Skip to main content

Part of the book series: Springer Series in Computational Mathematics ((SSCM,volume 53))

  • 907 Accesses

Abstract

In the last two decades, a significant branch of research on dynamical systems with ordinary and partial differential equations has arisen within the global field of computer-assisted proofs and verified numerics. The authors of this book did not actively contribute to this subject, but we believe that some rough description of these approaches should be given here. However, we are not aiming at a complete overview of the results established in the dynamical systems community, but want to comment on what we believe are the main ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambrosi, D., Arioli, G., Koch, H.: A homoclinic solution for excitation waves on a contractile substratum. SIAM J. Appl. Dyn. Syst. 11(4), 1533–1542 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Arioli, G., Koch, H.: Non-radial solutions for some semilinear elliptic equations on the disk. Nonlinear Anal. Theory Methods Appl. 179, 294–308 (2019). https://doi.org/10.1016/j.na.2018.09.001

    MathSciNet  MATH  Google Scholar 

  3. Arioli, G., Koch, H.: Computer-assisted methods for the study of stationary solutions in dissipative systems, applied to the Kuramoto-Sivashinski equation. Arch. Ration. Mech. Anal. 197(3), 1033–1051 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Arioli, G., Koch, H.: Integration of dissipative partial differential equations: a case study. SIAM J. Appl. Dyn. Syst. 9(3), 1119–1133 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Arioli, G., Koch, H.: Non-symmetric low-index solutions for a symmetric boundary value problem. J. Differ. Equ. 252(1), 448–458 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Arioli, G., Koch, H.: Existence and stability of traveling pulse solutions of the FitzHugh-Nagumo equation. Nonlinear Anal. 113, 51–70 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Arioli, G., Koch, H., Terracini, S.: Two novel methods and multi-mode periodic solutions for the Fermi-Pasta-Ulam model. Commun. Math. Phys. 255(1), 1–19 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Arioli, G., Zgliczyński, P.: Symbolic dynamics for the Hénon-Heiles Hamiltonian on the critical level. J. Differ. Equ. 171(1), 173–202 (2001)

    MATH  Google Scholar 

  9. Breden, M., Lessard, J.-P.: Polynomial interpolation and a priori bootstrap for computer-assisted proofs in nonlinear ODEs. Discret. Contin. Dyn. Syst. Ser. B 23(7), 2825–2858 (2018). https://doi.org/10.3934/dcdsb.2018164

    MathSciNet  MATH  Google Scholar 

  10. Breden, M., Lessard, J.-P., Vanicat, M.: Global bifurcation diagrams of steady states of systems of PDEs via rigorous numerics: a 3-component reaction-diffusion system. Acta Appl. Math. 128, 113–152 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. I. Manifolds associated to non-resonant subspaces. Indiana Univ. Math. J. 52(2), 283–328 (2003)

    MATH  Google Scholar 

  12. Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. III. Overview and applications. J. Differ. Equ. 218(2), 444–515 (2005)

    MATH  Google Scholar 

  13. Cyranka, J.: Existence of globally attracting fixed points of viscous Burgers equation with constant forcing. A computer assisted proof. Topol. Methods Nonlinear Anal. 45(2), 655–697 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Cyranka, J., Wanner, T.: Computer-assisted proof of heteroclinic connections in the one-dimensional Ohta-Kawasaki Model. SIAM J. Appl. Dyn. Syst. 17(1), 694–731 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Cyranka, J., Zgliczyński, P.: Existence of globally attracting solutions for one-dimensional viscous Burgers equation with nonautonomous forcing—a computer assisted proof. SIAM J. Appl. Dyn. Syst. 14(2), 787–821 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Day, S., Junge, O., Mischaikow, K.: A rigorous numerical method for the global analysis of infinite-dimensional discrete dynamical systems. SIAM J. Appl. Dyn. Syst. 3(2), 117–160 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Day, S., Hiraoka, Y., Mischaikow, K., Ogawa, T.: Rigorous numerics for global dynamics: a study of the Swift-Hohenberg equation. SIAM J. Appl. Dyn. Syst. 4(1), 1–31 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Day, S., Lessard, J.-P., Mischaikow, K.: Validated continuation for equilibria of PDEs. SIAM J. Numer. Anal. 45(4), 1398–1424 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Eckmann, J.-P., Wittwer, P.: A complete proof of the Feigenbaum conjectures. J. Stat. Phys. 46(3–4), 455–475 (1987)

    MathSciNet  MATH  Google Scholar 

  20. Enciso, A., Gómez-Serrano, J., Vergar, B.: Convexity of Witham’s highest cusped wave. Submitted (2018)

    Google Scholar 

  21. Figueras, J.-L., de la Llave, R.: Numerical computations and computer assisted proofs of periodic orbits of the Kuramoto-Sivashinsky equation. SIAM J. Appl. Dyn. Syst. 16(2), 834–852 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Figueras, J.-L., Gameiro, M., Lessard, J.-P., de la Llave, R.: A framework for the numerical computation and a posteriori verification of invariant objects of evolution equations. SIAM J. Appl. Dyn. Syst. 16(2), 1070–1088 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Galias, Z., Zgliczyński, P.: Computer assisted proof of chaos in the Lorenz equations. Physica D 115(3–4), 165–188 (1998)

    MathSciNet  MATH  Google Scholar 

  24. Gameiro, M., Lessard, J.-P.: Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs. J. Differ. Equ. 249(9), 2237–2268 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Gameiro, M., Lessard, J.-P.: Efficient rigorous numerics for higher-dimensional PDEs via one-dimensional estimates. SIAM J. Numer. Anal. 51(4), 2063–2087 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Gameiro, M., Lessard, J.-P.: A posteriori verification of invariant objects of evolution equations: periodic orbits in the Kuramoto-Sivashinsky PDE. SIAM J. Appl. Dyn. Syst. 16(1), 687–728 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Gameiro, M., Lessard, J.-P., Mischaikow, K.: Validated continuation over large parameter ranges for equilibria of PDEs. Math. Comput. Simul. 79(4), 1368–1382 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Gidea, M., Zgliczyński, P.: Covering relations for multidimensional dynamical systems. II. J. Differ. Equ. 202(1), 59–80 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Gómez-Serrano, J.: Computer-assisted proofs in PDE: a survey. SeMA J. (2019). https://doi.org/10.1007/s40324-019-00186-x

    MathSciNet  MATH  Google Scholar 

  30. Gómez-Serrano, J., Granero-Belinchón, R.: On turning waves for the inhomogeneous Muskat problem: a computer-assisted proof. Nonlinearity 27(6), 1471–1498 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Haro, A., Canadell, M., Figueras, J.-L., Luque, A., Mondelo, J.-M.: The Parameterization Method for Invariant Manifolds. Volume 195 of Applied Mathematical Sciences. Springer, Cham (2016). From rigorous results to effective computations

    MATH  Google Scholar 

  32. Hungria, A., Lessard, J.-P., Mireles James, J.D.: Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach. Math. Comput. 85(299), 1427–1459 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Lanford, O.E., III.: A computer-assisted proof of the Feigenbaum conjectures. Bull. Am. Math. Soc. (N.S.) 6(3), 427–434 (1982)

    Google Scholar 

  34. Lessard, J.-P.: Continuation of solutions and studying delay differential equations via rigorous numerics. In: Rigorous Numerics in Dynamics. Proceedings of Symposia in Applied Mathematics, vol. 74, pp. 81–122. American Mathematical Society, Providence (2018)

    Google Scholar 

  35. Lessard, J.-P., Mireles James, J.D.: Computer assisted Fourier analysis in sequence spaces of varying regularity. SIAM J. Math. Anal. 49(1), 530–561 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Lessard, J.-P., Reinhardt, C.: Rigorous numerics for nonlinear differential equations using Chebyshev series. SIAM J. Numer. Anal. 52(1), 1–22 (2014)

    MathSciNet  MATH  Google Scholar 

  37. Lessard, J.-P., Sander, E., Wanner, T.: Rigorous continuation of bifurcation points in the diblock copolymer equation. J. Comput. Dyn. 4(1–2), 71–118 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Mireles James, J.D.: Validated numerics for equilibria of analytic vector fields: invariant manifolds and connecting orbits. In: Rigorous Numerics in Dynamics. Proceedings of Symposia in Applied Mathematics, vol. 74, pp. 27–80. American Mathematical Society, Providence (2018)

    Google Scholar 

  39. Mireles James, J.D., Mischaikow, K.: Rigorous a posteriori computation of (un)stable manifolds and connecting orbits for analytic maps. SIAM J. Appl. Dyn. Syst. 12(2), 957–1006 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Mischaikow, K.: Topological techniques for efficient rigorous computation in dynamics. Acta Numer. 11, 435–477 (2002)

    MathSciNet  MATH  Google Scholar 

  41. Mischaikow, K., Mrozek, M.: Chaos in the Lorenz equations: a computer-assisted proof. Bull. Am. Math. Soc. (N.S.) 32(1), 66–72 (1995)

    MathSciNet  MATH  Google Scholar 

  42. Mischaikow, K., Mrozek, M., Szymczak, A.: Chaos in the Lorenz equations: a computer assisted proof. III. Classical parameter values. J. Differ. Equ. 169(1), 17–56 (2001). Special issue in celebration of Jack K. Hale’s 70th birthday, Part 3, Atlanta/Lisbon, 1998

    Google Scholar 

  43. Sander, E., Wanner, T.: Validated saddle-node bifurcations and applications to lattice dynamical systems. SIAM J. Appl. Dyn. Syst. 15(3), 1690–1733 (2016)

    MathSciNet  MATH  Google Scholar 

  44. Tucker, W.: The Lorenz attractor exists. C. R. Acad. Sci. Paris Sér. I Math. 328(12), 1197–1202 (1999)

    MathSciNet  MATH  Google Scholar 

  45. Tucker, W.: A rigorous ODE solver and Smale’s 14th problem. Found. Comput. Math. 2(1), 53–117 (2002)

    MathSciNet  MATH  Google Scholar 

  46. van den Berg, J.B.: Introduction to rigorous numerics in dynamics: general functional analytic setup and an example that forces chaos. In: Rigorous Numerics in Dynamics. Proceedings of Symposia in Applied Mathematics, vol. 74, pp. 1–25. American Mathematical Society, Providence (2018)

    Google Scholar 

  47. van den Berg, J.B., Breden, M., Lessard, J.-P., Murray, M.: Continuation of homoclinic orbits in the suspension bridge equation: a computer-assisted proof. J. Differ. Equ. 264(5), 3086–3130 (2018)

    MathSciNet  MATH  Google Scholar 

  48. van den Berg, J.B., Lessard, J.-P.: Chaotic braided solutions via rigorous numerics: chaos in the Swift-Hohenberg equation. SIAM J. Appl. Dyn. Syst. 7(3), 988–1031 (2008)

    MathSciNet  MATH  Google Scholar 

  49. van den Berg, J.B., Lessard, J.-P.: Rigorous numerics in dynamics. Notices Am. Math. Soc. 62(9), 1057–1061 (2015)

    MathSciNet  MATH  Google Scholar 

  50. van den Berg, J.B., Lessard, J.-P., Mischaikow, K.: Global smooth solution curves using rigorous branch following. Math. Comput. 79(271), 1565–1584 (2010)

    MathSciNet  MATH  Google Scholar 

  51. van den Berg, J.B., Mireles-James, J.D., Lessard, J.-P., Mischaikow, K.: Rigorous numerics for symmetric connecting orbits: even homoclinics of the Gray-Scott equation. SIAM J. Math. Anal. 43(4), 1557–1594 (2011)

    MathSciNet  MATH  Google Scholar 

  52. Wilczak, D.: Chaos in the Kuramoto-Sivashinsky equations—a computer-assisted proof. J. Differ. Equ. 194(2), 433–459 (2003)

    MathSciNet  MATH  Google Scholar 

  53. Wilczak, D.: Symmetric heteroclinic connections in the Michelson system: a computer assisted proof. SIAM J. Appl. Dyn. Syst. 4(3), 489–514 (2005)

    MathSciNet  MATH  Google Scholar 

  54. Wilczak, D., Zgliczyński, P.: A geometric method for infinite-dimensional chaos: symbolic dynamics for the Kuramoto-Sivashinsky PDE on the line (Preprint)

    Google Scholar 

  55. Wilczak, D., Zgliczyński, P.: Period doubling in the Rössler system—a computer assisted proof. Found. Comput. Math. 9(5), 611–649 (2009)

    MathSciNet  MATH  Google Scholar 

  56. Zgliczyński, P.: Attracting fixed points for the Kuramoto-Sivashinsky equation: a computer assisted proof. SIAM J. Appl. Dyn. Syst. 1(2), 215–235 (2002). https://doi.org/10.1137/S111111110240176X

    MathSciNet  MATH  Google Scholar 

  57. Zgliczyński, P.: Trapping regions and an ODE-type proof of the existence and uniqueness theorem for Navier-Stokes equations with periodic boundary conditions on the plane. Univ. Iagel. Acta Math. 41, 89–113 (2003)

    MathSciNet  MATH  Google Scholar 

  58. Zgliczyński, P.: Rigorous numerics for dissipative partial differential equations. II. Periodic orbit for the Kuramoto-Sivashinsky PDE—a computer-assisted proof. Found. Comput. Math. 4(2), 157–185 (2004)

    MathSciNet  MATH  Google Scholar 

  59. Zgliczyński, P.: Rigorous numerics for dissipative PDEs III. An effective algorithm for rigorous integration of dissipative PDEs. Topol. Methods Nonlinear Anal. 36(2), 197–262 (2010)

    MATH  Google Scholar 

  60. Zgliczyński, P.: Steady state bifurcations for the Kuramoto-Sivashinsky equation: a computer assisted proof. J. Comput. Dyn. 2(1), 95–142 (2015)

    MathSciNet  MATH  Google Scholar 

  61. Zgliczyński, P., Gidea, M.: Covering relations for multidimensional dynamical systems. J. Differ. Equ. 202(1), 32–58 (2004)

    MathSciNet  MATH  Google Scholar 

  62. Zgliczyński, P., Mischaikow, K.: Rigorous numerics for partial differential equations: the Kuramoto-Sivashinsky equation. Found. Comput. Math. 1(3), 255–288 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakao, M.T., Plum, M., Watanabe, Y. (2019). Computer-Assisted Proofs for Dynamical Systems. In: Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations. Springer Series in Computational Mathematics, vol 53. Springer, Singapore. https://doi.org/10.1007/978-981-13-7669-6_11

Download citation

Publish with us

Policies and ethics