Advertisement

Clinical Applications of Hyaluronidase

  • Gregor Cornelius Weber
  • Bettina Alexandra Buhren
  • Holger Schrumpf
  • Johannes Wohlrab
  • Peter Arne GerberEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1148)

Abstract

Hyaluronidases are enzymes that degrade hyaluronic acid, which constitutes an essential part of the extracellular matrix. Initially discovered in bacteria, hyaluronidases are known to be widely distributed in nature and have been found in many classes including insects, snakes, fish and mammals. In the human, six different hyaluronidases, HYAL1-4, HYAL-P1 and PH-20, have been identified. PH-20 exerts the strongest biologic activity, is found in high concentrations in the testicles and can be localized on the head and the acrosome of human spermatozoa. Today, animal-derived bovine or ovine testicular hyaluronidases as well as synthetic hyaluronidases are clinically applied as adjuncts to increase the bioavailability of drugs, for the therapy of extravasations, or for the management of complications associated with the aesthetic injection of hyaluronic acid-based fillers. Further applications in the fields of surgery, aesthetic medicine, immunology, oncology, and many others can be expected for years to come. Here, we give an overview over the molecular and cellular mode of action of hyaluronidase and the hyaluronic acid metabolism, as well as over current and potential future clinical applications of hyaluronidase.

Keywords

Hylase Hyaluronic acid Hyaluronan Filler Spreading factor Extravasation Bioavailability 

Abbreviations

BEL

Belotero®

BTH

Bovine testicular hyaluronidase

CHO

Chinese hamster ovary

CPM

Cohesive polydensified matrix

DMSO

Dimethylsulfoxide

ECM

Extracellular matrix

EMV

Emervel®

FDA

Food and Drug Administration

GAG

Glycosaminoglycan

HA

Hyaluronan

HAS

Hyaluronan synthase

HYAL

Hyaluronidase

Ig

Immunoglobulin

IGSC

Subcutaneous immunoglobulins

IU

International units

JUV

Juvederm®

kDA

Kilodalton

l

Liter

LA

Local anesthetic

mAb

Monoclonal antibody

ml

Milliliter

μm

Micrometer

OTH

Ovine testicular hyaluronidase

PEGPH20

PEGylated recombinant human hyaluronidase

PG

Proteoglycan

RES

Restylane®

rHuPH20

Recombinant human hyaluronidase

S. aureus

Staphylococcus aureus

References

  1. Ahmed S, Ahmed OA (2004) Hyaluronidase revisited-a single injection technique for harvesting split thickness skin grafts under local anaesthesia. Br J Plast Surg 57:589–591PubMedCrossRefGoogle Scholar
  2. Albanell J, Baselga J (2000) Systemic therapy emergencies. Semin Oncol 27:347–361PubMedGoogle Scholar
  3. Alberts DS, Dorr RT (1991) Case report: topical DMSO for mitomycin-C-induced skin ulceration. Oncol Nurs Forum 18:693–695PubMedGoogle Scholar
  4. Allen CH, Etzwiler LS, Miller MK et al (2009) Recombinant human hyaluronidase-enabled subcutaneous pediatric rehydration. Pediatrics 124:e858–e867PubMedCrossRefGoogle Scholar
  5. Aruffo A, Stamenkovic I, Melnick M et al (1990) CD44 is the principal cell surface receptor for hyaluronate. Cell 61:1303–1313PubMedCrossRefGoogle Scholar
  6. Atmuri V, Martin DC, Hemming R et al (2008) Hyaluronidase 3 (HYAL3) knockout mice do not display evidence of hyaluronan accumulation. Matrix Biol 27:653–660PubMedCrossRefGoogle Scholar
  7. Attenello NH, Maas CS (2015) Injectable fillers: review of material and properties. Facial Plast Surg 31:29–34PubMedCrossRefGoogle Scholar
  8. Ballin AC, Cazzaniga A, Brandt FS (2013) Long-term efficacy, safety and durability of Juvederm(R) XC. Clin Cosmet Investig Dermatol 6:183–189PubMedPubMedCentralGoogle Scholar
  9. Barsukov AK, Kozhevnikova OV, Khokhriakova AV (2003) Isolation and purification of bovine testicular hyaluronidase. Prikl Biokhim Mikrobiol 39:625–629PubMedGoogle Scholar
  10. Beleznay K, Carruthers JD, Humphrey S et al (2015) Avoiding and treating blindness from fillers: a review of the world literature. Dermatol Surg 41:1097–1117PubMedCrossRefGoogle Scholar
  11. Bellin MF, Jakobsen JA, Tomassin I et al (2002) Contrast medium extravasation injury: guidelines for prevention and management. Eur Radiol 12:2807–2812PubMedCrossRefPubMedCentralGoogle Scholar
  12. Belzunegui T, Louis CJ, Torrededia L et al (2011) Extravasation of radiographic contrast material and compartment syndrome in the hand: a case report. Scand J Trauma Resusc Emerg Med 19:9PubMedPubMedCentralCrossRefGoogle Scholar
  13. Benditt EP, Schiller S, Matthews MB et al (1951) Evidence that hyaluronidase is not the factor in testicular extract causing increased vascular permeability. Proc Soc Exp Biol Med 77:643–646PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bertelli G (1995) Prevention and management of extravasation of cytotoxic drugs. Drug Saf 12:245–255PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bertelli G, Dini D, Forno GB et al (1994) Hyaluronidase as an antidote to extravasation of Vinca alkaloids: clinical results. J Cancer Res Clin Oncol 120:505–506PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bertelli G, Gozza A, Forno GB et al (1995) Topical dimethylsulfoxide for the prevention of soft tissue injury after extravasation of vesicant cytotoxic drugs: a prospective clinical study. J Clin Oncol 13:2851–2855PubMedCrossRefPubMedCentralGoogle Scholar
  17. Bertelli G, Cafferata MA, Ardizzoni A et al (1997) Skin ulceration potential of paclitaxel in a mouse skin model in vivo. Cancer 79:2266–2269PubMedCrossRefPubMedCentralGoogle Scholar
  18. Bertolami CN, Donoff RB (1982) Identification, characterization, and partial purification of mammalian skin wound hyaluronidase. J Invest Dermatol 79:417–421PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bissell MJ, Hall HG, Parry G (1982) How does the extracellular matrix direct gene expression? J Theor Biol 99:31–68PubMedCrossRefPubMedCentralGoogle Scholar
  20. Bohaumilitzky L, Huber AK, Stork EM et al (2017) A trickster in disguise: Hyaluronan’s ambivalent roles in the matrix. Front Oncol 7:242PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bookbinder LH, Hofer A, Haller MF et al (2006) A recombinant human enzyme for enhanced interstitial transport of therapeutics. J Control Release 114:230–241PubMedCrossRefPubMedCentralGoogle Scholar
  22. Boulanger J, Ducharme A, Dufour A et al (2015) Management of the extravasation of anti-neoplastic agents. Support Care Cancer 23:1459–1471PubMedCrossRefGoogle Scholar
  23. Buhren BA, Schrumpf H, Hoff NP et al (2016) Hyaluronidase: from clinical applications to molecular and cellular mechanisms. Eur J Med Res 21:5PubMedPubMedCentralCrossRefGoogle Scholar
  24. Buhren BA, Schrumpf H, Bolke E et al (2018) Standardized in vitro analysis of the degradability of hyaluronic acid fillers by hyaluronidase. Eur J Med Res 23:37PubMedPubMedCentralCrossRefGoogle Scholar
  25. Buntrock H, Reuther T, Prager W et al (2013) Efficacy, safety, and patient satisfaction of a monophasic cohesive polydensified matrix versus a biphasic nonanimal stabilized hyaluronic acid filler after single injection in nasolabial folds. Dermatol Surg 39:1097–1105PubMedCrossRefGoogle Scholar
  26. Carne E, Ponsford M, El-Shanawany T et al (2016) Five years of self-administered hyaluronidase facilitated subcutaneous immunoglobulin (fSCIg) home therapy in a patient with primary immunodeficiency. J Clin Pathol 69:87–88PubMedCrossRefGoogle Scholar
  27. Cochran ST, Bomyea K, Kahn M (2002) Treatment of iodinated contrast material extravasation with hyaluronidase. Acad Radiol 9(Suppl 2):S544–S546PubMedCrossRefGoogle Scholar
  28. Connolly AA, Meyer LC, Tate JJ (1994) Local anaesthetic agents in surgery for ingrown toenail. Br J Surg 81:425–426PubMedCrossRefGoogle Scholar
  29. Connolly S, Korzemba H, Harb G et al (2011) Techniques for hyaluronidase-facilitated subcutaneous fluid administration with recombinant human hyaluronidase: the increased flow utilizing subcutaneously enabled administration technique (INFUSE AT) study. J Infus Nurs 34:300–307PubMedCrossRefGoogle Scholar
  30. Courtiss EH, Ransil BJ, Russo J (1995) The effects of hyaluronidase on local anesthesia: a prospective, randomized, controlled, double-blind study. Plast Reconstr Surg 95:876–883PubMedCrossRefGoogle Scholar
  31. Cowman MK (2017) Hyaluronan and hyaluronan fragments. Adv Carbohydr Chem Biochem 74:1–59PubMedCrossRefGoogle Scholar
  32. Crawford M, Kerr WJ (1994) The effect of hyaluronidase on peribulbar block. Anaesthesia 49:907–908PubMedCrossRefGoogle Scholar
  33. Csoka TB, Frost GI, Stern R (1997) Hyaluronidases in tissue invasion. Invasion Metastasis 17:297–311PubMedGoogle Scholar
  34. Dai G, Freudenberger T, Zipper P et al (2007) Chronic ultraviolet B irradiation causes loss of hyaluronic acid from mouse dermis because of down-regulation of hyaluronic acid synthases. Am J Pathol 171:1451–1461PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dayan SH, Bassichis BA (2008) Facial dermal fillers: selection of appropriate products and techniques. Aesthet Surg J 28:335–347PubMedCrossRefGoogle Scholar
  36. De Boulle K, Glogau R, Kono T et al (2013) A review of the metabolism of 1,4-butanediol diglycidyl ether-crosslinked hyaluronic acid dermal fillers. Dermatol Surg 39:1758–1766PubMedPubMedCentralCrossRefGoogle Scholar
  37. Delorenzi C (2013) Complications of injectable fillers, part I. Aesthet Surg J 33:561–575PubMedCrossRefGoogle Scholar
  38. Dempsey GA, Barrett PJ, Kirby J (1996) The effect of hyaluronidase on peribulbar block. Anaesthesia 51:515PubMedCrossRefGoogle Scholar
  39. Dempsey GA, Barrett PJ, Kirby IJ (1997) Hyaluronidase and peribulbar block. Br J Anaesth 78:671–674PubMedCrossRefGoogle Scholar
  40. Dieleman M, Bettink-Remeijer MW, Jansen J et al (2012) High incidence of adverse reactions to locoregional anaesthesia containing hyaluronidase after uneventful ophthalmic surgery. Acta Ophthalmol 90:e245–e246PubMedCrossRefPubMedCentralGoogle Scholar
  41. Doellman D, Hadaway L, Bowe-Geddes LA et al (2009) Infiltration and extravasation: update on prevention and management. J Infus Nurs 32:203–211PubMedCrossRefPubMedCentralGoogle Scholar
  42. Doherty GJ, Tempero M, Corrie PG (2018) HALO-109-301: a phase III trial of PEGPH20 (with gemcitabine and nab-paclitaxel) in hyaluronic acid-high stage IV pancreatic cancer. Future Oncol 14:13–22PubMedCrossRefPubMedCentralGoogle Scholar
  43. Dorr RT (1990) Antidotes to vesicant chemotherapy extravasations. Blood Rev 4:41–60PubMedCrossRefPubMedCentralGoogle Scholar
  44. Dougherty L (2008) IV therapy: recognizing the differences between infiltration and extravasation. Br J Nurs 17:896. 898–901PubMedCrossRefPubMedCentralGoogle Scholar
  45. Dubois A, Fehr M, Bochtler H et al (1996) Clinical course and management of paclitaxel extravasation. Oncol Rep 3:973–974PubMedPubMedCentralGoogle Scholar
  46. Dunagin WG (1982) Clinical toxicity of chemotherapeutic agents: dermatologic toxicity. Semin Oncol 9:14–22PubMedPubMedCentralGoogle Scholar
  47. Dunn AL, Heavner JE, Racz G et al (2010) Hyaluronidase: a review of approved formulations, indications and off-label use in chronic pain management. Expert Opin Biol Ther 10:127–131PubMedCrossRefPubMedCentralGoogle Scholar
  48. Duran-Reynals F (1942) TISSUE PERMEABILITY AND THE SPREADING FACTORS IN INFECTION: a contribution to the host: parasite problem. Bacteriol Rev 6:197–252PubMedPubMedCentralGoogle Scholar
  49. Edsman K, Nord LI, Ohrlund A et al (2012) Gel properties of hyaluronic acid dermal fillers. Dermatol Surg 38:1170–1179PubMedCrossRefPubMedCentralGoogle Scholar
  50. Elam EA, Dorr RT, Lagel KE et al (1991) Cutaneous ulceration due to contrast extravasation. Experimental assessment of injury and potential antidotes. Investig Radiol 26:13–16CrossRefGoogle Scholar
  51. El-Saghir N, Otrock Z, Mufarrij A et al (2004) Dexrazoxane for anthracycline extravasation and GM-CSF for skin ulceration and wound healing. Lancet Oncol 5:320–321PubMedCrossRefPubMedCentralGoogle Scholar
  52. Fanning GL (2001) Hyaluronidase in ophthalmic anesthesia. Anesth Analg 92:560PubMedCrossRefPubMedCentralGoogle Scholar
  53. Farr C, Menzel J, Seeberger J et al (1997) Clinical pharmacology and possible applications of hyaluronidase with reference to Hylase “Dessau”. Wien Med Wochenschr 147:347–355PubMedPubMedCentralGoogle Scholar
  54. Federle MP, Chang PJ, Confer S et al (1998) Frequency and effects of extravasation of ionic and nonionic CT contrast media during rapid bolus injection. Radiology 206:637–640PubMedCrossRefPubMedCentralGoogle Scholar
  55. Flynn TC, Sarazin D, Bezzola A et al (2011) Comparative histology of intradermal implantation of mono and biphasic hyaluronic acid fillers. Dermatol Surg 37:637–643PubMedCrossRefPubMedCentralGoogle Scholar
  56. Fox AN, Villanueva R, Miller JL (2017) Management of amiodarone extravasation with intradermal hyaluronidase. Am J Health Syst Pharm 74:1545–1548PubMedCrossRefPubMedCentralGoogle Scholar
  57. Fraser JR, Laurent TC, Pertoft H et al (1981) Plasma clearance, tissue distribution and metabolism of hyaluronic acid injected intravenously in the rabbit. Biochem J 200:415–424PubMedPubMedCentralCrossRefGoogle Scholar
  58. Fraser JR, Laurent TC, Laurent UB (1997) Hyaluronan: its nature, distribution, functions and turnover. J Intern Med 242:27–33PubMedCrossRefPubMedCentralGoogle Scholar
  59. Fronza M, Caetano GF, Leite MN et al (2014) Hyaluronidase modulates inflammatory response and accelerates the cutaneous wound healing. PLoS One 9:e112297PubMedPubMedCentralCrossRefGoogle Scholar
  60. Frost GI (2007) Recombinant human hyaluronidase (rHuPH20): an enabling platform for subcutaneous drug and fluid administration. Expert Opin Drug Deliv 4:427–440PubMedCrossRefGoogle Scholar
  61. Garg SK, Buse JB, Skyler JS et al (2014) Subcutaneous injection of hyaluronidase with recombinant human insulin compared with insulin lispro in type 1 diabetes. Diabetes Obes Metab 16:1065–1069PubMedCrossRefGoogle Scholar
  62. Garvin JH Jr, Chipman DM (1974) Subunit structure of testicular hyaluronidase. FEBS Lett 39:157–159PubMedCrossRefGoogle Scholar
  63. Glogau RG (1997) Physiologic and structural changes associated with aging skin. Dermatol Clin 15:555–559PubMedCrossRefGoogle Scholar
  64. Goolsby TV, Lombardo FA (2006) Extravasation of chemotherapeutic agents: prevention and treatment. Semin Oncol 33:139–143PubMedCrossRefPubMedCentralGoogle Scholar
  65. Guedan S, Rojas JJ, Gros A et al (2010) Hyaluronidase expression by an oncolytic adenovirus enhances its intratumoral spread and suppresses tumor growth. Mol Ther 18:1275–1283PubMedPubMedCentralCrossRefGoogle Scholar
  66. Gul A, Can E, Niyaz L et al (2015) Hyaluronidase in ophthalmic evisceration surgery. Trop Dr 45:100–104CrossRefGoogle Scholar
  67. Hamizi S, Freyer G, Bakrin N et al (2013) Subcutaneous trastuzumab: development of a new formulation for treatment of HER2-positive early breast cancer. Onco Targets Ther 6:89–94PubMedPubMedCentralGoogle Scholar
  68. Harb G, Lebel F, Battikha J et al (2010) Safety and pharmacokinetics of subcutaneous ceftriaxone administered with or without recombinant human hyaluronidase (rHuPH20) versus intravenous ceftriaxone administration in adult volunteers. Curr Med Res Opin 26:279–288PubMedCrossRefPubMedCentralGoogle Scholar
  69. Harman D (1992) Role of free radicals in aging and disease. Ann N Y Acad Sci 673:126–141PubMedCrossRefPubMedCentralGoogle Scholar
  70. Hascall V, Esko JD (2015) Hyaluronan. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, Darvill AG, Kinoshita T, Packer NH, Prestegard JH, Schnaar RL, Seeberger PH (eds) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  71. Henson PM (1971a) The immunologic release of constituents from neutrophil leukocytes. II. Mechanisms of release during phagocytosis, and adherence to nonphagocytosable surfaces. J Immunol 107:1547–1557PubMedGoogle Scholar
  72. Henson PM (1971b) The immunologic release of constituents from neutrophil leukocytes. I. The role of antibody and complement on nonphagocytosable surfaces or phagocytosable particles. J Immunol 107:1535–1546PubMedGoogle Scholar
  73. Herman IM, Castellot JJ Jr (1987) Regulation of vascular smooth muscle cell growth by endothelial-synthesized extracellular matrices. Arteriosclerosis 7:463–469PubMedCrossRefGoogle Scholar
  74. Hilton S, Schrumpf H, Buhren BA et al (2014) Hyaluronidase injection for the treatment of eyelid edema: a retrospective analysis of 20 patients. Eur J Med Res 19:30PubMedPubMedCentralCrossRefGoogle Scholar
  75. Hirsch RJ, Brody HJ, Carruthers JD (2007a) Hyaluronidase in the office: a necessity for every dermasurgeon that injects hyaluronic acid. J Cosmet Laser Ther 9:182–185PubMedCrossRefGoogle Scholar
  76. Hirsch RJ, Cohen JL, Carruthers JD (2007b) Successful management of an unusual presentation of impending necrosis following a hyaluronic acid injection embolus and a proposed algorithm for management with hyaluronidase. Dermatol Surg 33:357–360PubMedGoogle Scholar
  77. Hompesch M, Muchmore DB, Morrow L et al (2011) Accelerated insulin pharmacokinetics and improved postprandial glycemic control in patients with type 1 diabetes after coadministration of prandial insulins with hyaluronidase. Diabetes Care 34:666–668PubMedPubMedCentralCrossRefGoogle Scholar
  78. Hwang E, Song YS (2017) Quantitative correlation between hyaluronic acid filler and hyaluronidase. J Craniofac Surg 28:838–841PubMedCrossRefGoogle Scholar
  79. Hyde CE, Old RW (1999) Expression pattern of a novel hyaluronidase during Xenopus embryogenesis. Mech Dev 82:213–217PubMedCrossRefGoogle Scholar
  80. Jahn K, Homey B, Gerber PA (2014) Management of complications after aesthetic hyaluronic acid injections. Hautarzt 65:851–853PubMedCrossRefPubMedCentralGoogle Scholar
  81. Jones D, Tezel A, Borrell M (2010) In vitro resistance to degradation of hyaluronic acid dermal fillers by ovine testicular hyaluronidase. Dermatol Surg 36:804–809CrossRefGoogle Scholar
  82. Juhasz MLW, Levin MK, Marmur ES (2017) The kinetics of reversible hyaluronic acid filler injection treated with hyaluronidase. Dermatol Surg 43:841–847PubMedCrossRefPubMedCentralGoogle Scholar
  83. Juhlin L (1997) Hyaluronan in skin. J Intern Med 242:61–66PubMedCrossRefPubMedCentralGoogle Scholar
  84. Kagan L, Mager DE (2013) Mechanisms of subcutaneous absorption of rituximab in rats. Drug Metab Dispos 41:248–255PubMedCrossRefPubMedCentralGoogle Scholar
  85. Kassner E (2000) Evaluation and treatment of chemotherapy extravasation injuries. J Pediatr Oncol Nurs 17:135–148PubMedCrossRefPubMedCentralGoogle Scholar
  86. Kenne L, Gohil S, Nilsson EM et al (2013) Modification and cross-linking parameters in hyaluronic acid hydrogels – definitions and analytical methods. Carbohydr Polym 91:410–418PubMedCrossRefPubMedCentralGoogle Scholar
  87. Khandwala M, Ahmed S, Goel S et al (2008) The effect of hyaluronidase on ultrasound-measured dispersal of local anaesthetic following sub-Tenon injection. Eye (Lond) 22:1065–1068CrossRefGoogle Scholar
  88. Khorlin AY, Vikha IV, Milishnikov AN (1973) Subunit structure of testicular hyaluronidase. FEBS Lett 31:107–110PubMedCrossRefGoogle Scholar
  89. Kim DW, Yoon ES, Ji YH et al (2011) Vascular complications of hyaluronic acid fillers and the role of hyaluronidase in management. J Plast Reconstr Aesthet Surg 64:1590–1595PubMedCrossRefGoogle Scholar
  90. Kind LS, Roffler S (1961) Allergic reactions to hyaluronidase. Proc Soc Exp Biol Med 106:734–735PubMedCrossRefGoogle Scholar
  91. Kontis TC (2013) Contemporary review of injectable facial fillers. JAMA Facial Plast Surg 15:58–64PubMedCrossRefGoogle Scholar
  92. Kreil G (1995) Hyaluronidases – a group of neglected enzymes. Protein Sci 4:1666–1669PubMedPubMedCentralCrossRefGoogle Scholar
  93. Kuppermann BD, Thomas EL, De Smet MD et al (2005) Pooled efficacy results from two multinational randomized controlled clinical trials of a single intravitreous injection of highly purified ovine hyaluronidase (Vitrase) for the management of vitreous hemorrhage. Am J Ophthalmol 140:573–584PubMedCrossRefGoogle Scholar
  94. Landau M (2015) Hyaluronidase caveats in treating filler complications. Dermatol Surg 41(Suppl 1):S347–S353PubMedCrossRefGoogle Scholar
  95. Landsman L, Mandy SH (1991) Adjuncts to scalp reduction surgery. Intraoperative tissue expanders and hyaluronidase. J Dermatol Surg Oncol 17:670–672PubMedCrossRefGoogle Scholar
  96. Langer SW, Sehested M, Jensen PB (2000) Treatment of anthracycline extravasation with dexrazoxane. Clin Cancer Res 6:3680–3686PubMedGoogle Scholar
  97. Laurent TC, Fraser JR (1992) Hyaluronan. FASEB J 6:2397–2404PubMedCrossRefGoogle Scholar
  98. Lee A, Grummer SE, Kriegel D et al (2010) Hyaluronidase. Dermatol Surg 36:1071–1077PubMedCrossRefPubMedCentralGoogle Scholar
  99. Lewis-Smith PA (1986) Adjunctive use of hyaluronidase in local anaesthesia. Br J Plast Surg 39:554–558PubMedCrossRefPubMedCentralGoogle Scholar
  100. Lindley-Jones MF (2000) Topical anaesthesia for phacoemulsification surgery. Clin Exp Ophthalmol 28:287–289PubMedCrossRefPubMedCentralGoogle Scholar
  101. Lokeshwar VB, Selzer MG (2008) Hyalurondiase: both a tumor promoter and suppressor. Semin Cancer Biol 18:281–287PubMedPubMedCentralCrossRefGoogle Scholar
  102. Lokeshwar VB, Rubinowicz D, Schroeder GL et al (2001) Stromal and epithelial expression of tumor markers hyaluronic acid and HYAL1 hyaluronidase in prostate cancer. J Biol Chem 276:11922–11932PubMedCrossRefPubMedCentralGoogle Scholar
  103. Lorenc ZP, Fagien S, Flynn TC et al (2013) Review of key Belotero Balance safety and efficacy trials. Plast Reconstr Surg 132:33S–40SPubMedCrossRefPubMedCentralGoogle Scholar
  104. Lv SH, Rong SF, Cai BG et al (2015) Property and current clinical applications of mammal hyaluronidase. Eur Rev Med Pharmacol Sci 19:3968–3976PubMedPubMedCentralGoogle Scholar
  105. Maccara ME (1983) Extravasation: a hazard of intravenous therapy. Drug Intell Clin Pharm 17:713–717PubMedCrossRefPubMedCentralGoogle Scholar
  106. Martin-Deleon PA (2011) Germ-cell hyaluronidases: their roles in sperm function. Int J Androl 34:e306–e318PubMedCrossRefPubMedCentralGoogle Scholar
  107. Martinez-Quintanilla J, He D, Wakimoto H et al (2015) Encapsulated stem cells loaded with hyaluronidase-expressing oncolytic virus for brain tumor therapy. Mol Ther 23:108–118PubMedCrossRefPubMedCentralGoogle Scholar
  108. Mcclean D (1941) Studies on diffusing factors: the hyaluronidase activity of testicular extracts, bacterial culture filtrates and other agents that increase tissue permeability. Biochem J 35:159–183PubMedPubMedCentralCrossRefGoogle Scholar
  109. Menzel EJ, Farr C (1998) Hyaluronidase and its substrate hyaluronan: biochemistry, biological activities and therapeutic uses. Cancer Lett 131:3–11PubMedCrossRefPubMedCentralGoogle Scholar
  110. Menzinger S, Kaya A, Saurat JH et al (2016) Injected hyaluronidase reduces the volume of exogenous hyaluronate fillers in mice and results in clinical improvement in a patient with pretibial myxedema. Dermatopathology (Basel) 3:61–67CrossRefGoogle Scholar
  111. Meyer AW (1937) The hunters in embryology: part III. Cal West Med 46:38–40PubMedPubMedCentralGoogle Scholar
  112. Meyer K (1947) The biological significance of hyaluronic acid and hyaluronidase. Physiol Rev 27:335–359PubMedCrossRefGoogle Scholar
  113. Meyer LJ, Stern R (1994) Age-dependent changes of hyaluronan in human skin. J Invest Dermatol 102:385–389PubMedCrossRefGoogle Scholar
  114. Montgomery LA, Budreau GK (1996) Implementing a clinical practice guideline to improve pediatric intravenous infiltration outcomes. AACN Clin Issues 7:411–424PubMedCrossRefGoogle Scholar
  115. Morcos PN, Zhang X, Mcintyre C et al (2013) Pharmacokinetics and pharmacodynamics of single subcutaneous doses of tocilizumab administered with or without rHuPH20. Int J Clin Pharmacol Ther 51:537–548PubMedCrossRefGoogle Scholar
  116. Muchmore DB, Vaughn DE (2010) Review of the mechanism of action and clinical efficacy of recombinant human hyaluronidase coadministration with current prandial insulin formulations. J Diabetes Sci Technol 4:419–428PubMedPubMedCentralCrossRefGoogle Scholar
  117. Myung Y, Yim S, Jeong JH et al (2017) The classification and prognosis of periocular complications related to blindness following cosmetic filler injection. Plast Reconstr Surg 140:61–64PubMedCrossRefGoogle Scholar
  118. Narayanan R, Kuppermann BD (2009) Hyaluronidase for pharmacologic vitreolysis. Dev Ophthalmol 44:20–25PubMedCrossRefGoogle Scholar
  119. Narins RS, Bowman PH (2005) Injectable skin fillers. Clin Plast Surg 32:151–162PubMedCrossRefGoogle Scholar
  120. Narins RS, Coleman WP 3rd, Donofrio LM et al (2010) Improvement in nasolabial folds with a hyaluronic acid filler using a cohesive polydensified matrix technology: results from an 18-month open-label extension trial. Dermatol Surg 36(Suppl 3):1800–1808PubMedCrossRefPubMedCentralGoogle Scholar
  121. Narins RS, Brandt FS, Dayan SH et al (2011) Persistence of nasolabial fold correction with a hyaluronic acid dermal filler with retreatment: results of an 18-month extension study. Dermatol Surg 37:644–650PubMedCrossRefPubMedCentralGoogle Scholar
  122. Olver IN, Aisner J, Hament A et al (1988) A prospective study of topical dimethyl sulfoxide for treating anthracycline extravasation. J Clin Oncol 6:1732–1735PubMedCrossRefPubMedCentralGoogle Scholar
  123. Ozturk CN, Li Y, Tung R et al (2013) Complications following injection of soft-tissue fillers. Aesthet Surg J 33:862–877PubMedCrossRefPubMedCentralGoogle Scholar
  124. Papakonstantinou E, Roth M, Karakiulakis G (2012) Hyaluronic acid: a key molecule in skin aging. Dermatoendocrinology 4:253–258CrossRefGoogle Scholar
  125. Perrault M, Housset E (1952) Hyaluronidase and its therapeutic applications. Therapie 7:196–206PubMedPubMedCentralGoogle Scholar
  126. Pirrello RD, Ting Chen C, Thomas SH (2007) Initial experiences with subcutaneous recombinant human hyaluronidase. J Palliat Med 10:861–864PubMedCrossRefGoogle Scholar
  127. Rao V, Chi S, Woodward J (2014) Reversing facial fillers: interactions between hyaluronidase and commercially available hyaluronic-acid based fillers. J Drugs Dermatol 13:1053–1056PubMedPubMedCentralGoogle Scholar
  128. Rees MD, Hawkins CL, Davies MJ (2004) Hypochlorite and superoxide radicals can act synergistically to induce fragmentation of hyaluronan and chondroitin sulphates. Biochem J 381:175–184PubMedPubMedCentralCrossRefGoogle Scholar
  129. Remy M, Pinter F, Nentwich MM et al (2008) Efficacy and safety of hyaluronidase 75 IU as an adjuvant to mepivacaine for retrobulbar anesthesia in cataract surgery. J Cataract Refract Surg 34:1966–1969PubMedCrossRefPubMedCentralGoogle Scholar
  130. Reynolds PM, Maclaren R, Mueller SW et al (2014) Management of extravasation injuries: a focused evaluation of noncytotoxic medications. Pharmacotherapy 34:617–632PubMedCrossRefGoogle Scholar
  131. Ridenour S, Reader A, Beck M et al (2001) Anesthetic efficacy of a combination of hyaluronidase and lidocaine with epinephrine in inferior alveolar nerve blocks. Anesth Prog 48:9–15PubMedPubMedCentralGoogle Scholar
  132. Romagnoli M, Belmontesi M (2008) Hyaluronic acid-based fillers: theory and practice. Clin Dermatol 26:123–159PubMedCrossRefPubMedCentralGoogle Scholar
  133. Rowlett J (2012) Extravasation of contrast media managed with recombinant human hyaluronidase. Am J Emerg Med 30:2102 e1–2102 e3CrossRefGoogle Scholar
  134. Sall I, Ferard G (2007) Comparison of the sensitivity of 11 crosslinked hyaluronic acid gels to bovine testis hyaluronidase. Polym Degrad Stab 92:915–919CrossRefGoogle Scholar
  135. Sbitany H, Koltz PF, Mays C et al (2010) CT contrast extravasation in the upper extremity: strategies for management. Int J Surg 8:384–386PubMedCrossRefPubMedCentralGoogle Scholar
  136. Schonenberg H (1952) Therapeutic use of hyaluronidase in pediatrics. Kinderarztl Prax 20:223–228PubMedPubMedCentralGoogle Scholar
  137. Schoog M (1951) Therapeutic use of hyaluronidase. Dermatol Wochenschr 124:1033–1037PubMedPubMedCentralGoogle Scholar
  138. Schrijvers DL (2003) Extravasation: a dreaded complication of chemotherapy. Ann Oncol 14(Suppl 3):iii26–iii30PubMedPubMedCentralGoogle Scholar
  139. Schummer W, Schummer C, Muller A et al (2003) Extravasation: a rare complication of central venous cannulation? Case report of an imminent erosion of the common carotid artery. Anaesthesist 52:711–717PubMedCrossRefPubMedCentralGoogle Scholar
  140. Schwartz DM, Shuster S, Jumper MD et al (1996) Human vitreous hyaluronidase: isolation and characterization. Curr Eye Res 15:1156–1162PubMedCrossRefPubMedCentralGoogle Scholar
  141. Schwartzman J (1951) Hyaluronidase in pediatrics. N Y State J Med 51:215–221PubMedPubMedCentralGoogle Scholar
  142. Selek H, Ozer H, Aygencel G et al (2007) Compartment syndrome in the hand due to extravasation of contrast material. Arch Orthop Trauma Surg 127:425–427PubMedCrossRefGoogle Scholar
  143. Shpilberg O, Jackisch C (2013) Subcutaneous administration of rituximab (MabThera) and trastuzumab (Herceptin) using hyaluronidase. Br J Cancer 109:1556–1561PubMedPubMedCentralCrossRefGoogle Scholar
  144. Silverstein SM, Greenbaum S, Stern R (2012) Hyaluronidase in ophthalmology. J Appl Res 12(1):1–13Google Scholar
  145. Smith KJ, Skelton HG, Turiansky G et al (1997) Hyaluronidase enhances the therapeutic effect of vinblastine in intralesional treatment of Kaposi’s sarcoma. Military Medical Consortium for the Advancement of Retroviral Research (MMCARR). J Am Acad Dermatol 36:239–242PubMedCrossRefGoogle Scholar
  146. Soldi A (1951) Hyaluronidase and its therapeutic applications. Farmacol Sci Tec 6:765–791Google Scholar
  147. Soltes L, Mendichi R, Kogan G et al (2006) Degradative action of reactive oxygen species on hyaluronan. Biomacromolecules 7:659–668PubMedCrossRefGoogle Scholar
  148. Spandorfer PR, Mace SE, Okada PJ et al (2012) A randomized clinical trial of recombinant human hyaluronidase-facilitated subcutaneous versus intravenous rehydration in mild to moderately dehydrated children in the emergency department. Clin Ther 34:2232–2245PubMedCrossRefPubMedCentralGoogle Scholar
  149. Speth F, Haas JP, Hinze CH (2016) Treatment with high-dose recombinant human hyaluronidase-facilitated subcutaneous immune globulins in patients with juvenile dermatomyositis who are intolerant to intravenous immune globulins: a report of 5 cases. Pediatr Rheumatol Online J 14:52PubMedPubMedCentralCrossRefGoogle Scholar
  150. Stanford BL, Hardwicke F (2003) A review of clinical experience with paclitaxel extravasations. Support Care Cancer 11:270–277PubMedPubMedCentralGoogle Scholar
  151. Stebliuk PN (1972) Combined effect of hyaluronidase, ribonuclease and antibiotics on pathogenous Staphylococci. Vrach Delo 4:151PubMedPubMedCentralGoogle Scholar
  152. Stern R (2008) Hyaluronidases in cancer biology. Semin Cancer Biol 18:275–280PubMedCrossRefPubMedCentralGoogle Scholar
  153. Stern R, Asari AA, Sugahara KN (2006) Hyaluronan fragments: an information-rich system. Eur J Cell Biol 85:699–715PubMedCrossRefGoogle Scholar
  154. Stocks D, Sundaram H, Michaels J et al (2011) Rheological evaluation of the physical properties of hyaluronic acid dermal fillers. J Drugs Dermatol 10:974–980PubMedGoogle Scholar
  155. Sundaram H, Voigts B, Beer K et al (2010) Comparison of the rheological properties of viscosity and elasticity in two categories of soft tissue fillers: calcium hydroxylapatite and hyaluronic acid. Dermatol Surg 36(Suppl 3):1859–1865PubMedCrossRefGoogle Scholar
  156. Tammi R, Ripellino JA, Margolis RU et al (1988) Localization of epidermal hyaluronic acid using the hyaluronate binding region of cartilage proteoglycan as a specific probe. J Invest Dermatol 90:412–414PubMedCrossRefGoogle Scholar
  157. Tezel A, Fredrickson GH (2008) The science of hyaluronic acid dermal fillers. J Cosmet Laser Ther 10:35–42PubMedCrossRefGoogle Scholar
  158. Thomas JR, Wallace MS, Yocum RC et al (2009) The INFUSE-Morphine study: use of recombinant human hyaluronidase (rHuPH20) to enhance the absorption of subcutaneously administered morphine in patients with advanced illness. J Pain Symptom Manag 38:663–672CrossRefGoogle Scholar
  159. Thorpe JN (1951) Procaine with hyaluronidase as local anesthetic. Lancet 1:210–211PubMedCrossRefGoogle Scholar
  160. Tran C, Carraux P, Micheels P et al (2014) In vivo bio-integration of three hyaluronic acid fillers in human skin: a histological study. Dermatology 228:47–54PubMedCrossRefGoogle Scholar
  161. Valko M, Leibfritz D, Moncol J et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84PubMedCrossRefGoogle Scholar
  162. Vaughn DE, Yocum RC, Muchmore DB et al (2009) Accelerated pharmacokinetics and glucodynamics of prandial insulins injected with recombinant human hyaluronidase. Diabetes Technol Ther 11:345–352PubMedCrossRefGoogle Scholar
  163. Volpi N, Schiller J, Stern R et al (2009) Role, metabolism, chemical modifications and applications of hyaluronan. Curr Med Chem 16:1718–1745PubMedCrossRefGoogle Scholar
  164. Wang CL, Cohan RH, Ellis JH et al (2007) Frequency, management, and outcome of extravasation of nonionic iodinated contrast medium in 69,657 intravenous injections. Radiology 243:80–87PubMedCrossRefPubMedCentralGoogle Scholar
  165. Wang M, Li W, Zhang Y et al (2017) Comparison of intra-arterial and subcutaneous testicular hyaluronidase injection treatments and the vascular complications of hyaluronic acid filler. Dermatol Surg 43:246–254PubMedCrossRefPubMedCentralGoogle Scholar
  166. Warnery, Dumon G, Brin et al (1954) Antibiotics and hyaluronidase combined in aerosols in the treatment of lesions of pulmonary tuberculosis; 20 months’ trial. Rev Tuberc 18:37–45PubMedPubMedCentralGoogle Scholar
  167. Wasserman RL (2017) Recombinant human hyaluronidase-facilitated subcutaneous immunoglobulin infusion in primary immunodeficiency diseases. Immunotherapy 9:1035–1050PubMedCrossRefPubMedCentralGoogle Scholar
  168. Wasserman RL, Melamed I, Stein MR et al (2012) Recombinant human hyaluronidase-facilitated subcutaneous infusion of human immunoglobulins for primary immunodeficiency. J Allergy Clin Immunol 130:951–7 e11PubMedCrossRefPubMedCentralGoogle Scholar
  169. Wasserman RL, Melamed I, Kobrynski L et al (2016) Recombinant human hyaluronidase facilitated subcutaneous immunoglobulin treatment in pediatric patients with primary immunodeficiencies: long-term efficacy, safety and tolerability. Immunotherapy 8:1175–1186PubMedCrossRefPubMedCentralGoogle Scholar
  170. Weigel PH (2015) Hyaluronan synthase: the mechanism of initiation at the reducing end and a pendulum model for polysaccharide translocation to the cell exterior. Int J Cell Biol 2015:367579PubMedPubMedCentralCrossRefGoogle Scholar
  171. Weller K, Maurer M, Fridman M et al (2017) Health-related quality of life with hereditary angioedema following prophylaxis with subcutaneous C1-inhibitor with recombinant hyaluronidase. Allergy Asthma Proc 38:143–151PubMedCrossRefGoogle Scholar
  172. Wiegand R, Brown J (2010) Hyaluronidase for the management of dextrose extravasation. Am J Emerg Med 28:257 e1–257 e2CrossRefGoogle Scholar
  173. Wohlrab J, Finke R, Franke WG et al (2012a) Clinical trial for safety evaluation of hyaluronidase as diffusion enhancing adjuvant for infiltration analgesia of skin with lidocaine. Dermatol Surg 38:91–96PubMedCrossRefGoogle Scholar
  174. Wohlrab J, Finke R, Franke WG et al (2012b) Efficacy study of hyaluronidase as a diffusion promoter for lidocaine in infiltration analgesia of skin. Plast Reconstr Surg 129:771e–772ePubMedCrossRefGoogle Scholar
  175. Wohlrab J, Wohlrab D, Wohlrab L et al (2014) Use of hyaluronidase for pharmacokinetic increase in bioavailability of intracutaneously applied substances. Skin Pharmacol Physiol 27:276–282PubMedCrossRefGoogle Scholar
  176. Yocum RC, Kennard D, Heiner LS (2007) Assessment and implication of the allergic sensitivity to a single dose of recombinant human hyaluronidase injection: a double-blind, placebo-controlled clinical trial. J Infus Nurs 30:293–299PubMedCrossRefGoogle Scholar
  177. Yui N, Nihira J, Okano T et al (1993) Regulated release of drug microspheres from inflammation responsive degradable matrices of crosslinked hyaluronic acid. J Control Release 25:133–143CrossRefGoogle Scholar
  178. Zahl K, Jordan A, Mcgroarty J et al (1991) Peribulbar anesthesia. Effect of bicarbonate on mixtures of lidocaine, bupivacaine, and hyaluronidase with or without epinephrine. Ophthalmology 98:239–242PubMedCrossRefGoogle Scholar
  179. Zaneveld LJ, Polakoski KL, Schumacher GF (1973) Properties of acrosomal hyaluronidase from bull spermatozoa. Evidence for its similarity to testicular hyaluronidase. J Biol Chem 248:564–570PubMedGoogle Scholar
  180. Zaoli G (1958) Hyaluronidase-antibiotic association in the treatment of acute otitis media of the infant & child. Minerva Otorinolaringol 8:354–358PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Gregor Cornelius Weber
    • 1
  • Bettina Alexandra Buhren
    • 1
  • Holger Schrumpf
    • 1
  • Johannes Wohlrab
    • 2
    • 3
  • Peter Arne Gerber
    • 1
    Email author
  1. 1.Department of Dermatology, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
  2. 2.Department of Dermatology and VenereologyMartin Luther University Halle-WittenbergHalle (Saale)Germany
  3. 3.Institute of Applied DermatopharmacyMartin Luther University Halle-WittenbergHalle (Saale)Germany

Personalised recommendations