Skip to main content

Wastewater Treatment Through Nanotechnology: Role and Prospects

  • Chapter
  • First Online:
Book cover Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment

Abstract

Water is a most crucial and limited resource on the Earth, which has contaminated due to the addition of heavy metals, pathogens, pesticides, and many organic and inorganic substances. Currently, the research has been focused on the sustainable remediation approach for waste reclamation. Therefore, an affordable technology of wastewater treatment could tackle the problem of water. Nanotechnology is an efficient, affordable, effective, and durable method for water treatment. Nanomaterials have several properties such as specific surface area, high reactivity, high degree of functionalization, size-dependent properties, etc., which make them appropriate materials in wastewater treatment. The present chapter comprehensively describes the characteristics of different nanomaterials and their role in the restoration of aquatic ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addo Ntim S, Mitra S (2011) Removal of trace arsenic to meet drinking water standards using iron oxide coated multiwall carbon nanotubes. J Chem Eng Data 56:2077–2083

    Article  CAS  Google Scholar 

  • Ahmaruzzaman M (2008) Adsorption of phenolic compounds on low-cost adsorbents: a review. Adv Colloid Inter Sci 143:48–67

    Article  CAS  Google Scholar 

  • Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  CAS  Google Scholar 

  • Amin M, Alazba A, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng 2014:1–24

    Article  CAS  Google Scholar 

  • Anjum M, Miandad R, Waqas M, Gehany F, Barakat M (2016) Remediation of wastewater using various nano-materials. Arab J Chem. https://doi.org/10.1016/j.arabjc.2016.10.004

  • Badger T (2006) Aquatic Treatment Systems Inc,. Water purification and disinfection device and method. U.S. Patent Application 11/320,199

    Google Scholar 

  • Bahgat M, Farghali A, El Rouby W, Khedr M (2011) Synthesis and modification of multi-walled carbon nano-tubes (MWCNTs) for water treatment applications. J Anal Appl Pyrol 92:307–313

    Article  CAS  Google Scholar 

  • Bibby A, Mercier L (2002) Mercury (II) ion adsorption behavior in thiol-functionalized mesoporous silica microspheres. Chem Mat 14:1591–1597

    Article  CAS  Google Scholar 

  • Boparai HK, Joseph M, O’Carroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nanozerovalent iron particles. J Hazard Mater 186:458–465

    Article  CAS  Google Scholar 

  • Braeunling V, Stahl U, Felber U, Bader R, Schacht H, Freudenberg Carl KG (2006) Adsorption filter. U.S. Patent Application 11/290,290

    Google Scholar 

  • Cai GB, Zhao GX, Wang XK, Yu SH (2010) Synthesis of polyacrylic acid stabilized amorphous calcium carbonate nanoparticles and their application for removal of toxic heavy metal ions in water. J Phys Chem C 114:12948–12954

    Article  CAS  Google Scholar 

  • Chaturvedi VK, Singh A, Singh VK, Singh MP (2018) Cancer nanotechnology: a new revolution for cancer diagnosis and therapy. Curr Drug Metabol. https://doi.org/10.2174/1389200219666180918111528

  • Chen G (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38:11–41

    Article  CAS  Google Scholar 

  • Chen D, Feng H, Li J (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112:6027–6053

    Article  CAS  Google Scholar 

  • Chen D, Awut T, Liu B, Ma Y, Wang T, Nurulla I (2016) Functionalized magnetic Fe3O4 nanoparticles for removal of heavy metal ions from aqueous solutions. e-Polymers 16:313–322

    CAS  Google Scholar 

  • Chen F, Gong AS, Zhu M, Chen G, Lacey SD, Jiang F, Li Y, Wang Y, Dai J, Yao Y, Song J (2017) Mesoporous, three-dimensional wood membrane decorated with nanoparticles for highly efficient water treatment. ACS Nano 11:4275–4282

    Article  CAS  Google Scholar 

  • Chong MN, Jin B, Chow CW, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027

    Article  CAS  Google Scholar 

  • Cooper CH, Cummings AG, Starostin MY, Honsinger CP, Seldon Technologies LLC, (2008) Nanomesh article and method of using the same for purifying fluids. U.S. Patent 7,419,601

    Google Scholar 

  • Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211:112–125

    Article  CAS  Google Scholar 

  • Das R, Ali ME, Hamid SBA, Ramakrishna S, Chowdhury ZZ (2014) Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336:97–109

    Article  CAS  Google Scholar 

  • Diallo MS (2008) Water treatment by dendrimer enhanced filtration. U.S. Patent 7,470,369

    Google Scholar 

  • Eisazadeh H (2007) Removal of chromium from waste water using polyaniline. J Appl Polym Sci 104:1964–1967

    Article  CAS  Google Scholar 

  • Esmaeili A, Entezari MH (2016) Sonosynthesis of an Ag/AgBr/Graphene-oxide nanocomposite as a solar photocatalyst for efficient degradation of methyl orange. J Coll Inter Sci 466:227–237

    Article  CAS  Google Scholar 

  • Ferroudj N, Nzimoto J, Davidson A, Talbot D, Briot E, Dupuis V, Abramson S (2013) Maghemite nanoparticles and maghemite/silica nanocomposite microspheres as magnetic Fenton catalysts for the removal of water pollutants. Appl Catal B Environ 136:9–18

    Article  CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418

    Article  CAS  Google Scholar 

  • Fujishima S, Kurita Water Industries Ltd (2009) Method and equipment for biological treatment of organic wastewater. U.S. Patent Application 12/285, 955

    Google Scholar 

  • Gao M, Xue J, Zhao P, Ye J, Liang Y, Hou X, Gao L, Liu L, Chai B (2003) Process for biochemical treatment of waste water using nano materials. U.S. Patent Application 10/125,327

    Google Scholar 

  • Gao Y, Li Y, Zhang L, Huang H, Hu J, Shah S, Su X (2012) Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J Coll Inter Sci 368:540–546

    Article  CAS  Google Scholar 

  • Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112:6156–6214

    Article  CAS  Google Scholar 

  • Ghaly MY, Jamil TS, El-Seesy IE, Souaya ER, Nasr RA (2011) Treatment of highly polluted paper mill wastewater by solar photocatalytic oxidation with synthesized nano TiO2. Chem Eng J 168:446–454

    Article  CAS  Google Scholar 

  • Grey D, Garrick D, Blackmore D, Kelman J, Muller M, Sadoff C (2013) Water security in one blue planet: twenty-first century policy challenges for science. Phil Trans R Soc A 371(2002):20120406

    Article  CAS  Google Scholar 

  • Huang SH, Chen DH (2009) Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J Hazard Mater 163:174–179

    Article  CAS  Google Scholar 

  • Huang MR, Peng QY, Li XG (2006) Rapid and effective adsorption of lead ions on fine poly (phenylenediamine) microparticles. Chem A Eur J 12:4341–4350

    Article  CAS  Google Scholar 

  • Huang MR, Huang SJ, Li XG (2011) Facile synthesis of polysulfoaminoanthraquinone nanosorbents for rapid removal and ultrasensitive fluorescent detection of heavy metal ions. J Phys Chem C 115:5301–5315

    Article  CAS  Google Scholar 

  • Huang Y, Li J, Chen X, Wang X (2014) Applications of conjugated polymer based composites in wastewater purification. RSC Adv 4:62160–62178

    Article  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  • Jain M, Yadav M, Kohout T, Lahtinen M, Garg VK, Sillanpää M (2018) Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr (VI), Cu (II) and Cd (II) ions from aqueous solution. Water Resour Ind 20:54–74

    Article  Google Scholar 

  • Kang S, Mauter MS, Elimelech M (2008) Physicochemical determinants of multi walled carbon nanotube bacterial cytotoxicity. Environ Sci Technol 42:7528–7534

    Article  CAS  Google Scholar 

  • Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna S (2012) A review on nanomaterials for environmental remediation. Energy Environ Sci 5:8075–8109

    Article  CAS  Google Scholar 

  • Kim SA, Kamala-Kannan S, Lee KJ, Park YJ, Shea PJ, Lee WH, Oh BT (2013) Removal of Pb (II) from aqueous solution by a zeolite–nanoscale zero-valent iron composite. Chem Eng J 217:54–60

    Article  CAS  Google Scholar 

  • Kiser MA, Westerhoff P, Benn T, Wang Y, Perez-Rivera J, Hristovski K (2009) Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol 43:6757–6763

    Article  CAS  Google Scholar 

  • Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  • Kumar R, Khan MA, Haq N (2014) Application of carbon nanotubes in heavy metals remediation. Crit Rev Environ Sci Technol 44:1000–1035

    Article  CAS  Google Scholar 

  • Kumari MM, Jacob J, Philip D (2015) Green synthesis and applications of Au–Ag bimetallic nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 137:185–192

    Article  CAS  Google Scholar 

  • Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL (2006) A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 36:189–217

    Article  CAS  Google Scholar 

  • Lecoanet HF, Bottero JY, Wiesner MR (2004) Laboratory assessment of the mobility of nanomaterials in porous media. Environ Sci Technol 38:5164–5169

    Article  CAS  Google Scholar 

  • Li H, Shan C, Zhang Y, Cai J, Zhang W, Pan B (2016) Arsenate adsorption by hydrous ferric oxide nanoparticles embedded in cross-linked anion exchanger: effect of the host pore structure. ACS Appl Mater Inter 8:3012–3020

    Article  CAS  Google Scholar 

  • Liu J, Ma Y, Xu T, Shao G (2010) Preparation of zwitterionic hybrid polymer and its application for the removal of heavy metal ions from water. J Hazard Mater 178:1021–1029

    Article  CAS  Google Scholar 

  • Liu F, Chung S, Oh G, Seo TS (2012) Three-dimensional graphene oxide nanostructure for fast and efficient water-soluble dye removal. ACS Appl Mater Inter 4:922–927

    Article  CAS  Google Scholar 

  • Liu T, Wang ZL, Yan X, Zhang B (2014) Removal of mercury (II) and chromium (VI) from wastewater using a new and effective composite: pumice-supported nanoscale zero-valent iron. Chem Eng J 245:34–40

    Article  CAS  Google Scholar 

  • Lu N, Zhou SG, Zhuang L, Zhang JT, Ni JR (2009) Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochem Eng J 43:246–251

    Article  CAS  Google Scholar 

  • Lu H, Wang J, Stoller M, Wang T, Bao Y, Hao H (2016) An overview of nanomaterials for water and wastewater treatment. Adv Mater Sci Eng 2016:1–10

    Google Scholar 

  • Mahdavian AR, Mirrahimi MAS (2010) Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chem Eng J 159:264–271

    Article  CAS  Google Scholar 

  • Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Cat Today 147:1–59

    Article  CAS  Google Scholar 

  • Mishra S et al (2018) Heavy metal contamination: an alarming threat to environment and human health. In: Sobti RS, Arora NK, Kothari R (eds) Environmental biotechnology: for sustainable future. Springer Nature Singapore, Singapore, pp 103–125. ISBN 978-981-10-7284-0

    Google Scholar 

  • Monllor-Satoca D, Lana-Villarreal T, Gómez R (2011) Effect of surface fluorination on the electrochemical and photoelectrocatalytic properties of nanoporous titanium dioxide electrodes. Langmuir 27:15312–15321

    Article  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346

    Article  CAS  Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453

    Article  CAS  Google Scholar 

  • Muñoz-Fernandez L, Sierra-Fernández A, Milošević O, Rabanal ME (2016) Solvothermal synthesis of Ag/ZnO and Pt/ZnO nanocomposites and comparison of their photocatalytic behaviors on dyes degradation. Adv Powder Technol 27:983–993

    Article  CAS  Google Scholar 

  • Nakamura E, Isobe H (2003) Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Account Chem Res 36:807–815

    Article  CAS  Google Scholar 

  • Nakata K, Ochiai T, Murakami T, Fujishima A (2012) Photoenergy conversion with TiO2 photocatalysis: new materials and recent applications. Electrochim Acta 84:103–111

    Article  CAS  Google Scholar 

  • Neyaz N, Siddiqui WA, Nair KK (2014) Application of surface functionalized iron oxide nanomaterials as a nanosorbents in extraction of toxic heavy metals from ground water: a review. Int J Environ Sci 4:472

    CAS  Google Scholar 

  • Ngah WW, Teong LC, Hanafiah MAKM (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83:1446–1456

    Article  CAS  Google Scholar 

  • O’Brien PW, Engel M, Miracle Straw Corp Inc (2013) Double chamber water purification device. U.S. Patent 8,425,771

    Google Scholar 

  • Oliveira LC, Rios RV, Fabris JD, Sapag K, Garg VK, Lago RM (2003) Clay–iron oxide magnetic composites for the adsorption of contaminants in water. Appl Clay Sci 22:169–177

    Article  CAS  Google Scholar 

  • Pavlidou S, Papaspyrides C (2008) A review on polymer–layered silicate nanocomposites. Prog Poly Sci 33:1119–1198

    Article  CAS  Google Scholar 

  • Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PS, Hamilton JW, Byrne JA, O’shea K, Entezari MH (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349

    Article  CAS  Google Scholar 

  • Pendergast MM, Hoek EM (2011) A review of water treatment membrane nanotechnologies. Energy Environ Sci 4:1946–1971

    Article  CAS  Google Scholar 

  • Politano AD, Campbell KT, Rosenberger LH, Sawyer RG (2013) Use of silver in the prevention and treatment of infections: silver review. Surg Inf 14:8–20

    Article  Google Scholar 

  • Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr (VI) and Pb (II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569

    Article  CAS  Google Scholar 

  • Pradeep T (2009) Noble metal nanoparticles for water purification: a critical review. Thin Solid Films 517:6441–6478

    Article  CAS  Google Scholar 

  • Pradeep T, Maliyekkal SM, Sreenivasan ST, Indian Institutes of Technology (2013) Reduced graphene oxide-based-composites for the purification of water. U.S. Patent Application 13/820,403

    Google Scholar 

  • Pyrzyńska K, Bystrzejewski M (2010) Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles. Coll Surf A Physicochem Eng Asp 362:102–109

    Article  CAS  Google Scholar 

  • Ramnani P, Saucedo NM, Mulchandani A (2016) Carbon nanomaterial-based electrochemical biosensors for label-free sensing of environmental pollutants. Chemosphere 143:85–98

    Article  CAS  Google Scholar 

  • Reinhart DR, Berge ND, Santra S, Bolyard SC (2010) Emerging contaminants: nanomaterial fate in landfills. Waste Manag 30:2020–2021

    Article  Google Scholar 

  • Sajanlal PR, Pradeep T (2008) Electric-field-assisted growth of highly uniform and oriented gold nanotriangles on conducting glass substrates. Adv Mater 20:980–983

    Article  CAS  Google Scholar 

  • Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nano Res 7:331–342

    Article  CAS  Google Scholar 

  • Su Y, Adeleye AS, Huang Y, Sun X, Dai C, Zhou X, Keller AA (2014) Simultaneous removal of cadmium and nitrate in aqueous media by nanoscalezerovalent iron (nZVI) and Au doped nZVI particles. Water Res 63:102–111

    Article  CAS  Google Scholar 

  • Sun Y, Wang G, Yan K (2011) TiO2 nanotubes for hydrogen generation by photocatalytic water splitting in a two-compartment photoelectrochemical cell. Int J Hydro Energy 36:15502–15508

    Article  CAS  Google Scholar 

  • Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136

    Article  CAS  Google Scholar 

  • Tepper F, Kaledin LA (2008) Drinking water filtration device. U.S. Patent 7, 390,343

    Google Scholar 

  • Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34:43–69

    Article  CAS  Google Scholar 

  • Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912

    Article  CAS  Google Scholar 

  • Tofighy MA, Mohammadi T (2011) Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J Hazard Mater 185:140–147

    Article  CAS  Google Scholar 

  • Tsydenova O, Batoev V, Batoeva A (2015) Solar-enhanced advanced oxidation processes for water treatment: simultaneous removal of pathogens and chemical pollutants. Int J Environ Res Public Health 12:9542–9561

    Article  CAS  Google Scholar 

  • Upadhyayula VK, Deng S, Mitchell MC, Smith GB (2009) Application of carbon nanotube technology for removal of contaminants in drinking water: a review. Sci Total Environ 408:1–13

    Article  CAS  Google Scholar 

  • VanGrieken R, Marugán J, Sordo C, Martínez P, Pablos C (2009) Photocatalytic inactivation of bacteria in water using suspended and immobilized silver-TiO2. Appl Catal B Environ 93:112–118

    Article  CAS  Google Scholar 

  • Wan MW, Kan CC, Rogel BD, Dalida MLP (2010) Adsorption of copper (II) and lead (II) ions from aqueous solution on chitosan-coated sand. Carbohydr Polym 80:891–899

    Article  CAS  Google Scholar 

  • Wang H, Lewis JP (2005) Effects of dopant states on photoactivity in carbon-doped TiO2. J Phys Condens Mater 17:209

    Article  CAS  Google Scholar 

  • Wang Y, Li B, Zhang L, Li P, Wang L, Zhang J (2011) Multifunctional magnetic mesoporous silica nanocomposites with improved sensing performance and effective removal ability toward Hg (II). Langmuir 28:1657–1662

    Article  CAS  Google Scholar 

  • Wang Y, Westerhoff P, Hristovski KD (2012) Fate and biological effects of silver, titanium dioxide, and C60 (fullerene) nanomaterials during simulated wastewater treatment processes. J Hazard Mater 201:16–22

    Article  CAS  Google Scholar 

  • Wang Z, Wu D, Wu G, Yang N, Wu A (2013) Modifying Fe3O4 microspheres with rhodamine hydrazide for selective detection and removal of Hg2+ ion in water. J Hazard Mater 244:621–627

    Article  CAS  Google Scholar 

  • WHO (2015) Drinking-water: fact sheet N 391. http://www.who.int/mediacentre/factsheets/fs391/en

  • Xiu ZM, Ma J, Alvarez PJ (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45:9003–9008

    Article  CAS  Google Scholar 

  • Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Xie GX (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10

    Article  CAS  Google Scholar 

  • Yadav A, Chowdhary P, Kaithwas G, Bharagava RN (2017) Toxic metals in environment, threats on ecosystem and bioremediation approaches. In: Das S, Singh HR (eds) Handbook of metal-microbe interactions and bioremediation. CRC Press/Taylor & Francis Group, Boca Raton, pp 128–141. isbn:9781498762427

    Google Scholar 

  • Yamasaki K, Chujo K, Ishibashi H, Sharp Corp (2007) Metal containing waste water treatment method and metal containing waste water treatment equipment. U.S. Patent 7, pp 294–268

    Google Scholar 

  • Ye C, Gong QM, Lu FP, Liang J (2007) Adsorption of uraemic toxins on carbon nanotubes. Sep Purif Technol 58:2–6

    Article  CAS  Google Scholar 

  • Yu JG, Huang DS, Huang KL, Hong Y (2011) Cross-linking of multi-walled carbon nanotubes with polyethylene glycol. Polym Plas Technol Eng 50:328–331

    Article  CAS  Google Scholar 

  • Zhang X, Lin S, Chen Z, Megharaj M, Naidu R (2011) Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: reactivity, characterization and mechanism. Water Res 45:3481–3488

    Article  CAS  Google Scholar 

  • Zhang S, Zhang Y, Liu J, Xu Q, Xiao H, Wang X, Zhou J (2013) Thiol modified Fe3O4 and SiO2 as a robust, high effective, and recycling magnetic sorbent for mercury removal. Chem Eng J 226:30–38

    Article  CAS  Google Scholar 

  • Zhang C, Zhang Y, Du X, Chen Y, Dong W, Han B, Chen Q (2016) Facile fabrication of Pt-Ag bimetallic nanoparticles decorated reduced graphene oxide for highly sensitive non-enzymatic hydrogen peroxide sensing. Talanta 159:280–286

    Article  CAS  Google Scholar 

  • Zhao G, Li J, Ren X, Chen C, Wang X (2011) Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45:10454–10462

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaturvedi, V.K., Kushwaha, A., Maurya, S., Tabassum, N., Chaurasia, H., Singh, M.P. (2020). Wastewater Treatment Through Nanotechnology: Role and Prospects. In: Upadhyay, A., Singh, R., Singh, D. (eds) Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-7665-8_14

Download citation

Publish with us

Policies and ethics