Skip to main content

Wetlands: A Major Natural Source Responsible for Methane Emission

  • Chapter
  • First Online:
Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment

Abstract

Methane (CH4), an important greenhouse gas (GHG), contributes ~33.0% to the total global GHGs emissions and accounts for 15–20% to the global warming. As the second most important human-generated GHG after CO2, CH4 is strongly linked with various climate phenomena. Most of the wetlands from tropics to temperate have been reported to have significantly enhanced emissions of CH4 during recent years. In wetland, microbial communities are a major determining factor in controlling the carbon cycle. The terrestrial wetlands are also among the key CH4 emitters and play a major role to climate change. The role of wetland expansion in CH4 emissions and its consequences on climate change and global warming might be a major concern for the future world. The methanogens and methanotrophs, two physiologically different microbial communities, seem to be crucial for future research investigations while comparing the CH4 production and consumption in wetland ecosystems. Anthropogenic disturbances related to wetlands are likely to influence the altering of microbial community composition of methanogens and methanotrophs and consequently net CH4 flux. The terrestrial wetlands have been reported to act as a source and sink for atmospheric CH4. Therefore, recent concerns about CH4 emission from terrestrial wetlands could be addressed properly because it is one of the major causes in contributing the status of CH4 in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi K (1999) Isolation of hydrogenotrophic methanogenic archaea from a subtropical paddy field. FEMS Microbiol Ecol 30:77–85

    Article  CAS  Google Scholar 

  • Akiyama H, Yan X, Yag K (2010) Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: meta-analysis. Glob Chang Biol 16:1837–1846

    Article  Google Scholar 

  • Antony CP, Murrell JC, Shouche YS (2012) Molecular diversity of methanogens and identification of Methanolobus sp. as active methylotrophic archaea in Lonar Crater Lake sediments. FEMS Microbiol Ecol 81:43–51

    Article  CAS  Google Scholar 

  • Asakawa S, Agakawa-Matsushita M, Morii H, Yago Y, Hayano K (1995) Characterization of Methanosarcina mazei TMA isolated from a paddy field soil. Curr Microbiol 31:34–38

    Article  CAS  Google Scholar 

  • Aselmann I, Crutzen PJ (1989) Global distribution of natural fresh-water wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J Atmos Chem 8:307–358

    Article  CAS  Google Scholar 

  • Aulakh MS, Bodenbender J, Wassmann R, Reenberg H (2000) Methane transport capacity of rice plants. II. Variations among different rice cultivars and relationship with morphological characteristics. Nutr Cycl Agroecosyst 58:367–375

    Article  CAS  Google Scholar 

  • Bergstrom I, Makela S, Kankaala P, Kortelainen P (2007) Methane efflux from littoral vegetation stands of southern boreal lakes: an upscaled regional estimate. Atmos Environ 41:339–351

    Article  CAS  Google Scholar 

  • Bhullar GS, Edwards PJ, Venterink HO (2014) Influence of different plant species on methane emissions from soil in a restored Swiss wetland. PLoS One 9(2):e89588

    Article  CAS  Google Scholar 

  • Boateng KK, Obeng GY, Mensah E (2017) Rice cultivation and greenhouse gas emissions: a review and conceptual framework with reference to Ghana. Agriculture 7:1–14

    Article  CAS  Google Scholar 

  • Bodelier PLE, Meima-Franke M, Zwart G, Laanbroek HJ (2005) New DGGE strategies for the analyses of methanotrophic microbial communities using different combinations of existing 16S rRNA-based primers. FEMS Microbiol Ecol 52:163–174

    Article  CAS  Google Scholar 

  • Borrel G, Jézéquel D, Biderre-Petit C, Morel-Desrosiers N, Morel JP, Peyret P, Fonty G, Lehours AC (2011) Production and consumption of methane in freshwater lake ecosystems. Res Microbiol 162:832–847

    Article  CAS  Google Scholar 

  • Bousquet P et al (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443:439–443

    Article  CAS  Google Scholar 

  • Bowman J (2006) The methanotrophs – the families methylococcaceae and methylocystaceae. Prokaryotes 5:266–289

    Article  Google Scholar 

  • Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of North American wetlands. Wetlands 26:889–916

    Article  Google Scholar 

  • Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q (2013) Methane emissions from wetlands: biogeochemical, microbial, and modelling perspectives from local to global scales. Glob Chang Biol 19:1325–1346

    Article  Google Scholar 

  • Chan ASK, Parkin TB (2000) Evaluation of potential inhibitors of methanogenesis and methane oxidation in a landfill cover soil. Soil Biol Biochem 32:1581–1590

    Article  CAS  Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V et al (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 1535

    Google Scholar 

  • Conrad R, Erkel C, Liesack W (2006) Rice Cluster I methanogens, an important group of Archaea producing greenhouse gas in soil. Curr Opin Biotechnol 17:262–267

    Article  CAS  Google Scholar 

  • Das S, Adhya TK (2012) Dynamics of methanogenesis and methanotrophy in tropical paddy soils as influenced by elevated CO2 and temperature interaction. Soil Biol Biochem 47:36–45

    Article  CAS  Google Scholar 

  • Das S, Ghosh A, Adhya TK (2011) Nitrous oxide and methane emission from a flooded rice field as influenced by separate and combined application of herbicides bensulfuron methyl and pretilachlor. Chemosphere 84:54–62

    Article  CAS  Google Scholar 

  • Datta A, Santrac SC, Adhya TK (2013) Effect of inorganic fertilizers (N, P, K) on methane emission from tropical rice field of India. Atmos Environ 66:123–130

    Article  CAS  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A et al (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 541–584

    Google Scholar 

  • Doornbos RF, Cornelis van Loon L, Bakker PAHM (2012) Impact of root exudates and plant defense signalling on bacterial communities in the rhizosphere: a review. Agron Sustain Dev 32:227–243

    Article  Google Scholar 

  • Dubey SK (2005) Microbial ecology of methane emission in rice agroecosystem: a review. Appl Ecol Environ Res 3(2):1–27

    Article  Google Scholar 

  • Epule ET, Peng C, Mafany NM (2011) Methane emissions from paddy rice fields: strategies towards achieving a win-win sustainability scenario between rice production and methane emission reduction. J Sustain Dev 4(6):188–196

    Article  Google Scholar 

  • Fangueiro D, Chadwick D, Dixon L, Grilo J, Walter N, Bol R (2010) Short term N2O, CH4 and CO2 production from soil sampled at different depths and amended with a fine sized slurry fraction. Chemosphere 81:100–108

    Article  CAS  Google Scholar 

  • Fazli P, Man HC, Shah UKM, Idris A (2013) Characteristics of methanogens and methanotrophs in rice fields: a review. Asia Pac J Mol Biol Biotechnol 21(1):3–17

    Google Scholar 

  • Ferry JG (2010) The chemical biology of methanogenesis. Review article. Plane Space Sci 581:775–1783

    Google Scholar 

  • Fetzer S, Bak F, Conrad R (1993) Sensitivity of methanogenic bacteria from paddy soils to oxygen and desiccation. FEMS Microbiol Ecol 12:107–115

    Article  CAS  Google Scholar 

  • Forster P, Ramaswamy P, Artaxo P et al (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 129–234

    Google Scholar 

  • Garcia IL (1990) Taxonomy and ecology of methanogens. FEMS Microbiol Rev 87:297–308

    Article  Google Scholar 

  • Ghosh S, Majumdar D, Jain MC (2003) Methane and nitrous oxide emissions from an irrigated rice of North India. Chemosphere 51:181–195

    Article  CAS  Google Scholar 

  • Godin A, McLaughlin JW, Webster K, Packalen M, Basiliko N (2012) Methane and methanogen community dynamics across a boreal peatland nutrient gradient. Soil Biol Biochem 48:96–105

    Article  CAS  Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Article  Google Scholar 

  • Hansen S, Maehlum JE, Bakken LK (1993) N2O and CH4 fluxes in soil influenced by fertilization and tractor traffic. Soil Biol Biochem 25:621–630

    Article  CAS  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 62:439–471

    Google Scholar 

  • He S, Malfatti SA, McFarland JW, Anderson FE, Pati A, Huntemann M, Tremblay J, Glavina del Rio T, Waldrop MP, Windham-Myers L, Tringe SG (2015) Patterns in wetland microbial community composition and functional gene repertoire associated with methane emissions. mBio 6(3):e00066–e00015

    CAS  Google Scholar 

  • Hoffmann T, Horz HP, Kemnitz D, Conrad R (2002) Diversity of the particulate methane monooxygenase gene in methanotrophic samples from different rice field soils in China and the Philippines. Syst Appl Microbiol 25:267–274

    Article  CAS  Google Scholar 

  • Holzapfel-Pschorn A, Conrad R, Seiler W (1986) Effects of vegetation on the emission of methane from submerged paddy soil. Plant Soil 92:223–233

    Article  CAS  Google Scholar 

  • Hwang K, Shin SG, Kim J, Hwang S (2008) Methanogenic profiles by denaturing gradient gel electrophoresis using order-specific primers in anaerobic sludge digestion. Appl Microbiol Biotechnol 80(2):269–276

    Article  CAS  Google Scholar 

  • Jerman V, Metje M, MandicMulec I, Frenzel P (2009) Wetland restoration and methanogenesis: the activity of microbial populations and competition for substrates at different temperatures. Biogeosciences 6:1127–1138

    Article  CAS  Google Scholar 

  • Johnson-Beebout SE, Angeles OR, Alberto MCR, Buresh RJ (2009) Simultaneous minimization of nitrous oxide and methane emission from rice paddy soils is improbable due to redox potential changes with depth in a greenhouse experiment without plants. Geoderma 149:45–53

    Article  CAS  Google Scholar 

  • Joulian C, Escoffier S, Lemer J, Neue HU, Roger PA (1997) Population and potential activities of methanogens and methanotrophs in rice fields: relation with soil properties. Eur J Soil Biol 33:105–166

    Google Scholar 

  • Khalil MAK, Rasmussen RA, Shearer MJ, Dalluge RW, Ren L, Duan CL (1998) Factors affecting methane emissions from rice fields. J Geophys Res Atmos 103(D19):25219–25231

    Article  CAS  Google Scholar 

  • Khosa MK, Sidhu BS, Benbi DK (2011) Methane emission from rice fields in relation to management of irrigation water. J Environ Biol 32:169–172

    Google Scholar 

  • Kirschke S et al (2009) Methane and nitrous oxide fluxes from a farmed Swedish Histosol. Eur J Soil Sci 60:321–331

    Article  CAS  Google Scholar 

  • Knowles R (1993) Methane: process of production and consumption. In: Peterson GA, Baenzinger PS, Luxmoore RJ (eds) Agricultural ecosystem effects on trace gases and global climate change. ASA, Madison, pp 145–178

    Google Scholar 

  • Laanbroek HJ (2010) Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review. Ann Bot 105:141–153

    Article  CAS  Google Scholar 

  • Lauren JC, Duxbury JM (1993) Methane emissions from flooded rice amended with a green manure. In: Peterson GA, Baenzinger PS, Luxmoore RJ (eds) Agricultural ecosystem effects on trace gases and global climate change. ASA, Madison, pp 183–192

    Google Scholar 

  • Li CS (2000) Modelling trace gas emission from agricultural ecosystem. Nutr Cycl Agroecosyst 58:259–267

    Article  CAS  Google Scholar 

  • Li D, Liu M, Cheng Y, Wang D, Qin J, Jiao J, Li H, Hua F (2011) Methane emissions from double-rice cropping system under conventional and no tillage in southeast China. Soil Tillage Res 113:77–81

    Article  Google Scholar 

  • Ma K, Lu Y (2011) Regulation of microbial methane production and oxidation by intermittent drainage in rice field soil. FEMS Microbiol Ecol 75:446–456

    Article  CAS  Google Scholar 

  • Malla G, Bhatia A, Pathak H, Prasad S, Jain N, Singh J (2005) Mitigating nitrous oxide and methane emissions from soil in rice–wheat system of the Indo-Gangetic plain with nitrification and urease inhibitors. Chemosphere 58:141–147

    Article  CAS  Google Scholar 

  • Mayumi D, Yoshimoto T, Uchiyama H, Nomura N, Nakajima-Kambe T (2010) Seasonal change in methanotrophic diversity and populations in a rice field soil assessed by DNA-stable isotope probing and quantitative Real-Time PCR. Microbes Environ 25(3):156–163

    Article  Google Scholar 

  • Melton JR et al (2013) Present state of global wetland extent and wetland methane modelling: conclusions from a model inter- comparison project (WETCHIMP). Biogeosciences 10:753–788

    Article  Google Scholar 

  • Min H, Chen ZY, Wu WX, Chen MC (2002) Microbial aerobic oxidation of methane in paddy soil. Nutr Cycl Agroecosyst 64(1–2):79–85

    Article  CAS  Google Scholar 

  • Mitsch W, Bernal B, Nahlik A, Mander Ü, Zhang L, Anderson C, Jørgensen S, Brix H (2013) Wetlands, carbon, and climate change. Landsc Ecol 28:583–597

    Article  Google Scholar 

  • Miyajima T, Wada E, Hanba YT, Vijarnsorn P (1997) Anaerobic mineralization of indigenous organic matters and methanogenesis in tropical wetland soils. Geochim Cosmochim Acta 61:3739–3751

    Article  CAS  Google Scholar 

  • Nema P, Nema S, Roy P (2012) An overview of global climate changing in current scenario and mitigation action. Renew Sustain Energy Rev 16:2329–2336

    Article  Google Scholar 

  • Newby DT, Reed DW, Petzke LM, Igoe AL, Delwiche ME, Roberto FF, McKinley JP, Whiticar MJ, Colwell FS (2004) Diversity of methanotroph communities in a basalt aquifer. FEMS Microbiol Ecol 48:333–344

    Article  CAS  Google Scholar 

  • Nivet C, Frazier S (2004) A review of European wetland inventory information. Report prepared in the framework of “A Pilot Study towards a Pan-European Wetland Inventory”, a cooperative project between Wetlands International and the Dutch Institute for Inland Water Management and Waste Water Treatment (RIZA). pp 1–262

    Google Scholar 

  • Nozhevnikova AN, Nekrasova V, Ammann A, Zehnder AJB, Wehrli B, Holliger C (2007) Influence of temperature and high acetate concentrations on methanogenesis in lake sediment slurries. FEMS Microbiol Ecol 62:336–344

    Article  CAS  Google Scholar 

  • Pazinato JM, Paulo EN, Mendes LW, Vazoller RF, Tsai SM (2010) Molecular characterization of the archaeal community in an Amazonian wetland soil and culture-dependent isolation of methanogenic archaea. Diversity 2:1026–1047

    Article  CAS  Google Scholar 

  • Petruzzella A, Marinho CC, Sanches LF, Minello M, Esteves FDA (2013) Magnitude and variability of methane production and concentration in tropical coastal lagoons sediments. Acta Limnol Brasil 25:341–351

    Article  CAS  Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stangen- Berger AG (1982) Soil carbon pools and world life zones. Nature 298:156–159

    Article  CAS  Google Scholar 

  • Rajgopal BS, Belay N, Daniel L (1988) Isolation and characterization of methanogenic bacteria from rice paddies. FEMS Microbiol Ecol 53:153–158

    Article  Google Scholar 

  • Reichardt W, Mascarina G, Padre B, Doll J (1997) Microbial communities of continuously cropped, irrigated rice fields. Appl Environ Microbiol 63:233–238

    CAS  Google Scholar 

  • Rosenthal G (2003) Selecting target species to evaluate the success of wet grassland restoration. Agric Ecosyst Environ 98:227–246

    Article  Google Scholar 

  • Rosenzweig A, Ragsdale SW (2011) Methanogenesis. In: Methods in methane metabolism, part A: methanogenesis. Academic Press Science, p 424

    Google Scholar 

  • Sass RL, Fischer FM Jr, Huang Y (2000) A process-based model for methane emission from irrigated rice fields: experimental basis and assumption. Nutr Cycl Agroecosyst 58:249–258

    Article  CAS  Google Scholar 

  • Schlesinger WH (1991) Biogeochemistry, an analysis of global change. Academic, New York, p 443

    Google Scholar 

  • Schütz H, Holzapfel-Pschorn A, Conrad R et al (1989) A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. J Geophys Res Atmos 94(D13):16405–16416

    Article  Google Scholar 

  • Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34:496–531

    Article  CAS  Google Scholar 

  • Singh SN (2009) Environmental science and engineering, climate change and crops, p 384

    Google Scholar 

  • Singh JS, Gupta VK (2016) Degraded land restoration in reinstating CH4 sink. Front Microbiol 7:923

    Google Scholar 

  • Singh JS, Strong PJ (2016) Biologically derived fertilizer: a multifaceted bio-tool in methane mitigation. Ecotoxicol Environ Saf 124:267–276

    Article  CAS  Google Scholar 

  • Singh S, Kulshreshtha K, Agnihotri S (2000) Seasonal dynamics of methane emission from wetlands. Chemosphere 2:39–46

    CAS  Google Scholar 

  • Singh JS, Pandey VC, Singh DP, Singh RP (2010) Influence of pyrite and farmyard manure on population dynamics of soil methanotroph and rice yield in saline rain-fed paddy field. Agric Ecosyst Environ 139:74–79

    Article  Google Scholar 

  • Singh R, Upadhyay AK, Chandra P, Singh DP (2018) Sodium chloride incites reactive oxygen species in green algae Chlorococcum humicola and Chlorella vulgaris: implication on lipid synthesis, mineral nutrients and antioxidant system. Bioresour Technol 270:489–497

    Article  CAS  Google Scholar 

  • Smith KA, McTaggart IP, Tsuruta H (1997) Emissions of N2O and NO associated with nitrogen fertilization in intensive agriculture, and the potential for mitigation. Soil Biol Biochem 48:96–105

    Google Scholar 

  • Solomon S, Qin D, Manning M, Averyt K, Marquis M (2007) Climate change 2007-the physical science basis: working group I contribution to the fourth assessment report of the IPCC (4). Cambridge University Press, Cambridge

    Google Scholar 

  • Sugano A, Tsuchimoto H, Cho TC, Kimura M, Asakawa S (2005) Succession of methanogenic archaea in rice straw incorporated into a Japanese rice field: estimation by PCR-DGGE and sequence analyses. Archaea 1:391–397

    Article  CAS  Google Scholar 

  • Sutton-Grier AE, Megonigal JP (2011) Plant species traits regulate methane production in freshwater wetland soils. Soil Biol Biochem 43:413–420

    Article  CAS  Google Scholar 

  • Tang J, Zhuang Q, Shannon RD, White JR (2010) Quantifying wetland methane emissions with process-based models of different complexities. Biogeosciences 7:3817–3837

    Article  CAS  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2011) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Tiwari S, Singh JS, Singh DP (2015) Methanotrophs and CH4 sink: effect of human activity and ecological perturbations. Clim Chang Environ Sustain 3(1):35–50

    Article  Google Scholar 

  • Tyagi L, Kumari B, Singh SN (2010) Water management-a tool for methane mitigation from irrigated paddy fields. Sci Total Environ 408:1085–1090

    Article  CAS  Google Scholar 

  • Van Amstel A (2012) Methane. A review. J Integr Environ Sci 9(sup1):5–30

    Article  Google Scholar 

  • Vishwakarma P, Dubey SK (2010) Diversity of methanotrophs in urea-fertilized tropical rice agroecosystem. Indian J Microbiol 50:205–211

    Article  CAS  Google Scholar 

  • Wang JS, Logan JA, McElroy MB, Duncan BN, Megretskaia IA, Yantosca RM (2004) A 3-D model analysis of the slow down and inter annual variability in the methane growth rate from 1988 to 1997. Glob Biogeochem Cycles 18:GB3011

    Article  CAS  Google Scholar 

  • Wang G, Watanabe T, Jin J, Liu X, Kimura M, Asakawa S (2010) Methanogenic archaeal communities in paddy field soils in north-east China as evaluated by PCR-DGGE, sequencing and real-time PCR analyses. Soil Sci Plant Nutr 56:831–838

    Article  CAS  Google Scholar 

  • Wassmann R, Lantin SR, Neue H-U (eds) (2000) Methane emissions from major rice ecosystems in Asia. Kluwer Academic Publishers, Dordrecht, p 394

    Google Scholar 

  • Watanabe T, Kimura M, Asakawa S (2009) Distinct members of a stable methanogenic archaeal community transcribe mcrA genes under flooded and drained conditions in Japanese paddy field soil. Soil Biol Biochem 41:276–285

    Article  CAS  Google Scholar 

  • Watanabe T, Hosen Y, Agbisit R, Llorca L, Fujita D, Asakawa S, Kimura M (2010) Changes in community structure and transcriptional activity of methanogenic archaea in a paddy field soil brought about by a water-saving practice – estimation by PCR-DGGE and qPCR of 16S rDNA and 16S rRNA. 19th World Congress of Soil Science, Soil solutions for a changing world 1–6 August 2010, Brisbane, Australia. Published on DVD

    Google Scholar 

  • Whiting GJ, Chanton JP (2001) Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus 53B:521–528

    CAS  Google Scholar 

  • Win KT, Nonaka R, Win AT, Sasada Y, Toyota K, Motobayashi T, Hosomi M (2011) Comparison of methanotrophic bacteria, methane oxidation activity, and methane emission in rice fields fertilized with anaerobically digested slurry between fodder rice and a normal rice variety. Paddy Water Environ. https://doi.org/10.1007/s10333-011-0279-x

    Article  Google Scholar 

  • Wu L, Ma K, Li Q, Ke X, Lu Y (2009) Composition of archaeal community in a paddy field as affected by rice cultivar and N fertilizer. Microb Ecol 58:819–826

    Article  CAS  Google Scholar 

  • Xu S, Jaffé PR, Mauzerall DL (2007) A process-based model for methane emission from flooded rice paddy systems. Ecol Model 205:475–491

    Article  CAS  Google Scholar 

  • Xuan DT, Guong VT, Rosling A, Alström S, Chai B, Högberg N (2011) Different crop rotation systems as drivers of change in soil bacterial community structure and yield of rice, Oryza sativa. Biol Fertil Soils. https://doi.org/10.1007/s00374-011-0618-5

    Article  Google Scholar 

  • Yang SS, Chang HL (1998) Effect of environmental conditions on methane production and emission from paddy soil. Agric Ecosyst Environ 69:69–80

    Article  CAS  Google Scholar 

  • Yao H, Wen Z, Xunhua Z, Shenghui H, Yongqiang Y (2006) Estimates of methane emissions from Chinese rice paddies by linking a model to GIS database. Acta Ecol Sin 26(4):980–988

    Article  Google Scholar 

  • Yue J, Shi Y, Zheng X, Huang G, Zhu J (2007) The influence of free-air CO2 enrichment on microorganisms of a paddy soil in the rice-growing season. Appl Soil Ecol 35:154–162

    Article  Google Scholar 

  • Yvon-Durocher G, Allen AP, Bastviken D, Conrad R, Gu-dasz C, St-Pierre A, Thanh-Duc N, del Giorgio PA (2014) Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507:488–491

    Article  CAS  Google Scholar 

  • Zhang JS, Zhang FP, Yang JH, Wang JP, Cai ML, Li CF, Cao CG (2011) Emissions of N2O and NH3, and nitrogen leaching from direct seeded rice under different tillage practices in central China. Agric Ecosyst Environ 140:164–173

    Article  CAS  Google Scholar 

  • Zhang Z, Zimmermann NE, Stenke A, Li X, Hodson EL, Zhu G, Huang C, Poulter B (2017) Emerging role of wetland methane emissions in driving 21st century climate change. PNAS 114(36):9647–9652

    Article  CAS  Google Scholar 

  • Zhao X, Jia H, Cao J (2011) Study on mitigation strategies of methane emission from rice paddies in the implementation of ecological agriculture. Energy Procedia 5:2474–2480

    Article  CAS  Google Scholar 

  • Zheng Y, Zhang LM, Zheng YM, Di H, He JZ (2008) Abundance and community composition of methanotrophs in a Chinese paddy soil under long-term fertilization practices. J Soils Sediments 8:406–414

    Article  CAS  Google Scholar 

  • Zhuang Q, Melillo JM, Sarofim MC et al (2006) CO2 and CH4 exchanges between land ecosystems and the atmosphere in northern high latitudes over the 21st century. Geophys Res Lett 33:L17403

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiwari, S., Singh, C., Singh, J.S. (2020). Wetlands: A Major Natural Source Responsible for Methane Emission. In: Upadhyay, A., Singh, R., Singh, D. (eds) Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-7665-8_5

Download citation

Publish with us

Policies and ethics