Advertisement

Alkaline Phosphatase Replacement Therapy

  • Maria Luisa BianchiEmail author
  • Silvia Vai
Chapter
  • 1.1k Downloads
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1148)

Abstract

Hypophosphatasia (HPP) is a rare genetic disease, characterized by the defective production of tissue-non-specific alkaline phosphatase (TNSALP). Six subtypes of the disease – affecting neonates (beginning in utero), infants, children, or adults – are recognized: perinatal lethal, prenatal benign, infantile, childhood, adult, and odontohypophosphatasia. The clinical presentation of these subtypes is very different and the severity ranges from mild to lethal. This chapter, after an overview of the genetics, epidemiology, classification, and clinical presentation of the different forms of HPP, will review the current experience with enzyme replacement therapy (ERT).

Keywords

Asfotase alfa Alkaline phosphatase Bone Enzyme replacement therapy Fractures Hypophosphatasia Hypomineralization Teeth 

Abbreviations

ALP

Alkaline phosphatase

BMD

Bone mineral density

BSALP

Bone-specific alkaline phosphatase

CPAP

Continuous positive airway pressure

DXA

Dual-energy X-ray absorptiometry

ERT

Enzyme replacement therapy

GABA

Gamma-aminobutyric acid

HPP

Hypophosphatasia

NPP1

Nucleoside pyrophosphohydrolase-1

NSAIDs

Non steroidal anti-inflammatory drugs

PEA

Phosphoethanolamine

PHOSPHO1

Phosphatase orphan 1

Pi

Inorganic phosphate

PL

Pyridoxal

PLP

Pyridoxal-5′-phosphate

PPi

Inorganic pyrophosphate

PTH

Parathyroid hormone

RGI-C

Radiographic global impression of change

TNSALP

Tissue-non-specific alkaline phosphatase

References

  1. Anderson HC (1995) Molecular biology of matrix vesicles. Clin Orthop Relat Res 314:266–280Google Scholar
  2. Anderson HC, Sipe JB, Hessle L, Dhanyamraju R, Atti E, Camacho NP, Millán JL (2004) Impaired calcification around matrix vesicles of growth plate and bone in alkaline phosphatase- deficient mice. Am J Pathol 164(3):841–847PubMedPubMedCentralCrossRefGoogle Scholar
  3. Atar M, Körperich EJ (2010) Systemic disorders and their influence on the development of dental hard tissues: a literature review. J Dent 38(4):296–306PubMedCrossRefPubMedCentralGoogle Scholar
  4. Baumgartner-Sigl S, Haberlandt E, Mumm S, Scholl-Bürgi S, Sergi C, Ryan L, Ericson KL, Whyte MP, Högler W (2007) Pyridoxine-responsive seizures as the first symptom of infantile hypophosphatasia caused by two novel missense mutations (c.677T.C, p.M226T; c.1112C.T, p.T371I) of the tissue-nonspecific alkaline phosphatase gene. Bone 40(6):1655–1661PubMedCrossRefPubMedCentralGoogle Scholar
  5. Beumer J III, Trowbridge HO, Silverman S Jr, Eisenberg E (1973) Childhood hypophosphatasia and the premature loss of teeth. A clinical and laboratory study of seven cases. Oral Surg Oral Med Oral Pathol 35(5):631–640PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bianchi ML (2015) Hypophosphatasia: an overview of the disease and its treatment. Osteoporos Int 26(12):2743–2757PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bishop N (2015) Clinical management of hypophosphatasia. Clin Cases Miner Bone Metab 12(2):170–173PubMedPubMedCentralGoogle Scholar
  8. Buchet R, Millán JL, Magne D (2013) Multisystemic functions of alkaline phosphatase. In: Millán JL (ed) Phosphatase modulators. Methods in molecular biology. Springer Science Business Media, Humana Press, New York, pp 27–51CrossRefGoogle Scholar
  9. Cahill RA, Wenkert D, Perlman SA, Steele A, Coburn SP, McAlister WH, Mumm S, Whyte MP (2007) Infantile hypophosphatasia: transplantation therapy trial using bone fragments and cultured osteoblasts. J Clin Endocrinol Metab 92(8):2923–2930PubMedCrossRefPubMedCentralGoogle Scholar
  10. Camacho PM, Painter S, Kadanoff R (2008) Treatment of adult hypophosphatasia with teriparatide. Endocr Pract 14(2):204–208PubMedCrossRefGoogle Scholar
  11. Camacho PM, Mazhari AM, Wilczynski C, Kadanoff R, Mumm S, Whyte MP (2016) Adult hypophosphatasia treated with teriparatide: report of two patients and review of the literature. Endocr Pract 22(8):941–950PubMedCrossRefGoogle Scholar
  12. Caswell AM, Whyte MP, Russell RG (1991) Hypophosphatasia and the extracellular metabolism of inorganic pyrophosphate: clinical and laboratory aspects. Crit Rev Clin Lab Sci 28(3):175–232PubMedCrossRefGoogle Scholar
  13. Cole DEC (2008) Hypophosphatasia update: recent advances in diagnosis and treatment. Clin Genet 73(3):232–235PubMedCrossRefPubMedCentralGoogle Scholar
  14. Collmann H, Mornet E, Gattenlohner S, Beck C, Girschick H (2009) Neurosurgical aspects of childhood hypophosphatasia. Childs Nerv Syst 25:217–223PubMedCrossRefGoogle Scholar
  15. Costain G, Moore AM, Munroe L, Williams A, Zlotnik Shaul R, Rockman-Greenberg C, Offringa M, Kannu P (2017) Enzyme replacement therapy in perinatal hypophosphatasia: case report of a negative outcome and lessons for clinical practice. Mol Genet Metab Rep 14:22–26PubMedCrossRefPubMedCentralGoogle Scholar
  16. Cundy T, Michigami T, Tachikawa K, Dray M, Collins JF, Paschalis EP, Gamsjaeger S, Roschger A, Fratzl-Zelman N, Roschger P, Klaushofer K (2015) Reversible deterioration in hypophosphatasia caused by renal failure with bisphosphonate treatment. J Bone Miner Res 30(9):1726–1737PubMedCrossRefGoogle Scholar
  17. Deeb AA, Bruce SN, Morris AAM, Cheetham TD (2000) Infantile hypophosphatasia: disappointing results of treatment. Acta Paedriatr 89(6):730–743CrossRefGoogle Scholar
  18. Doshi KB, Hamrahian AH, Licata AA (2009) Teriparatide treatment in adult hypophosphatasia in a patient exposed to bisphosphonate: a case report. Clin Cases Miner Bone Metab 6(3):266–269PubMedPubMedCentralGoogle Scholar
  19. Fallon MD, Teitelbaum SL, Weinstein RS, Goldfischer S, Brown DM, Whyte MP (1984) Hypophosphatasia: clinicopathologic comparison of the infantile, childhood, and adult forms. Medicine (Baltimore) 63(1):12–24CrossRefGoogle Scholar
  20. Fauvert D, Brun-Heath I, Lia-Baldini AS, Bellazi L, Taillandier A, Serre JL, de Mazancourt P, Mornet E (2009) Mild forms of hypophosphatasia mostly result from dominant negative effect of severe alleles or from compound heterozygosity for severe and moderate alleles. BMC Med Genet 10:51PubMedPubMedCentralCrossRefGoogle Scholar
  21. Fedde KN, Blair L, Silverstein J, Coburn SP, Ryan LM, Weinstein RS, Waymire K, Narisawa S, Millán JL, MacGregor GR, Whyte MP (1999) Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J Bone Miner Res 14(12):2015–2026PubMedPubMedCentralCrossRefGoogle Scholar
  22. Fonta C, Negyessy L, Renaud L, Barone P (2005) Postnatal development of alkaline phosphatase activity correlates with the maturation of neurotransmission in the cerebral cortex. J Comp Neurol 486(2):179–196PubMedCrossRefGoogle Scholar
  23. Foster BL, Nagatomo KJ, Tso HW, Tran AB, Nociti FH Jr, Narisawa S, Yadav MC, McKee MD, Millán JI, Somerman MJ (2013) Tooth root dentin mineralization defects in a mouse model of hypophosphatasia. J Bone Miner Res 28(2):271–282PubMedPubMedCentralCrossRefGoogle Scholar
  24. Fraser D (1957) Hypophosphatasia. Am J Med 22(5):730–746PubMedCrossRefGoogle Scholar
  25. Gagnon C, Sims NA, Mumm S, McAuley SA, Jung C, Poulton IJ, Ng KW, Ebeling PR (2010) Lack of sustained response to teriparatide in a patient with adult hypophosphatasia. J Clin Endocrinol Metab 95(3):1007–1012PubMedCrossRefGoogle Scholar
  26. Girschick HJ, Schneider P, Haubitz I, Hiort O, Collmann H, Beer M, Shin YS, Seyberth HW (2006) Effective NSAID treatment indicates that hyperprostaglandinism is affecting the clinical severity of childhood hypophosphatasia. Orphanet J Rare Dis 1:24PubMedPubMedCentralCrossRefGoogle Scholar
  27. Golub EE (2009) Role of matrix vesicles in biomineralization. Biochim Biophys Acta 1790(12):1592–1598PubMedPubMedCentralCrossRefGoogle Scholar
  28. Harmey D, Hessle L, Narisawa S, Johnson KA, Terkeltaub R, Millan JL (2004) Concerted regulation of inorganic pyrophosphate and osteopontin by akp2, enpp1, and ank: an integrated model of the pathogenesis of mineralization disorders. Am J Pathol 164(4):1199–1209PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hessle L, Johnson KA, Anderson HC, Narisawa S, Sali A, Goding JW, Terkeltaub R, Millan JL (2002) Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci U S A 99(14):9445–9449PubMedPubMedCentralCrossRefGoogle Scholar
  30. Hofmann C, Girschick HJ, Mentrup B, Graser S, Seefried L, Liese J, Jakob F (2013) Clinical aspects of hypophosphatasia: an update. Clin Rev Bone Miner Metab 11(2):60–70CrossRefGoogle Scholar
  31. Hofmann C, Girschick H, Mornet E, Schneider D, Jakob F, Mentrup B (2014) Unexpected high intrafamilial phenotypic variability observed in hypophosphatasia. Eur J Hum Genet 22(10):1160–1164PubMedPubMedCentralCrossRefGoogle Scholar
  32. Hofmann C, Seefried L, Jakob F (2016) Asfotase alfa: enzyme replacement for the treatment of bone disease in hypophosphatasia. Drugs Today (Barc) 52(5):271–285CrossRefGoogle Scholar
  33. Hoshi K, Amizuka N, Oda K, Ikehara Y, Ozawa H (1997) Immunolocalization of tissue non-specific alkaline phosphatase in mice. Histochem Cell Biol 107(3):183–191PubMedCrossRefPubMedCentralGoogle Scholar
  34. Iijima O, Miyake K, Watanabe A, Miyake N, Igarashi T, Kanokoda C, Nakamura-Takahashi A, Kinoshita H, Noguchi T, Abe S, Narisawa S, Millán JL, Okada T, Shimada T (2015) Prevention of lethal murine hypophosphatasia by neonatal ex vivo gene therapy using lentivirally transduced bone marrow cells. Hum Gene Ther 26(10):801–812PubMedPubMedCentralCrossRefGoogle Scholar
  35. Kermer V, Ritter M, Albuquerque B, Leib C, Stanke M, Zimmermann H (2010) Knockdown of tissue nonspecific alkaline phosphatase impairs neural stem cell proliferation and differentiation. Neurosci Lett 485(3):208–211PubMedCrossRefPubMedCentralGoogle Scholar
  36. Kishnani PS, Rockman-Greenberg C, Whyte MP, Weber T, Mhanni A, Madson K, Reeves A, Mack K, Plotkin H, Kreher N, Landy H (2012) Hypophosphatasia: enzyme replacement therapy (Asfotase alfa) decreases TNSALP substrate accumulation and improves functional outcome in affected adolescents and adults. Poster presented at the 2012 American College of Medical Genetics and Genomics Annual Meeting, Charlotte, NC, USA, March 27–31, 2012Google Scholar
  37. Kishnani PS, Rush ET, Arundel P, Bishop N, Dahir K, Fraser W, Harmatz P, Linglart A, Munn CF, Nunes ME, Saal HM, Seefried L, Ozono K (2017) Monitoring guidance for patients with hypophosphatasia treated with asfotase alfa. Mol Genet Metab 122(1–2):4–17PubMedCrossRefPubMedCentralGoogle Scholar
  38. Kitaoka T, Tajima T, Nagasaki K, Kikuchi T, Yamamoto K, Michigami T, Okada S, Fujiwara I, Kokaji M, Mochizuki H, Ogata T, Tatebayashi K, Watanabe A, Yatsuga S, Kubota T, Ozono K (2017) Safety and efficacy of treatment with asfotase alfa in patients with hypophosphatasia: results from a Japanese clinical trial. Clin Endocrinol 87(1):10–19CrossRefGoogle Scholar
  39. Laroche M (2012) Failure of teriparatide in treatment of bone complications of adult hypophosphatasia. Calcif Tissue Int 90(3):250PubMedCrossRefPubMedCentralGoogle Scholar
  40. Liese J, Hofmann C, Harmatz P, et al (2016) Efficacy and safety of asfotase alfa in patients with infantile hypophosphatasia treated for up to 3.5 years: results from a phase II, open-label, uncontrolled study. Proceedings of the 98th Annual Endocrine Society Meeting; Boston, MA; April 1–4, 2016Google Scholar
  41. Linglart A, Biosse-Duplan M (2016) Hypophosphatasia. Curr Osteoporos Rep 14(3):95–105PubMedCrossRefPubMedCentralGoogle Scholar
  42. Matsumoto T, Miyake K, Yamamoto S, Orimo H, Miyake N, Odagaki Y, Adachi K, Iijima O, Narisawa S, Millán JL, Fukunaga Y, Shimada T (2011) Rescue of severe infantile hypophosphatasia mice by AAV-mediated sustained expression of soluble alkaline phosphatase. Hum Gene Ther 22(11):1355–1364PubMedPubMedCentralCrossRefGoogle Scholar
  43. McKee MD, Nakano Y, Masica DL, Gray JJ, Lemire I, Heft R, Whyte MP, Crine P, Millán JL (2011) Enzyme replacement therapy prevents dental defects in a model of hypophosphatasia. J Dent Res 90(4):470–476PubMedPubMedCentralCrossRefGoogle Scholar
  44. Miao D, Scutt A (2002) Histochemical localization of alkaline phosphatase activity in decalcified bone and cartilage. J Histochem Cytochem 50(3):333–340PubMedCrossRefPubMedCentralGoogle Scholar
  45. Millán JL (2013) The role of phosphatases in the initiation of skeletal mineralization. Calcif Tissue Int 93(4):299–306PubMedCrossRefPubMedCentralGoogle Scholar
  46. Millán JL, Narisawa S, Lemire I, Loisel TP, Boileau G, Leonard P, Gramatikova S, Terkeltaub R, Camacho NP, McKee MD, Crine P, Whyte MP (2008) Enzyme replacement therapy for murine hypophosphatasia. J Bone Miner Res 23(6):777–787PubMedCrossRefGoogle Scholar
  47. Mornet E (2008) Hypophosphatasia. Best Pract Res Clin Rheumatol 22(1):113–127PubMedCrossRefPubMedCentralGoogle Scholar
  48. Mornet E (2017) Genetics of hypophosphatasia. Arch Pediatr 24(5S2):5S51–5S56PubMedCrossRefGoogle Scholar
  49. Mornet E (2018) Hypophosphatasia. Metabolism 82:142–155PubMedCrossRefPubMedCentralGoogle Scholar
  50. Mornet E, Nunes ME (2011) Hypophosphatasia. In: Pagon RA, Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong CT, Smith RJH, Stephens K (eds) GeneReviews® [Internet] 1993–2014. Seattle. http://www.ncbi.nlm.nih.gov/books/NBK1150/
  51. Mornet E, Yvard A, Taillandier A, Fauvert D, Simon-Bouy B (2011) A molecular-based estimation of the prevalence of hypophosphatasia in the European population. Ann Hum Genet 75(3):439–445PubMedCrossRefGoogle Scholar
  52. Okazaki Y, Kitajima H, Mochizuki N, Kitaoka T, Michigami T, Ozono K (2016) Lethal hypophosphatasia successfully treated with enzyme replacement from day 1 after birth. Eur J Pediatr 175(3):433–437PubMedCrossRefPubMedCentralGoogle Scholar
  53. Olsson A, Matsson L, Blomquist HK, Larsson A, Sjodin B (1996) Hypophosphatasia affecting the permanent dentition. J Oral Pathol Med 25(6):343–347PubMedCrossRefGoogle Scholar
  54. Orimo H (2010) The mechanism of mineralization and the role of alkaline phosphatase in health and disease. J Nippon Med Sch 77(1):4–12CrossRefGoogle Scholar
  55. Orimo H (2016) Pathophysiology of hypophosphatasia and the potential role of asfotase alfa. Ther Clin Risk Manag 12:777–786PubMedPubMedCentralCrossRefGoogle Scholar
  56. Orton NC, Innes AM, Chudley AE, Bech-Hansen NT (2008) Unique disease heritage of the Dutch-German Mennonite population. Am J Med Genet A 146A(8):1072–1087PubMedCrossRefGoogle Scholar
  57. Oyachi M, Harada D, Sakamoto N, Ueyama K, Kondo K, Kishimoto K, Izui M, Nagamatsu Y, Kashiwagi H, Yamamuro M, Tamura M, Kikuchi S, Akiyama T, Michigami T, Seino Y, Namba N (2018) A case of perinatal hypophosphatasia with a novel mutation in the ALPL gene: clinical course and review of the literature. Clin Pediatr Endocrinol 27(3):179–186PubMedPubMedCentralCrossRefGoogle Scholar
  58. Rathbun JC (1948) Hypophosphatasia: a new developmental anomaly. Am J Dis Child 75:822–831PubMedCrossRefPubMedCentralGoogle Scholar
  59. Remde H, Cooper MS, Quinkler M (2017) Successful Asfotase alfa treatment in an adult dialysis patient with childhood-onset hypophosphatasia. J Endocr Soc 1(9):1188–1193PubMedPubMedCentralCrossRefGoogle Scholar
  60. Rockman-Greenberg C (2013) Hypophosphatasia. Pediatr Endocrinol Rev 10(Suppl 2):380–388PubMedGoogle Scholar
  61. Rockman-Greenberg C, Vockley J, Harmatz P, Vallée M, Bedrosian CL, Hofmann C, Liese J (2014) Asfotase alfa improves skeletal mineralization and respiratory function in infants and young children with hypophosphatasia: results from up to 12 months’ treatment. Poster presented at the 2014 American College of Medical Genetics & Genomics Annual Meeting, Nashville, TN, USA, March 25–29, 2014Google Scholar
  62. Rodriguez E, Bober MB, Davey L, Zamora A, Li Puma AB, Chidekel A, Shaffer TH (2012) Respiratory mechanics in an infant with perinatal lethal hypophosphatasia treated with human recombinant enzyme replacement therapy. Pediatr Pulmonol 47(9):917–922PubMedCrossRefGoogle Scholar
  63. Schalin-Jäntti C, Mornet E, Lamminen A, Välimäki MJ (2010) Parathyroid hormone treatment improves pain and fracture healing in adult hypophosphatasia. J Clin Endocrinol Metab 95(12):5174–5149PubMedCrossRefGoogle Scholar
  64. Schinke T, McKee MD, Karsenty G (1999) Extracellular matrix calcification: where is the action? Nat Genet 21(12):150–151PubMedCrossRefGoogle Scholar
  65. Seefried L, Baumann J, Hemsley S, Hofmann C, Kunstmann E, Kiese B, Huang Y, Chivers S, Valentin MA, Borah B, Roubenoff R, Junker U, Jakob F (2017) Efficacy of anti-sclerostin monoclonal antibody BPS804 in adult patients with hypophosphatasia. J Clin Invest 127(6):2148–2158PubMedPubMedCentralCrossRefGoogle Scholar
  66. Shapiro JR, Lewiecki EM (2017) Hypophosphatasia in adults: clinical assessment and treatment considerations. J Bone Miner Res 32(10):1977–1980PubMedCrossRefPubMedCentralGoogle Scholar
  67. Silvent J, Gasse B, Mornet E, Sire JY (2014) Molecular evolution of the tissue-nonspecific alkaline phosphatase allows prediction and validation of missense mutations responsible for hypophosphatasia. J Biol Chem 289(35):24168–24179PubMedPubMedCentralCrossRefGoogle Scholar
  68. Simm PJ, Savarirayan R (2017) Successful use of enzyme replacement therapy in infantile hypophosphatasia. J Paediatr Child Health 53:925–926. (Letter to the Editor)PubMedCrossRefGoogle Scholar
  69. Smith M, Weiss MJ, Griffin CA, Murray JC, Buetow KH, Emanuel BS, Henthorn PS, Harris H (1988) Regional assignment of the gene for human liver/bone/kidney alkaline phosphatase to chromosome 1p36.1–p34. Genomics 2(2):139–143PubMedCrossRefPubMedCentralGoogle Scholar
  70. Strensiq® Alexion Prescription Information (2018). Available at: http://alexion.com/Documents/Strensiq_USPI.aspx. Accessed 27 Aug 2018
  71. Strensiq® Alexion Product Information (2018). Available at: http://strensiq.com/hcp/. Accessed 27 Aug 2018
  72. Sutton RA, Mumm S, Coburn SP, Ericson KL, Whyte MP (2012) “Atypical femoral fractures” during bisphosphonate exposure in adult hypophosphatasia. J Bone Miner Res 27(5):987–994PubMedCrossRefPubMedCentralGoogle Scholar
  73. Tadokoro M, Kanai R, Taketani T, Uchino Y, Yamaguchi S, Ohgushi H (2009) New bone formation by allogenic mesenchymal stem cell transplantation in a patient with perinatal hypophosphatasia. J Pediatr 154(6):924–930PubMedCrossRefPubMedCentralGoogle Scholar
  74. Taketani T, Kanai R, Abe M, Mishima S, Tadokoro M, Katsube Y, Yuba S, Ogushi H, Fukuda S, Yamaguchi S (2013) Therapy related Ph+ leukemia after both bone marrow and mesenchymal stem cell transplantation for hypophosphatasia. Pediatr Int 55(3):e52–e55PubMedCrossRefPubMedCentralGoogle Scholar
  75. Taketani T, Oyama C, Mihara A, Tanabe Y, Abe M, Hirade T, Yamamoto S, Bo R, Kanai R, Tadenuma T, Michibata Y, Yamamoto S, Hattori M, Katsube Y, Ohnishi H, Sasao M, Oda Y, Hattori K, Yuba S, Ohgushi H, Yamaguchi S (2015) Ex vivo expanded allogeneic mesenchymal stem cells with bone marrow transplantation improved osteogenesis in infants with severe hypophosphatasia. Cell Transplant 24(10):1931–1943PubMedCrossRefPubMedCentralGoogle Scholar
  76. van den Bos T, Handoko G, Niehof A, Ryan LM, Coburn SP, Whyte MP, Beertsen W (2005) Cementum and dentin in hypophosphatasia. J Dent Res 84(11):1021–1025PubMedCrossRefPubMedCentralGoogle Scholar
  77. Watanabe A, Karasugi T, Sawai H, Naing BT, Ikegawa S, Orimo H, Shimada T (2011) Prevalence of c.1559delT in ALPL, a common mutation resulting in the perinatal (lethal) form of hypophosphatasia in Japanese and effects of the mutation on heterozygous carriers. J Hum Genet 56(2):166–168PubMedCrossRefPubMedCentralGoogle Scholar
  78. Weiss MJ, Ray K, Henthorn PS, Lamb B, Kadesch T, Harris H (1988) Structure of the human liver/bone/kidney alkaline phosphatase gene. J Biol Chem 263(24):12002–12010PubMedPubMedCentralGoogle Scholar
  79. Weninger M, Stinson RA, Plenk H Jr, Böck P, Pollak A (1989) Biochemical and morphological effects of human hepatic alkaline hosphatase in a neonate with hypophosphatasia. Acta Paediatr Scand Suppl 360:154–160PubMedCrossRefPubMedCentralGoogle Scholar
  80. Wenkert D, Podgornik MN, Coburn SP, Ryan LM, Mumm S, Whyte MP (2002) Dietary phosphate restriction therapy for hypophosphatasia: preliminary observations. J Bone Miner Res 17(suppl 1):S384Google Scholar
  81. Wenkert D, McAlister WH, Coburn SP, Zerega JA, Ryan LM, Ericson KL, Hersh JH, Mumm S, Whyte MP (2011) Hypophosphatasia: nonlethal disease despite skeletal presentation in utero (17 new cases and literature review). J Bone Miner Res 26(10):2389–2398PubMedCrossRefPubMedCentralGoogle Scholar
  82. Wennberg C, Hessle L, Lundberg P, Mauro S, Narisawa S, Lerner UH, Millán JL (2000) Functional characterization of osteoblasts and osteoclasts from alkaline phosphatase knockout mice. J Bone Miner Res 15(10):1879–1888PubMedCrossRefPubMedCentralGoogle Scholar
  83. Whyte MP (2009) Atypical femoral fractures, bisphosphonates, and adult hypophosphatasia. J Bone Miner Res 24(6):1132–1134PubMedCrossRefPubMedCentralGoogle Scholar
  84. Whyte MP (2010) Physiological role of alkaline phosphatase explored in hypophosphatasia. Ann N Y Acad Sci 1192:190–200PubMedCrossRefPubMedCentralGoogle Scholar
  85. Whyte MP (2016) Hypophosphatasia – aetiology, nosology, pathogenesis, diagnosis and treatment. Nat Rev Endocrinol 12(4):233–246PubMedCrossRefPubMedCentralGoogle Scholar
  86. Whyte MP (2017a) Hypophosphatasia: enzyme replacement therapy brings new opportunities and new challenges. J Bone Miner Res 32(4):667–675PubMedCrossRefPubMedCentralGoogle Scholar
  87. Whyte MP (2017b) Hypophosphatasia: an overview for 2017. Bone 102(9):15–25PubMedCrossRefPubMedCentralGoogle Scholar
  88. Whyte MP, Valdes R Jr, Ryan LM, McAlister WH (1982) Infantile hypophosphatasia: enzyme replacement therapy by intravenous infusion of alkaline phosphatase-rich plasma from patients with Paget bone disease. J Pediatr 101(3):379–386PubMedCrossRefGoogle Scholar
  89. Whyte MP, Habib D, Coburn SP, Tecklenburg F, Ryan L, Fedde KN, Stinson RA (1992) Failure of hyperphosphatasemia by intravenous infusion of purified placental alkaline phosphatase (ALP) to correct severe hypophosphatasia: evidence against a role for circulating ALP in skeletal mineralization. J Bone Miner Res 7(Suppl1):S155Google Scholar
  90. Whyte MP, Kurtzberg J, McAlister WH, Mumm S, Podgornik MN, Coburn SP, Ryan LM, Miller CR, Gottesman GS, Smith AK, Douville J, Waters-Pick B, Armstrong RD, Martin PL (2003) Marrow cell transplantation for infantile hypophosphatasia. J Bone Miner Res 18(4):624–636PubMedCrossRefGoogle Scholar
  91. Whyte MP, Essmyer K, Geimer M, Mumm S (2006) Homozygosity for TNSALP mutation 1348c>T (Arg433Cys) causes infantile hypophosphatasia manifesting transient disease correction and variably lethal outcome in a kindred of black ancestry. J Pediatr 148(6):753–758PubMedCrossRefGoogle Scholar
  92. Whyte MP, Mumm S, Deal C (2007) Adult hypophosphatasia treated with teriparatide. J Clin Endocrinol Metab 92(4):1203–1208PubMedCrossRefGoogle Scholar
  93. Whyte MP, Greenberg CR, Salman NJ, Bober MB, McAlister WH, Wenkert D, Van Sickle BJ, Simmons JH, Edgar TS, Bauer ML, Hamdan MA, Bishop N, Lutz RE, McGinn M, Craig S, Moore JN, Taylor JW, Cleveland RH, Cranley WR, Lim R, Thacher TD, Mayhew JE, Downs M, Millán JL, Skrinar AM, Crine P, Landy H (2012a) Enzyme-replacement therapy in life-threatening hypophosphatasia. N Engl J Med 366(10):904–913PubMedCrossRefGoogle Scholar
  94. Whyte MP, Kishnani PS, Greenberg CR, Madson K, Mack K, Weber T, Mhanni A, Plotkin H, Kreher N, Landy H, Kreher N (2012b) Asfotase alfa decreases TNSALP substrate accumulation and improves functional outcomes in affected adolescents and adults. Bull Group Int Rech Sci Stomatol Odontol 51:35Google Scholar
  95. Whyte MP, Simmons JH, Bishop N, Lutz RE, Vallée M, Melian A, Odrljin T, for the Study 003-08 Investigators (2014) Asfotase alfa: sustained efficacy and tolerability in infants and young children with life-threatening hypophosphatasia. Poster presented at the 2014 Pediatric Academic Societies and Asian Society for Pediatric Research Joint Meeting, Vancouver, BC, Canada, May 3–6, 2014Google Scholar
  96. Whyte MP, Zhang F, Wenkert D, McAlister WH, Mack KE, Benigno MC, Coburn SP, Wagy S, Griffin DM, Ericson KL, Mumm S (2015) Hypophosphatasia: validation and expansion of the clinical nosology for children from 25 years experience with 173 pediatric patients. Bone 75(6):229–239PubMedCrossRefGoogle Scholar
  97. Whyte MP, Madson KL, Phillips D, Reeves A, McAlister WH, Yakimoski A, Mack KE, Hamilton K, Kagan K, Fujita KP, Thompson DD, Moseley S, Odrljin T, Rockman-Greenberg C (2016a) Asfotase alfa therapy for children with hypophosphatasia. JCI Insight 1(9):e85971PubMedPubMedCentralCrossRefGoogle Scholar
  98. Whyte MP, Rockman-Greenberg C, Ozono K, Riese R, Moseley S, Melian A, Thompson DD, Bishop N, Hofmann C (2016b) Asfotase alfa treatment improves survival for perinatal and infantile hypophosphatasia. J Clin Endocrinol Metab 101(1):334–342PubMedCrossRefPubMedCentralGoogle Scholar
  99. Whyte MP, Coburn SP, Ryan LM, Ericson KL, Zhang F (2018) Hypophosphatasia: biochemical hallmarks validate the expanded pediatric clinical nosology. Bone 110(5):96–106PubMedCrossRefPubMedCentralGoogle Scholar
  100. Wüster C, Ziegler R (1992) Reduced bone mineral density and low parathyroid hormone levels in patients with the adult form of hypophosphatasia. Clin Investig 70(7):560–565PubMedCrossRefGoogle Scholar
  101. Yadav MC, Lemire I, Leonard P, Boileau G, Blond L, Beliveau M, Cory E, Sah RL, Whyte MP, Crine P, Millán JL (2011) Dose response of bone-targeted enzyme replacement for murine hypophosphatasia. Bone 49(2):250–256PubMedPubMedCentralCrossRefGoogle Scholar
  102. Yamamoto S, Orimo H, Matsumoto T, Iijima O, Narisawa S, Maeda T, Millán JL, Shimada T (2011) Prolonged survival and henotypic correction of Akp2(−/−) hypophosphatasia mice by lentiviral gene therapy. J Bone Miner Res 26(1):135–142PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Experimental Laboratory for Children’s Bone Metabolism Research, Bone Metabolism UnitIstituto Auxologico Italiano IRCCSMilanItaly

Personalised recommendations