. J Periodontal Res 52(3):471–478PubMedCrossRefPubMedCentralGoogle Scholar
  110. Okawa R, Kokomoto K, Yamamura-Miyazaki N, Michigami T, Nakano K (2017b) Oral findings in patient with lethal hypophosphatasia treated with enzyme replacement therapy. Pediatr Dent J 27(3):153–156CrossRefGoogle Scholar
  111. Okazaki Y, Kitajima H, Mochizuki N, Kitaoka T, Michigami T, Ozono K (2016) Lethal hypophosphatasia successfully treated with enzyme replacement from day 1 after birth. Eur J Pediatr 175(3):433–437PubMedCrossRefPubMedCentralGoogle Scholar
  112. Oyachi M, Harada D, Sakamoto N, Ueyama K, Kondo K, Kishimoto K, Izui M, Nagamatsu Y, Kashiwagi H, Yamamuro M et al (2018) A case of perinatal hypophosphatasia with a novel mutation in the alpl gene: clinical course and review of the literature. Clin Pediatr Endocrinol 27(3):179–186PubMedPubMedCentralCrossRefGoogle Scholar
  113. Peters E, van Elsas A, Heemskerk S, Jonk L, van der Hoeven J, Arend J, Masereeuw R, Pickkers P (2013) Alkaline phosphatase as a treatment of sepsis-associated acute kidney injury. J Pharmacol Exp Ther 344(1):2–7PubMedCrossRefPubMedCentralGoogle Scholar
  114. Peters E, Heemskerk S, Masereeuw R, Pickkers P (2014a) Alkaline phosphatase: a possible treatment for sepsis-associated acute kidney injury in critically ill patients. Am J Kidney Dis 63(6):1038–1048PubMedCrossRefPubMedCentralGoogle Scholar
  115. Peters E, Masereeuw R, Pickkers P (2014b) The potential of alkaline phosphatase as a treatment for sepsis-associated acute kidney injury. Nephron Clin Pract 127(1–4):144–148PubMedCrossRefPubMedCentralGoogle Scholar
  116. Peters E, Ergin B, Kandil A, Gurel-Gurevin E, van Elsas A, Masereeuw R, Pickkers P, Ince C (2016a) Effects of a human recombinant alkaline phosphatase on renal hemodynamics, oxygenation and inflammation in two models of acute kidney injury. Toxicol Appl Pharmacol 313:88–96PubMedCrossRefPubMedCentralGoogle Scholar
  117. Peters E, Mehta RL, Murray PT, Hummel J, Joannidis M, Kellum JA, Arend J, Pickkers P (2016b) Study protocol for a multicentre randomised controlled trial: safety, tolerability, efficacy and quality of life of a human recombinant alkaline phosphatase in patients with sepsis-associated acute kidney injury (stop-aki). BMJ Open 6(9):e012371PubMedPubMedCentralCrossRefGoogle Scholar
  118. Phillips D, Case LE, Griffin D, Hamilton K, Lara SL, Leiro B, Monfreda J, Westlake E, Kishnani PS (2016) Physical therapy management of infants and children with hypophosphatasia. Mol Genet Metab 119(1):14–19PubMedCrossRefPubMedCentralGoogle Scholar
  119. Phillips D, Griffin D, Przybylski T, Morrison E, Reeves AL, Vallee M, Fujita KP, Madson KL (2018) Development and validation of a modified performance-oriented mobility assessment tool for assessing mobility in children with hypophosphatasia. J Pediatr Rehabil Med 11(3):187–192PubMedPubMedCentralCrossRefGoogle Scholar
  120. Pickkers P, Heemskerk S, Schouten J, Laterre PF, Vincent JL, Beishuizen A, Jorens PG, Spapen H, Bulitta M, Peters WH et al (2012) Alkaline phosphatase for treatment of sepsis-induced acute kidney injury: a prospective randomized double-blind placebo-controlled trial. Crit Care 16(1):R14PubMedPubMedCentralCrossRefGoogle Scholar
  121. Poryo M, Meyer S, Eymann R, Yilmaz U, Nemat S, Rohrer T (2016) Clinical images: a cloudy skull-hypophosphatasia as reason for copper-beaten skull. Neuropediatrics 47(6):410PubMedCrossRefPubMedCentralGoogle Scholar
  122. Poyrazoglu HG, Bas VN, Arslan A, Bastug F, Canpolat M, Per H, Gumus H, Kumandas S (2017) Bone mineral density and bone metabolic markers’ status in children with neurofibromatosis type 1. J Pediatr Endocrinol Metab: JPEM 30(2):175–180PubMedCrossRefPubMedCentralGoogle Scholar
  123. Reibel A, Maniere MC, Clauss F, Droz D, Alembik Y, Mornet E, Bloch-Zupan A (2009) Orodental phenotype and genotype findings in all subtypes of hypophosphatasia. Orphanet J Rare Dis 4:6PubMedPubMedCentralCrossRefGoogle Scholar
  124. Remde H, Cooper MS, Quinkler M (2017) Successful asfotase alfa treatment in an adult dialysis patient with childhood-onset hypophosphatasia. J Endocr Soc 1(9):1188–1193PubMedPubMedCentralCrossRefGoogle Scholar
  125. Righetti M, Wach J, Desmarchelier R, Coury F (2018) Teriparatide treatment in an adult patient with hypophosphatasia exposed to bisphosphonate and revealed by bilateral atypical fractures. Joint Bone Spine 85(3):365–367PubMedCrossRefPubMedCentralGoogle Scholar
  126. Robison R (1923) The possible significance of hexosephosphoric esters in ossification. Biochem J 17(2):286–293PubMedPubMedCentralCrossRefGoogle Scholar
  127. Robison R, Soames KM (1924) The possible significance of hexosephosphoric esters in ossification: part ii. The phosphoric esterase of ossifying cartilage. Biochem J 18(3–4):740–754PubMedPubMedCentralCrossRefGoogle Scholar
  128. Robison R, Soames KM (1925) A chemical study of defective ossification in rachitic animals. Biochem J 19(1):153–161PubMedPubMedCentralCrossRefGoogle Scholar
  129. Robison R, Macleod M, Rosenheim AH (1930) The possible significance of hexosephosphoric esters in ossification: calcification in vitro. Biochem J 24(6):1927–1941PubMedPubMedCentralCrossRefGoogle Scholar
  130. Rodari G, Scuvera G, Ulivieri FM, Profka E, Menni F, Saletti V, Esposito S, Bergamaschi S, Ferrante E, Eller-Vainicher C et al (2018) Progressive bone impairment with age and pubertal development in neurofibromatosis type i. Arch Osteoporos 13(1):93PubMedCrossRefPubMedCentralGoogle Scholar
  131. Rodrigues TL, Nagatomo KJ, Foster BL, Nociti FH, Somerman MJ (2011) Modulation of phosphate/pyrophosphate metabolism to regenerate the periodontium: a novel in vivo approach. J Periodontol 82(12):1757–1766PubMedCrossRefPubMedCentralGoogle Scholar
  132. Rodrigues TL, Georgetti AP, Martins L, Pereira Neto JS, Foster BL, Nociti FH Jr (2012, June) Clinical correlate: Cementum and periodontal defects resulting from odontohypophosphatasia predispose for premature tooth loss. In: Somerman MJ, LK MC (eds) Mineralized tissues in Oral and craniofacial science: biological principles and clinical correlatesGoogle Scholar
  133. Rougier H, Desrumaux A, Bouchon N, Wroblewski I, Pin I, Nugues F, Mornet E, Baujat G (2018) Enzyme-replacement therapy in perinatal hypophosphatasia: case report and review of the literature. Arch Pediatr 25(7):442–447PubMedCrossRefGoogle Scholar
  134. Royce PM, Blumberg A, Zurbrugg RP, Zimmermann A, Colombo JP, Steinmann B (1988) Lethal osteogenesis imperfecta: abnormal collagen metabolism and biochemical characteristics of hypophosphatasia. Eur J Pediatr 147(6):626–631PubMedCrossRefPubMedCentralGoogle Scholar
  135. Rush ET (2018) Childhood hypophosphatasia: to treat or not to treat. Orphanet J Rare Dis 13(1):116PubMedPubMedCentralCrossRefGoogle Scholar
  136. Rutsch F, Vaingankar S, Johnson K, Goldfine I, Maddux B, Schauerte P, Kalhoff H, Sano K, Boisvert W, Superti-Furga A et al (2001) Pc-1 nucleoside triphosphate pyrophosphohydrolase deficiency in idiopathic infantile arterial calcification. Am J Pathol 158(2):543–554PubMedPubMedCentralCrossRefGoogle Scholar
  137. Rutsch F, Ruf N, Vaingankar S, Toliat MR, Suk A, Hohne W, Schauer G, Lehmann M, Roscioli T, Schnabel D et al (2003) Mutations in enpp1 are associated with ‘idiopathic’ infantile arterial calcification. Nat Genet 34(4):379–381PubMedCrossRefPubMedCentralGoogle Scholar
  138. Saraff V, Narayanan VK, Lawson AJ, Shaw NJ, Preece MA, Hogler W (2016) A diagnostic algorithm for children with low alkaline phosphatase activities: lessons learned from laboratory screening for hypophosphatasia. J Pediatr 172:181–186.e181PubMedCrossRefPubMedCentralGoogle Scholar
  139. Schmidt T, Mussawy H, Rolvien T, Hawellek T, Hubert J, Rüther W, Amling M, Barvencik F (2017) Clinical, radiographic and biochemical characteristics of adult hypophosphatasia. Osteoporos Int 28(9):2653–2662PubMedCrossRefPubMedCentralGoogle Scholar
  140. Schnabel C, Jett K, Friedman JM, Frieling I, Kruse HP, Mautner V (2013) Effect of vitamin d3 treatment on bone density in neurofibromatosis 1 patients: a retrospective clinical study. Joint Bone Spine 80(3):315–319PubMedCrossRefPubMedCentralGoogle Scholar
  141. Sebastian-Serrano A, Engel T, de Diego-Garcia L, Olivos-Ore LA, Arribas-Blazquez M, Martinez-Frailes C, Perez-Diaz C, Millan JL, Artalejo AR, Miras-Portugal MT et al (2016) Neurodevelopmental alterations and seizures developed by mouse model of infantile hypophosphatasia are associated with purinergic signalling deregulation. Hum Mol Genet 25(19):4143–4156PubMedPubMedCentralCrossRefGoogle Scholar
  142. Seshia S, Derbyshire G, Haworth J, Hoogstraten J (1990) Myopathy with hypophosphatasia. Arch Dis Child 65(1):130–131PubMedPubMedCentralCrossRefGoogle Scholar
  143. Shao J, Engle M, Xie Q, Schmidt R, Narisawa S, Millan J, Alpers D (2000) Effect of tissue non-specific alkaline phosphatase in maintenance of structure of murine colon and stomach. Microsc Res Tech 51(2):121–128PubMedCrossRefPubMedCentralGoogle Scholar
  144. Shapiro JR, Lewiecki EM (2017) Hypophosphatasia in adults: clinical assessment and treatment considerations. J Bone Miner Res 32:1977–1980PubMedCrossRefPubMedCentralGoogle Scholar
  145. Shimada Y, Yoshiya I, Tanaka K, Yamazaki T, Kumon K (1979) Crying vital capacity and maximal inspiratory pressure as clinical indicators of readiness for weaning of infants less than a year of age. Anesthesiology 51(5):456–459PubMedCrossRefPubMedCentralGoogle Scholar
  146. Siller AF, Whyte MP (2018) Alkaline phosphatase: discovery and naming of our favorite enzyme. J Bone Miner Res 33(2):362–364PubMedCrossRefPubMedCentralGoogle Scholar
  147. Skoultchi AI, Nandi A, Roginski RS, Gregg RG, Smithies O (1987) Expression of genes inserted at the human beta-globin locus by homologous recombination. Prog Clin Biol Res 251:581–594PubMedPubMedCentralGoogle Scholar
  148. Sofronescu AG, Ross M, Rush E, Goldner W (2018) Spurious testosterone laboratory results in a patient taking synthetic alkaline phosphatase (asfotase alfa). Clin Biochem 58:118–121PubMedCrossRefPubMedCentralGoogle Scholar
  149. Staines KA, MacRae VE, Farquharson C (2012) The importance of the sibling family of proteins on skeletal mineralisation and bone remodelling. J Endocrinol 214(3):241–255PubMedCrossRefPubMedCentralGoogle Scholar
  150. Street SE, Kramer NJ, Walsh PL, Taylor-Blake B, Yadav MC, King IF, Vihko P, Wightman RM, Millan JL, Zylka MJ (2013) Tissue-nonspecific alkaline phosphatase acts redundantly with pap and nt5e to generate adenosine in the dorsal spinal cord. J Neurosci 33(27):11314–11322PubMedPubMedCentralCrossRefGoogle Scholar
  151. Sugano H, Matsumoto T, Miyake K, Watanabe A, Iijima O, Migita M, Narisawa S, Millan JL, Fukunaga Y, Shimada T (2012) Successful gene therapy in utero for lethal murine hypophosphatasia. Hum Gene Ther 23(4):399–406PubMedCrossRefPubMedCentralGoogle Scholar
  152. Sutton RA, Mumm S, Coburn SP, Ericson KL, Whyte MP (2012) “Atypical femoral fractures” during bisphosphonate exposure in adult hypophosphatasia. J Bone Miner Res 27(5):987–994CrossRefPubMedPubMedCentralGoogle Scholar
  153. Terkeltaub R (2001) Inorganic pyrophosphate generation and disposition in pathophysiology. Am J Phys Cell Physiol 281(1):C1–C11CrossRefGoogle Scholar
  154. Thakker RV, Whyte MP, Eisman J, Igarashi T (2017) Genetics of bone biology and skeletal disease. Academic, San DiegoGoogle Scholar
  155. Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51(3):503–512PubMedCrossRefPubMedCentralGoogle Scholar
  156. Tomazos IC, Moseley S, L’Italien G, Da Silva HG, Phillips D (2017) Improvements in the 6-minute walk test and correlation with quality-of-life measures in children and adults with hypophosphatasia treated with asfotase alfa. Paper presented at: ENDO 2017. OrlandoGoogle Scholar
  157. Ucakturk SA, Elmaogullari S, Unal S, Gonulal D, Mengen E (2018) Enzyme replacement therapy in hypophosphatasia. J Coll Physicians Surg Pak 28(9):S198–S200PubMedCrossRefPubMedCentralGoogle Scholar
  158. Unger S, Mornet E, Mundlos S, Blaser S, Cole DE (2002) Severe cleidocranial dysplasia can mimic hypophosphatasia. Eur J Pediatr 161(11):623–626PubMedCrossRefPubMedCentralGoogle Scholar
  159. Vallet M, Ralston SH (2016) Biology and treatment of paget’s disease of bone. J Cell Biochem 117(2):289–299PubMedCrossRefPubMedCentralGoogle Scholar
  160. van den Bos T, Handoko G, Niehof A, Ryan LM, Coburn SP, Whyte MP, Beertsen W (2005) Cementum and dentin in hypophosphatasia. J Dent Res 84(11):1021–1025CrossRefPubMedPubMedCentralGoogle Scholar
  161. Vidmar AP, Ng C, Ganster A, Pitukcheewanont P (2017) Asfotase alfa treatment of an african-american infant with perinatal hypophosphatasia and homozygous hemoglobin sc disease. IBMS BoneKey 14Google Scholar
  162. Wang W, Nyman JS, Ono K, Stevenson DA, Yang X, Elefteriou F (2011) Mice lacking nf1 in osteochondroprogenitor cells display skeletal dysplasia similar to patients with neurofibromatosis type i. Hum Mol Genet 20(20):3910–3924PubMedPubMedCentralCrossRefGoogle Scholar
  163. Waymire KG, Mahuren JD, Jaje JM, Guilarte TR, Coburn SP, MacGregor GR (1995) Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin b-6. Nat Genet 11(1):45–51PubMedCrossRefPubMedCentralGoogle Scholar
  164. Weber TJ, Sawyer EK, Moseley S, Odrljin T, Kishnani PS (2016) Burden of disease in adult patients with hypophosphatasia: results from two patient-reported surveys. Metabolism 65(10):1522–1530PubMedCrossRefPubMedCentralGoogle Scholar
  165. Weiss MJ, Cole DE, Ray K, Whyte MP, Lafferty MA, Mulivor RA, Harris H (1988) A missense mutation in the human liver/bone/kidney alkaline phosphatase gene causing a lethal form of hypophosphatasia. Proc Natl Acad Sci U S A 85(20):7666–7669PubMedPubMedCentralCrossRefGoogle Scholar
  166. Weiss MJ, Cole DE, Ray K, Whyte MP, Lafferty MA, Mulivor R, Harris H (1989a) First identification of a gene defect for hypophosphatasia: evidence that alkaline phosphatase acts in skeletal mineralization. Connect Tissue Res 21(1–4):99–104. discussion 104–106PubMedCrossRefPubMedCentralGoogle Scholar
  167. Weiss MJ, Ray K, Fallon MD, Whyte MP, Fedde KN, Lafferty MA, Mulivor RA, Harris H (1989b) Analysis of liver/bone/kidney alkaline phosphatase mrna, DNA, and enzymatic activity in cultured skin fibroblasts from 14 unrelated patients with severe hypophosphatasia. Am J Hum Genet 44(5):686–694PubMedPubMedCentralGoogle Scholar
  168. Wenkert D, McAlister WH, Coburn SP, Zerega JA, Ryan LM, Ericson KL, Hersh JH, Mumm S, Whyte MP (2011) Hypophosphatasia: nonlethal disease despite skeletal presentation in utero (17 new cases and literature review). J Bone Miner Res 26(10):2389–2398PubMedCrossRefPubMedCentralGoogle Scholar
  169. Wennberg C, Hessle L, Lundberg P, Mauro S, Narisawa S, Lerner UH, Millan JL (2000) Functional characterization of osteoblasts and osteoclasts from alkaline phosphatase knockout mice. J Bone Miner Res 15(10):1879–1888PubMedCrossRefPubMedCentralGoogle Scholar
  170. Whyte MP (2012) Hypophosphatasia. In: Glorieux FH, Pettifor JM, Juppner H (eds) Pediatric bone: biology & diseases, 2nd edn. Academic, London, pp 771–794CrossRefGoogle Scholar
  171. Whyte MP (2016) Hypophosphatasia – aetiology, nosology, pathogenesis, diagnosis and treatment. Nat Rev Endocrinol 12(4):233PubMedCrossRefPubMedCentralGoogle Scholar
  172. Whyte MP (2017) Hypophosphatasia: enzyme replacement therapy brings new opportunities and new challenges. J Bone Miner Res 32(4):667–675PubMedCrossRefPubMedCentralGoogle Scholar
  173. Whyte MP, Valdes R Jr, Ryan LM, McAlister WH (1982) Infantile hypophosphatasia: enzyme replacement therapy by intravenous infusion of alkaline phosphatase-rich plasma from patients with paget bone disease. J Pediatr 101(3):379–386PubMedCrossRefGoogle Scholar
  174. Whyte MP, McAlister WH, Patton LS, Magill HL, Fallon MD, Lorentz WB Jr, Herrod HG (1984) Enzyme replacement therapy for infantile hypophosphatasia attempted by intravenous infusions of alkaline phosphatase-rich paget plasma: results in three additional patients. J Pediatr 105(6):926–933PubMedCrossRefPubMedCentralGoogle Scholar
  175. Whyte MP, Magill HL, Fallon MD, Herrod HG (1986) Infantile hypophosphatasia: normalization of circulating bone alkaline phosphatase activity followed by skeletal remineralization. Evidence for an intact structural gene for tissue nonspecific alkaline phosphatase. J Pediatr 108(1):82–88PubMedCrossRefPubMedCentralGoogle Scholar
  176. Whyte MP, Kurtzberg J, McAlister WH, Mumm S, Podgornik MN, Coburn SP, Ryan LM, Miller CR, Gottesman GS, Smith AK et al (2003) Marrow cell transplantation for infantile hypophosphatasia. J Bone Miner Res 18(4):624–636PubMedCrossRefGoogle Scholar
  177. Whyte MP, Mumm S, Deal C (2007) Adult hypophosphatasia treated with teriparatide. J Clin Endocrinol Metab 92(4):1203–1208PubMedCrossRefGoogle Scholar
  178. Whyte MP, Wenkert D, McAlister WH, Mughal MZ, Freemont AJ, Whitehouse R, Baildam EM, Coburn SP, Ryan LM, Mumm S (2009) Chronic recurrent multifocal osteomyelitis mimicked in childhood hypophosphatasia. J Bone Miner Res 24(8):1493–1505PubMedCrossRefGoogle Scholar
  179. Whyte MP, Greenberg CR, Salman NJ, Bober MB, McAlister WH, Wenkert D, Van Sickle BJ, Simmons JH, Edgar TS, Bauer ML (2012) Enzyme-replacement therapy in life-threatening hypophosphatasia. N Engl J Med 366(10):904–913PubMedCrossRefGoogle Scholar
  180. Whyte MP, Zhang F, Wenkert D, McAlister WH, Mack KE, Benigno MC, Coburn SP, Wagy S, Griffin DM, Ericson KL (2015a) Hypophosphatasia: validation and expansion of the clinical nosology for children from 25years experience with 173 pediatric patients. Bone 75:229–239PubMedCrossRefGoogle Scholar
  181. Whyte MP, Zhang F, Wenkert D, McAlister WH, Mack KE, Benigno MC, Coburn SP, Wagy S, Griffin DM, Ericson KL et al (2015b) Hypophosphatasia: validation and expansion of the clinical nosology for children from 25 years experience with 173 pediatric patients. Bone 75:229–239PubMedCrossRefGoogle Scholar
  182. Whyte MP, Madson KL, Phillips D, Reeves AL, McAlister WH, Yakimoski A, Mack KE, Hamilton K, Kagan K, Fujita KP (2016a) Asfotase alfa therapy for children with hypophosphatasia. JCI Insight 1(9):e85971PubMedPubMedCentralCrossRefGoogle Scholar
  183. Whyte MP, Rockman-Greenberg C, Ozono K, Riese R, Moseley S, Melian A, Thompson DD, Bishop N, Hofmann C (2016b) Asfotase alfa treatment improves survival for perinatal and infantile hypophosphatasia. J Clin Endocrinol Metab 101(1):334–342PubMedCrossRefPubMedCentralGoogle Scholar
  184. Whyte MP, Coburn SP, Ryan LM, Ericson KL, Zhang F (2018) Hypophosphatasia: biochemical hallmarks validate the expanded pediatric clinical nosology. Bone 110:96–106PubMedCrossRefPubMedCentralGoogle Scholar
  185. Williams DK, Pinzon C, Huggins S, Pryor JH, Falck A, Herman F, Oldeschulte J, Chavez MB, Foster BL, White SH et al (2018) Genetic engineering a large animal model of human hypophosphatasia in sheep. Sci Rep 8(1):16945PubMedPubMedCentralCrossRefGoogle Scholar
  186. Wyckoff MH, El-Turk C, Laptook A, Timmons C, Gannon FH, Zhang X, Mumm S, Whyte MP (2005) Neonatal lethal osteochondrodysplasia with low serum levels of alkaline phosphatase and osteocalcin. J Clin Endocrinol Metab 90(2):1233–1240PubMedCrossRefPubMedCentralGoogle Scholar
  187. Yadav MC, Lemire I, Leonard P, Boileau G, Blond L, Beliveau M, Cory E, Sah RL, Whyte MP, Crine P et al (2011) Dose response of bone-targeted enzyme replacement for murine hypophosphatasia. Bone 49(2):250–256PubMedPubMedCentralCrossRefGoogle Scholar
  188. Yadav MC, de Oliveira RC, Foster BL, Fong H, Cory E, Narisawa S, Sah RL, Somerman M, Whyte MP, Millan JL (2012) Enzyme replacement prevents enamel defects in hypophosphatasia mice. J Bone Miner Res 27(8):1722–1734PubMedPubMedCentralCrossRefGoogle Scholar
  189. Yamamoto S, Orimo H, Matsumoto T, Iijima O, Narisawa S, Maeda T, Millan JL, Shimada T (2011) Prolonged survival and phenotypic correction of akp2(−/−) hypophosphatasia mice by lentiviral gene therapy. J Bone Miner Res 26(1):135–142PubMedCrossRefPubMedCentralGoogle Scholar
  190. Zankl A, Mornet E, Wong S (2008) Specific ultrasonographic features of perinatal lethal hypophosphatasia. Am J Med Genet A 146A(9):1200–1204PubMedCrossRefGoogle Scholar
  191. Zweifler LE, Patel MK, Nociti FH Jr, Wimer HF, Millan JL, Somerman MJ, Foster BL (2015) Counter-regulatory phosphatases tnap and npp1 temporally regulate tooth root cementogenesis. Int J Oral Sci 7(1):27–41PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Division of Endocrinology, Department of PediatricsNationwide Children’s Hospital/The Ohio State University College of MedicineColumbusUSA
  2. 2.Division of Biosciences, College of DentistryThe Ohio State UniversityColumbusUSA

Personalised recommendations