Skip to main content

Bioremediation of Heavy Metals: A New Approach to Sustainable Agriculture

  • Chapter
  • First Online:

Abstract

With the advancement in agricultural practices, use of various chemicals for better yield is posing huge threat to the society. These chemical containing variable amounts of heavy metals are the key players that have become threat to plants and human beings. The discharge of various harmful environmental pollutants from different industrial sectors has created a challenge for environmentalists and scientists concerning the sustainable development of mankind. Particularly in plants, heavy metals are essential for its growth and development, but when the concentration of each heavy metal crosses, its threshold concentration becomes harmful for plants itself. These heavy metals possess specific density of more than 5 g/cm3 (Cr-7.2, Co-8.9, Ni-8.7, Cu-8.9, Zn-7.1, Mo-10.2, Cd-8.2 etc.). Various survey studies reveals intense exposure of heavy metals still continues in different parts of the world though its ill-effects are well documented. Some of the well-known heavy metals include arsenic, cadmium, copper, lead, nickel, zinc, etc., all of which cause risks for the environment and human health. Considering heavy metals as potential threat to different life forms, it has become an important and interesting issue since last few decades. This chapter attempts to review different strategies for remediating heavy metal contamination with the plants and microorganisms. An attempt has also been made to review and promote the sustainable development with the involvement of phytoremediation and micro-remediation technologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abatenh E, Gizaw B, Tsegaye Z (2017) Application of microorganisms in bioremediation-review. J Environ Microbiol 1(1):02–09

    Google Scholar 

  • Abdulsalam S, Adefila SS, Bugaje IM, Ibrahim S (2013) Bioremediation of soil contaminated with used motor oil in a closed system. Biorem Biodeg 3:100–172

    Google Scholar 

  • Abdul-Wahab S, Marikar F (2012) The environmental impact of gold mines: pollution by heavy metals. Open Eng 2:304–313

    Article  CAS  Google Scholar 

  • Adebajo SO, Balogun SA, Akintokun AK (2017) Decolourization of vat dyes by bacterial isolates recovered from local textile mills in Southwest. Microbiol Res J Int 18:1–8

    Google Scholar 

  • Ahalya N, Ramachandra TV, Kanamadi RD (2003) Biosorption of heavy metals. Res J Chem Environ 7:71–79

    CAS  Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257

    Article  CAS  Google Scholar 

  • AI-Jawhari IFH (2014) Ability of some soil fungi in biodegradation of petroleum hydrocarbon. J Appl Environ Microbiol 2:46–52

    Google Scholar 

  • Aksu Z (1998) Biosorption of heavy metals by microalgae in batch and continuous systems. In: Wong YS, Tam NFY (eds) Algae for waste water treatment. Springer, Germany, pp 37–53

    Chapter  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals – concepts and applications. Chemosphere 91:869–881

    Article  CAS  Google Scholar 

  • Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids – a review. Environ Exp Bot 75:307–324

    CAS  Google Scholar 

  • Aranda E, Ullrich R, Hofrichter M (2010) Conversion of polycyclic aromatic hydrocarbons, methyl naphthalenes and dibenzofuran by two fungal peroxygenases. Biodegradation 21:267–281

    Article  CAS  Google Scholar 

  • Bahobil A, Bayoumi RA, Atta HM, El-Sehrawey MM (2017) Fungal biosorption for cadmium and mercury heavy metal ions isolated from some polluted localities in KSA. Int J Curr Microbiol Appl Sci 6(6):2138–2154

    Article  CAS  Google Scholar 

  • Banuelos GS, Cardon G, Mackey B, Ben-Asher J, Wu L, Beuselinck P, Akohoue S, Zambrzuski S (1993) Boron and selenium removal in boron-laden soils by four sprinkler irrigated plant species. J Environ Quality 22(4):786–792

    Article  CAS  Google Scholar 

  • Barakat M (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4:361–377

    Article  CAS  Google Scholar 

  • Bissen M, Frimmel FH (2003) Arsenic – a review. Part I: Occurrence, toxicity, speciation, mobility. Acta Hydrochim Hydrobiol 31:9–18

    Article  CAS  Google Scholar 

  • Blaby-Haas CE, Merchant SS (2012) The ins and outs of algal metal transport. Biochim Biophys Acta 1823:1531–1552

    Article  CAS  Google Scholar 

  • Bragato C, Brix H, Malagoli M (2006) Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Env Pollut 144(3):967–975

    Article  CAS  Google Scholar 

  • Brune A, Urbach W, Dietz KJ (1994) Compartmentation and transport of Zn in barley primary leaves as basic mechanisms involved in Zn tolerance. Plant Cell Environ 17:153–162

    Article  CAS  Google Scholar 

  • Burghal AA, Najwa MJA, Al-Tamimi WH (2016) Mycodegradation of crude oil by fungal species isolated from petroleum contaminated soil. Int J Innova Res Sci Eng Technol 5:1517–1524

    Google Scholar 

  • Cervantes C, Campos-García J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmán JC, Moreno-Sánchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  CAS  Google Scholar 

  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1443

    Article  CAS  Google Scholar 

  • Chaturvedi AD, Pal D, Penta S, Kumar A (2015) Ecotoxic heavy metals transformation by bacteria and fungi in aquatic ecosystem. World J Microbiol Biotechnol 31:1595–1603

    Article  CAS  Google Scholar 

  • Chen C, Wang JL (2007) Characteristics of Zn2+ biosorption by Saccharomyces cerevisiae. Biomed Environ Sci 20:478–482

    CAS  Google Scholar 

  • Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Env Soil Sci 2014

    Google Scholar 

  • Chojnacka K, Chojnacki A, Górecka H (2005) Biosorption of Cr3+, Cd2+ andCu2+ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere 59:75–84

    Article  CAS  Google Scholar 

  • Christensen-Kirsh KM (1996) Phytoremediation and wastewater effluent disposal: guidelines for landscape planners and designers. Unpublished master’s project. Department of Landscape Architecture, University of Oregon, Eugene, p 238

    Google Scholar 

  • Cossich ES, Tavares CRG, Ravagnani TMK (2002) Biosorption of chromium(III) by Sargassum sp. biomass. E J Biotechnol 5:133–140

    Google Scholar 

  • Das A, Mishra S, Verma VK (2015) Enhanced biodecolorization of textile dye remazol navy blue using an isolated bacterial strain Bacillus pumilus HKG212 under improved culture conditions. J Biochem Technol 6:962–969

    Google Scholar 

  • de Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101:1611–1627

    Article  CAS  Google Scholar 

  • Debusk TA, Laughlin RB Jr, Schwartz LN (1996) Retention and compartmentalization of lead and cadmium in wetland microcosms. Water Res 30(11):2707–2716

    Article  CAS  Google Scholar 

  • Dell Anno A, Beolchini F, Rocchetti L, Luna GM, Danovaro R (2012) High bacterial biodiversity increases degradation performance of hydrocarbons during bioremediation of contaminated harbor marine sediments. Environ Pollut 167:85–92

    Article  CAS  Google Scholar 

  • Demnerova K, Mackova M, Spevakova V, Beranova K, Kochankova L (2005) Two approaches to biological decontamination of groundwater and soil polluted by aromatics characterization of microbial populations. Int Microbiol 8:205–211

    CAS  Google Scholar 

  • Dermont G, Bergeron M, Mercier G, Laflèche MR (2008) Metal-contaminated soils: remediation practices and treatment technologies. Pract Period Hazard Toxic Radioact Waste Manage 12:188–209

    Article  CAS  Google Scholar 

  • Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustain For 7:2189–2212

    Article  CAS  Google Scholar 

  • Doshi H, Ray A, Kothari IL, Gami B (2006) Spectroscopic and scanning electron microscopy studies of bioaccumulation of pollutants by algae. Curr Microbiol 53:148–157

    Article  CAS  Google Scholar 

  • Doshi H, Seth C, Ray A, Kothari IL (2008) Bioaccumulation of heavy metals by green algae. Curr Microbiol 56:246–255

    Article  CAS  Google Scholar 

  • El-Borai AM, Eltayeb KM, Mostafa AR et al (2016) Biodegradation of industrial oil-polluted wastewater in Egypt by bacterial consortium immobilized in different types of carriers. Pol J Environ Stud 25(5):1901–1909

    Article  CAS  Google Scholar 

  • El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275

    Article  CAS  Google Scholar 

  • EPA (2000) A citizen’s guide to phytoremediation. EPA 542-F-98-011. United States Environmental Protection Agency 6

    Google Scholar 

  • Erika AW, Vivian B, Claudia C, Jorge FG (2013) Biodegradation of phenol in static cultures by Penicillium chrysogenum erk1: catalytic abilities and residual phytotoxicity. Rev Argent Mcrobiol 44:113–121

    Google Scholar 

  • Etim EE (2012) Phytoremediation and its mechanism: a review. Int J Environ Bioener 2:120–136

    Google Scholar 

  • Evangelou MW, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68:989–1003

    Article  CAS  Google Scholar 

  • Fashola M, Ngole-Jeme V, Babalola OO (2016) Heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance. Int J Environ Res Public Health 13:1047

    Article  CAS  Google Scholar 

  • Ferreira LS, Rodrigues MS, Carlos MDCJ, Alessandra L, Elisabetta F, Patrizia P, Attilio C (2011) Adsorption of Ni2þ, Zn2þand Pb2þonto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris. I. Single metal systems. Chem Eng J 173:326–333

    Article  CAS  Google Scholar 

  • Flora SJS, Mittal M, Mehta A (2008) Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian J Med Res 128(4):501

    CAS  Google Scholar 

  • Fritioff Å, Greger M (2006) Uptake and distribution of Zn, cu, cd, and Pb in an aquatic plant Potamogeton natans. Chemosphere 63(2):220–227

    Article  CAS  Google Scholar 

  • García G, Faz Á, Conesa HM (2003) Selection of autochthonous plant species from SE Spain for soil lead phytoremediation purposes. Water Air Soil Pollut Focus 3(3):243–250

    Google Scholar 

  • Gaur N, Flora G, Yadav M, Tiwari A (2014) A review with recent advancements on bioremediation-based abolition of heavy metals. Environ Sci Process Impacts 16:180–193

    Article  CAS  Google Scholar 

  • Ginneken LV, Meers E, Guisson R (2007) Phytoremediation for heavy metal-contaminated soils combined with bioenergy production. J Environ Eng Landsc Manag 15:227–236

    Article  Google Scholar 

  • Gisbert C, Ros R, De Haro A, Walker DJ, Pilar Bernal M, Serrano R, Navarro-Aviñó J (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303:440–445

    Article  CAS  Google Scholar 

  • Gray NF (1999) Water technology. Wiley, New York, pp 473–474

    Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198

    Article  CAS  Google Scholar 

  • Gumpu MB, Sethuraman S, Krishnan UM, Rayappan JBB (2015) A review on detection of heavy metal ions in water – an electrochemical approach. Sensors Actuators B Chem 213:515–533

    Article  CAS  Google Scholar 

  • Gupta D, Huang H, Yang X, Razafindrabe B, Inouhe M (2010) The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. J Hazard Mater 177:437–444

    Article  CAS  Google Scholar 

  • Hadad HR, Maine MA, Bonetto CA (2006) Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment. Chemosphere 63(10):1744–1753

    Article  CAS  Google Scholar 

  • Hassan MM, Alam MZ, Anwar MN (2013) Biodegradation of textile azo dyes by bacteria isolated from dyeing industry effluent. Int Res J Biol Sci 2:27–31

    Google Scholar 

  • Hesham A, Khan S, Tao Y, Li D, Zhang Y et al (2012) Biodegradation of high molecular weight PAHs using isolated yeast mixtures: application of metagenomic methods for community structure analyses. Environ Sci Pollut Res Int 19:3568–3578

    Article  CAS  Google Scholar 

  • Hidayat A, Tachibana S (2012) Biodegradation of aliphatic hydrocarbon in three types of crude oil by Fusarium sp. F092 under stress with artificial sea water. J Environ Sci Technol 5:64–73

    Article  CAS  Google Scholar 

  • Infante JC, De Arco RD, Angulo ME (2014) Removal of lead, mercury and nickel using the yeast Saccharomyces cerevisiae. Revista MVZ Córdoba 19:4141–4149

    Article  CAS  Google Scholar 

  • Institute for Environmental research and Education (IERE) (2003) Vashon heavy metal phytoremediation study sampling and analysis strategy (DRAFT) WA 98070-2449

    Google Scholar 

  • Inthorn D, Sidtitoon N, Silapanuntakul S, Incharoensakdi A (2002) Sorption of mercury, cadmium and lead by microalgae. Sci Asia 28:253–261

    Article  CAS  Google Scholar 

  • Jasin A, Rózalska S, Bernat P, Paraszkiewicz K, Długon J (2012) Malachite green decolorization by non-basidiomycete filamentous fungi of Penicillium pinophilum and Myrothecium roridum. Int Biodeterior Biodegrad 73:33–40

    Article  CAS  Google Scholar 

  • Jasin A, Bernat P, Paraszkiewicz K (2013) Malachite green removal from aqueous solution using the system rapeseed press cake and fungus Myrothecium roridum. Desalin. Desalin Water Treat 51:7663–7671

    Article  CAS  Google Scholar 

  • Jasin A, Paraszkiewicz K, Sip A, Długon J (2015) Malachite green decolorization by the filamentous fungus Myrothecium roridum – mechanistic study and process optimization. Bioresour Technol 194:43–48

    Article  CAS  Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res:1–11

    Article  CAS  Google Scholar 

  • Kehinde FO, Isaac SA (2016) Effectiveness of augmented consortia of Bacillus coagulans, Citrobacter koseri and Serratia ficaria in the degradation of diesel polluted soil supplemented with pig dung. Afr J Microbiol Res 10:1637–1644

    Article  Google Scholar 

  • Khan MA, Rao RAK, Ajmal M (2008) Heavy metal pollution and its control through nonconventional adsorbents: a review. J Int Environ Appl Sci 3:101–141

    Google Scholar 

  • Kramer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of Ni in hyperaccumulator and nonaccumulator Thlaspi species. Plant Physiol 122:1343–1353

    Article  CAS  Google Scholar 

  • Kumar JIN, Oommen C (2012) Removal of heavy metals by biosorption using freshwater alga Spirogyra hyaline. J Environ Biol 33:27–31

    CAS  Google Scholar 

  • Kumar A, Bisht BS, Joshi VD, Dhewa T (2011) Review on bioremediation of polluted environment: a management tool. Int J Environ Sci 1:1079–1093

    Google Scholar 

  • Kumar KS, Dahms HU, Won E, Lee JS, Shin KH (2015) Microalgae – a promising tool for heavy metal remediation. Ecotoxicol Environ Saf 113:329–352

    Article  CAS  Google Scholar 

  • Kumar S, Chaurasia P, Kumar A (2016) Isolation and characterization of microbial strains from textile industry effluents of Bhilwara, India: analysis with bioremediation. J Chem Pharm Res 8:143–150

    Google Scholar 

  • Kumari V, Yadav A, Haq I, Kumar S, Bharagava RN, Singh SK, Raj A (2016) Genotoxicity evaluation of tannery effluent treated with newly isolated hexavalent chromium reducing Bacillus cereus. J Environ Manag 183:204–211

    Article  CAS  Google Scholar 

  • Lenntech W (2004) Water treatment and air purification. Lenntech, Rotterdamseweg

    Google Scholar 

  • Lesage E, Rousseau DPL, Meers E, Tack FMG, De Pauw N (2007) Accumulationof metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium. Sci Total Environ 380:102–115

    Article  CAS  Google Scholar 

  • Leung H, Ye Z, Wong M (2007) Survival strategies of plants associated with arbuscular Mycorrhizal fungi on toxic mine tailings. Chemosphere 66:905–915

    Article  CAS  Google Scholar 

  • Lin C, Gan L, Chen ZL (2010) Biodegradation of naphthalene by strain Bacillus fusiformis (BFN). J Hazard Mater 182:771–777

    Article  CAS  Google Scholar 

  • Liu SH, Zeng GM, Niu QY, Liu Y, Zhou L, Jiang LH, Tan XF, Xu P, Zhang C, Cheng M (2017) Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: a mini review. Bioresour Technol 224:25–33

    Article  CAS  Google Scholar 

  • Lothenbach B, Krebs R, Furrer G, Gupta S, Schulin R (1998) Immobilization of cadmium and zinc in soil by Al-montmorillonite and gravel sludge. Eur J Soil Sci 49:141–148

    Article  CAS  Google Scholar 

  • Lytle CM, Lytle FW, Yang N, Qian JH, Hansen D, Zayed A, Terry N (1998) Reduction of Cr (VI) to Cr (III) by wetland plants: potential for in situ heavy metal detoxifi cation. Environ Sci Technol 32:3087–3093

    Article  CAS  Google Scholar 

  • Macfie SM, Welbourn PM (2000) The cell wall as a barrier to uptake of metal ions in the unicellular green alga Chlamydomonas reinhardtii (Chlorophyceae). Arch Environ Contam Toxicol 39:413–419

    Article  CAS  Google Scholar 

  • Maestri E, Marmiroli M, Visioli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: costs and trade-offs between trade and environment. Environ Exp Bot 68:1–13

    Article  CAS  Google Scholar 

  • Maliji D, Olama Z, Holail H (2013) Environmental studies on the microbial degradation of oil hydrocarbons and its application in Lebanese oil polluted coastal and marine ecosystem. Int J Curr Microbiol App Sci 2:1–18

    Google Scholar 

  • Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15:377–390

    Article  CAS  Google Scholar 

  • Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11:843–872

    Article  CAS  Google Scholar 

  • Manios T, Stentiford EI, Millner PA (2003) The effect of heavy metals accumulation on the chlorophyll concentration of Typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with metaliferus water. Ecol Eng 20(1):65–74

    Article  Google Scholar 

  • Marques AP, Rangel AO, Castro PM (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39:622–654

    Article  CAS  Google Scholar 

  • McCutcheon SC, Schnoor JL (eds) (2003) Phytoremediation. Transformation and control of contaminants. Wiley-Interscience, Hoboken

    Google Scholar 

  • Meers E, Ruttens A, Hopgood M, Samson D, Tack F (2005) Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere 58:1011–1022

    Article  CAS  Google Scholar 

  • Meharg AA (2003) Variation in arsenic accumulation–hyperaccumulation in ferns and their allies: rapid report. New Phytol 157(1):25–31

    Article  CAS  Google Scholar 

  • Memon AR, Schroder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res 16:162–175

    Article  CAS  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect 116:278

    Article  CAS  Google Scholar 

  • Miranda J, Krishnakumar G, D’Silva A (2012) Removal of Pb2þfrom aqueous system by live Oscillatoria laete-virens (Crouan and Crouan) Gomont isolated from industrial effluents. World J Microbiol Biotechnol 28:3053–3065

    Article  CAS  Google Scholar 

  • Mirlahiji SG, Eisazadeh K (2014) Bioremediation of Uranium by Geobacter spp. J Res Dev 1:52–58

    Google Scholar 

  • Mishra S, Tripathi R, Srivastava S, Dwivedi S, Trivedi PK, Dhankher O, Khare A (2009) Thiol metabolism play significant role during cadmium detoxification by Ceratophyllum demersum L. Bioresour Technol 100:2155–2161

    Article  CAS  Google Scholar 

  • Mojiri A (2012) Phytoremediation of heavy metals from municipal wastewater by Typha domingensis. Afr J Microbiol Res 6:643–647

    CAS  Google Scholar 

  • Monteiro CM, Castro PML, Malcata FX (2009) Use of the microalga Scenedesmus obliquus to remove cadmium cations from aqueous solutions. World J Microbiol Biotechnol 25:1573–1578

    Article  CAS  Google Scholar 

  • Monteiro CM, Castro PML, Malcata FX (2012) Metal uptake by microalgae: underlying mechanisms and practical applications. Biotechnol Prog 28:299–311

    Article  CAS  Google Scholar 

  • Mupa M (2013) Lead content of lichens in metropolitan Harare, Zimbabwe: air quality and health risk implications. Greener J Environ Manag Publ Saf 2:75–82

    Article  Google Scholar 

  • Mwegoha WJS (2008) The use of phytoremediation technology for abatement soil and groundwater pollution in Tanzania: opportunities and challenges. J Sust Dev Africa 10:140–156

    Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230

    Article  CAS  Google Scholar 

  • Nourbakhsh M, Sag Y, Ozer D, Aksu Z, Çaglar A (1994) A comparative study of various biosorbents for removal of chromium (VI) ions from industrial wastewater. Process Biochem 29:1–5

    Article  CAS  Google Scholar 

  • Oboh I, Aluyor E, Audu T (2009) Biosorption of heavy metal ions from aqueous solutions using a biomaterial. Leonardo J Sci 14:58–65

    Google Scholar 

  • Oh K, Li T, Cheng H, Hu X, Lin Q, Xie Y (2013a) A primary study on assessment of phytoremediation potential of biofuel crops in heavy metal contaminated soil. Appl Mecha Mat 295–298

    Google Scholar 

  • Oh K, Li T, Cheng HY, Xie Y, Yonemochi S (2013b) Development of profitable phytoremediation of contaminated soils with biofuel crops. J Environ Prot 4:58–64

    Article  CAS  Google Scholar 

  • Oh K, Cao T, Li T, Cheng H (2014) Study on application of phytoremediation technology in management and remediation of contaminated soils. J Clean Energy Technol Vol 2:3

    Google Scholar 

  • Olaniran AO, Balgobind A, Pillay B (2013) Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci 14:10197–10228

    Article  CAS  Google Scholar 

  • Paranthaman SR, Karthikeyan B (2015) Bioremediation of heavy metal in paper mill effluent using Pseudomonas spp. Int J Microbiol 1:1–5

    Google Scholar 

  • Pedro P, Francisco JE, Joao F, Ana L (2014) DNA damage induced by hydroquinone can be prevented by fungal detoxification. Toxicol Rep 1:1096–1105

    Article  CAS  Google Scholar 

  • Peña-Montenegro TD, Lozano L, Dussán J (2015) Genome sequence and description of the mosquitocidal and heavy metal tolerant strain Lysinibacillus sphaericus CBAM5. Stand Genomic Sic 10:1–10

    Article  CAS  Google Scholar 

  • Peng K, Li X, Luo C, Shen Z (2006) Vegetation composition and heavy metal uptake by wild plants at three contaminated sites in Xiangxi area. China J Environ Sci Health 41:65–76

    Article  CAS  Google Scholar 

  • Perales-Vela HV, Peña-Castro JM, Cañizares-Villanueva RO (2006) Heavy metal detoxification in eukaryotic microalgae. Chemosphere 64:1–10

    Article  CAS  Google Scholar 

  • Persans MW, Yan X, Patnoe J-MML, Kramer U, Salt DE (1999) Molecular dissection of the role of histidine in Ni hyperaccumulation in Thlaspi goesingense (Halacsy). Plant Physiol 121:1117–1126

    Article  CAS  Google Scholar 

  • Phulpoto H, Qazi MA, Mangi S, Ahmed S, Kanhar NA (2016) Biodegradation of oil-based paint by Bacillus species monocultures isolated from the paint warehouses. Int J Environ Sci Technol 13:125–134

    Article  CAS  Google Scholar 

  • Pichhode M, Nikhil K (2015) Effect of copper dust on photosynthesis pigments concentration in plants species. Int J Eng Res Manage (IJERM) 2(2):63–66

    Google Scholar 

  • Pickering IJ, Prince RC, George MJ, Smith RD, George GN, Salt DE (2000) Reduction and coordination of arsenic in Indian mustard. Plant Physiol 122:1171–1177

    Article  CAS  Google Scholar 

  • Prasad MNV, De Oliveira Freitas HM (2003) Metal hyperaccumulation in plants—biodiversity prospecting for phytoremediation technology. E J Biotechnol 3:110–146

    Google Scholar 

  • Priyadarshani I, Sahu D, Rath B (2011) Microalgal bioremediation: current practices and perspectives. J Biochem Technol 3:299–304

    CAS  Google Scholar 

  • Priyalaxmi R, Murugan A, Raja P, Raj KD (2014) Bioremediation of cadmium by Bacillus safensis (JX126862), a marine bacterium isolated from mangrove sediments. Int J Curr Microbiol App Sci 3:326–335

    Google Scholar 

  • Qian JH, Zayed A, Zhu YL, Yu M, Terry N (1999) Phytoaccumulation of trace elementsby wetland plants. III. Uptake and accumulation of ten trace elements by twelve plant species. J Environ Qual 28:1448–1455

    Article  CAS  Google Scholar 

  • Rai PK, Sharma AP, Tripathi BD (2007) Urban environment status in Singrauli industrial region and its eco-sustainable management: a case study on heavy metal pollution. In: Urban Planing and Environment, Strategies and Challenges 213:217

    Google Scholar 

  • Rakhshaee R, Giahi M, Pourahmad A (2009) Studying effect of cell wall’s carboxyl-carboxylate ratio change of Lemna minor to remove heavy metals from aqueous solution. J Hazard Mater 163:165–173

    Article  CAS  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting. Plant Sci 180:169–181

    Article  CAS  Google Scholar 

  • Ribeiro RFL, Magalhaes S, Barbosa FAR, Nascentes CC, Campos LC, Moraes DC (2010) Evaluation of the potential of microalgae Microcystis novacekii in the removal of Pb2þfrom an aqueous medium. J Hazard Mater 179:947–953

    Article  CAS  Google Scholar 

  • Rich G, Cherry K (1987) Hazardous waste treatment technologies. Pudvan Publishers, New York

    Google Scholar 

  • Rodriguez L, Lopez-Bellido FJ, Carnicer A, Recreo F, Tallos A, Monteagudo JM (2005) Mercury recovery from soils by phytoremediation. In: Book of environmental chemistry. Springer, Berlin, pp 197–204

    Chapter  Google Scholar 

  • Robinson B, Green S, Mills T, Clothier B, van der Velde M, Laplane R, Fung L, Deurer M, Hurst S, Thayalakumaran T, van den Dijssel C (2003) Phytoremediation: using plants as biopumps to improve degraded environments. Soil Res 41(3):599–611

    Article  Google Scholar 

  • Robinson BH, Mills TM, Petit D, Fung LE, Green SR, Clothier BE (2000) Natural and induced cadmium-accumulation in poplar and willow: implications for phytoremediation. Plant Soil 227(1–2):301–306

    Article  CAS  Google Scholar 

  • Romera E, Gonzalez F, Ballester A, Blázquez ML, Muñoz JA (2006) Biosorption with algae: a statistical review. Crit Rev Biotechnol 26:223–235

    Article  CAS  Google Scholar 

  • Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci 93:3182–3187

    Article  CAS  Google Scholar 

  • Sabir M, Waraich EA, Hakeem KR, Öztürk M, Ahmad HR, Shahid M (2014) Phytoremediation: mechanisms and adaptations. Soil remediation and plants: prospects and challenges, vol 85, pp 85–105

    Google Scholar 

  • Safiyanu I, Isah AA, Abubakar US, Rita Singh M (2015) Review on comparative study on bioremediation for oil spills using microbes. Res J Pharm Biol Chem Sci 6:783–790

    CAS  Google Scholar 

  • Saifullah ME, Qadir M, de Caritat P, Tack FMG, du Laing G, Zia MH (2009) EDTA-assisted Pb phytoextraction. Chemosphere 74:279–1291

    Article  CAS  Google Scholar 

  • Salem HM, Eweida EA, Farag A (2000) Heavy metals in drinking water & their environment impact on humanhealth. In: Proceedings of the International Conference for Environmental Hazards Mitigation ICEHM 2000 Egypt 542–556

    Google Scholar 

  • Sani I, Safiyanu I, Rita SM (2015) Review on bioremediation of oil spills using microbial approach. IJESR 3:41–45

    Google Scholar 

  • Sarang B, Richa K, Ram C (2013) Comparative study of bioremediation of hydrocarbon fuel. Int J Biotechnol Bioeng Res 4:677–686

    Google Scholar 

  • Sbihi K, Cherifi O, El gharmali A, Oudra B, Aziz F (2012) Accumulation and toxicological effects ofcadmium, copper and zinc on the growth and photosynthesis of the freshwater diatom Planothidiumlanceolatum (Brébisson) Lange-Bertalot: a laboratory study. J Mater Environ Sci 3(3):497–506

    CAS  Google Scholar 

  • Shanab S, Essa A, Shalaby E (2012) Bioremoval capacity of three heavy metals by some microalgae species (Egyptian isolates). Plant Signal Behav 7:392–399

    Article  CAS  Google Scholar 

  • Shedbalkar U, Jadhav J (2011) Detoxification of malachite green and textile industrial effluent by Penicillium ochrochloron. Biotechnol Bioprocess Eng 16:196–204

    Article  CAS  Google Scholar 

  • Sheng PX, Ting YP, Chen JP, Hong L (2004) Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J Colloid Interface Sci 275:131–141

    Article  CAS  Google Scholar 

  • Shi H, Hudson LG, Liu KJ (2004) Oxidative stress and apoptosis in metal ion-induced carcinogenesis. Free Rad Biol Medi 37(5):582–593

    Article  CAS  Google Scholar 

  • Shu W, Xia H, Zhang Z, Lan C, Wong M (2002) Use of vetiver and three other grasses for revegetation of Pb/Zn mine tailings: field experiment. Int J Phytoremediation 4:47–57

    Article  CAS  Google Scholar 

  • Siddiquee S, Rovina K, Azad S, Naher L, Suryani S (2015) Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: a review. J Microb Biochem Technol 7:384–393

    Article  CAS  Google Scholar 

  • Singh A, Mehta SK, Gaur JP (2007) Removal of heavy metals from aqueous solution by common freshwater filamentous algae. World J Microbiol Biotechnol 23:1115–1120

    Article  CAS  Google Scholar 

  • Singh A, Kumar V, Srivastava JN (2013) Assessment of bioremediation of oil and phenol contents in refinery waste water via bacterial consortium. J Pet Environ Biotechnol 4:1–4

    CAS  Google Scholar 

  • Sinha SN, Biswas K (2014) Bioremediation of lead from river water through lead-resistant purple-nonsulfur bacteria. Global J Microbiol Biotechnol 2:11–18

    Google Scholar 

  • Sinha SN, Paul D (2014) Heavy metal tolerance and accumulation by bacterial strains isolated from waste water. J Chem Biol Phys Sci 4:812–817

    Google Scholar 

  • Sinha SN, Biswas M, Paul D, Rahaman S (2011) Biodegradation potential of bacterial isolates from tannery effluent with special reference to hexavalent chromium. Biotechnol Bioinformatics Bioeng 1:381–386. https://goo.gl/Hwz87L

    Google Scholar 

  • Soleimani N, Fazli MM, Mehrasbi M, Darabian S, Mohammadi J (2015) Highly cadmium tolerant fungi: their tolerance and removal potential. J Environ Health Sci Eng 13:1–9

    Article  CAS  Google Scholar 

  • Strong PJ, Burgess JE (2008) Treatment methods for wine-related ad distillery wastewaters: a review. Biorem J 12:70–87

    Article  CAS  Google Scholar 

  • Sukumar S, Nirmala P (2016) Screening of diesel oil degrading bacteria from petroleum hydrocarbon contaminated soil. Int J Adv Res Biol Sci 3:18–22

    Article  CAS  Google Scholar 

  • Sun Q, Ye ZH, Wang XR, Wong MH (2007) Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii. J Plant Physiol 164:1489–1498

    Article  CAS  Google Scholar 

  • Tak HI, Ahmad F, Babalola OO (2013) Advances in the application of plant growth-promoting rhizobacteriain phytoremediation of heavy metals. In: Reviews of environmental contamination and toxicology. Springer, New York, pp 33–52

    Google Scholar 

  • Talke I, Hanikenne M, Krämer U (2006) Zn dependent global transcriptional control, transcriptional de-regulation and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167

    Article  CAS  Google Scholar 

  • Talos K, Pager C, Tonk S, Majdik C, Kocsis B (2009) Cadmium biosorption on native Saccharomyces cerevisiae cells in aqueous suspension. Acta Univ Sapientiae Agric Environ 1:20–30

    Google Scholar 

  • Tang CY, Criddle CS, Leckie JO (2007) Effect of flux (trans membrane pressure) and membranes properties on fouling and rejection of reverse osmosis and nano filtration membranes treating perfluorooctane sulfonate containing waste water. Environ Sci Technol 41:2008–2014

    Article  CAS  Google Scholar 

  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (as, Pb, and hg) uptake by plants through phytoremediation. Hindawi Publishing Corporation. International Journal of Chemical Eng, p 31

    Google Scholar 

  • Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Seleniumin higher plants. Ann Rev Plant Physiol Plant Molec Biol 51:401–432

    Article  CAS  Google Scholar 

  • Tien CJ, Sigee DC, White KN (2005) Copper adsorption kinetics of cultured algal cells and freshwater phytoplankton with emphasis on cell surface characteristics. J Appl Phycol 17:379–389

    Article  CAS  Google Scholar 

  • Trap S, Kohler A, Larsen LC, Zambrano KC, Karlson U (2005) Phytotoxicity of fresh and weathered diesel and gasoline to willow and poplar trees. J Soils Sediments 1:71–76

    Article  Google Scholar 

  • Trivedi S, Ansari AA (2015) Molecular mechanisms in the phytoremediation of heavy metals from coastal waters. In: Phytoremediation. Springer, Cham, pp 219–231

    Google Scholar 

  • Trivedi S, Ueki T, Yamaguchi N (2003) Novel vanadium-binding proteins (vanabins) identified in cDNA libraries and the genome of the ascidian Ciona intestinalis. Biochem Biophys Acta 1630:64–70

    CAS  Google Scholar 

  • Tüzün İ, Bayramoğlu G, Yalçın E, Başaran G, Çelik G, Arıca MY (2005) Equilibrium and kinetic studies on biosorption of Hg(II), Cd(II) and Pb(II) ions onto microalgae Chlamydomonas reinhardtii. J Environ Manag 77:85–92

    Article  CAS  Google Scholar 

  • U. S. Environmental Protection Agency (2000). Introduction to phytoremediation. National Risk Management Research Laboratory, EPA/600/R-99/107

    Google Scholar 

  • United States Environmental Protection Agency (USEPA) (2000) Introduction to phytoremediation, EPA 600/R-99/107. U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati

    Google Scholar 

  • Upadhyay AK, Singh NK, Singh R, Rai UN (2016) Amelioration of arsenic toxicity in rice: comparative effect of inoculation of Chlorella vulgaris and Nannochloropsis sp. on growth, biochemical changes and arsenic uptake. Ecotoxicol Environ Saf 124:68–73

    Article  CAS  Google Scholar 

  • Upadhyay AK, Singh R, Singh DP (2019) Phycotechnological approaches toward wastewater management. In: Emerging and eco-friendly approaches for waste management. Springer, Singapore, pp 423–435

    Chapter  Google Scholar 

  • Uwah EI, Ndahi NP, Abdulrahman FI Ogugbuaja VO (2011) Heavy metal levels in spinach (Amaranthus caudatus) and lettuce (Lactuca sativa) grown in Maiduguri, Nigeria. J Environ Chem Eco 3(10):264–271

    Google Scholar 

  • Verma JP, Jaiswal DK (2016) Book review: advances in biodegradation and bioremediation of industrial waste. Front Microbiol 6:1555

    Article  Google Scholar 

  • Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380(1–3):48–65

    Article  CAS  Google Scholar 

  • Wahab Al-Baldawi IA, Abdullah SRS, Suja F, Anuar N, Idris M (2015) Phytoremediation of contaminated ground water using Typha angustifolia. Water Practice Technol 10(3):616–624

    Article  Google Scholar 

  • Wang XJ, Li FY, Okazaki M, Sugisaki M (2003) Phytoremediation of contaminated soil. Annual report CESS 114–123

    Google Scholar 

  • Wang J, Feng X, Anderson CW, Xing Y, Shang L (2012) Remediation of mercury contaminated sites – a review. J Hazard Mater 221:1–18

    Google Scholar 

  • Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126

    Article  CAS  Google Scholar 

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780

    Article  CAS  Google Scholar 

  • Wu YH, Zhou P, Cheng H, Wang CS, Wu M (2015) Draft genome sequence of Microbacterium profundi Shh49T, an Actinobacterium isolated from deep-sea sediment of a polymetallic nodule environment. Genome Announc 3:1–2

    Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:1–20

    Article  Google Scholar 

  • Yadav M, Singh S, Sharma J, Deo Singh K (2011) Oxidation of polyaromatic hydrocarbons in systems containing water miscible organic solvents by the lignin peroxidase of Gleophyllum striatum MTCC-1117. Environ Technol 32:1287–1294

    Article  CAS  Google Scholar 

  • Yadav A, Raj A, Bharagava RN (2016) Detection and characterization of a multi-drug and multi-metal resistant Enterobacterium Pantoea sp. from tannery wastewater after secondary treatment process. Int J Environ Bot 1(2):37–42

    Google Scholar 

  • Yadav A, Chowdhary P, Kaithwas G, Bharagava RN (2017) Toxic metals in environment, threats on ecosystem and bioremediation approaches. In: Das S, Singh HR (eds) Handbook of metal-microbe interactions and bioremediation. CRC Press/Taylor & Francis Group, Boca Raton, pp 128–141. ISBN:9781498762427

    Chapter  Google Scholar 

  • Yan J, Niu J, Chen D, Chen Y, Irbis C (2014) Screening of Trametes strains for efficient decolorization of malachite green at high temperatures and ionic concentrations. Int Biodeterior Biodegrad 87:109–115

    Article  CAS  Google Scholar 

  • Yang X, Feng Y, He Z, Stoffella PJ (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18:339–353

    Article  CAS  Google Scholar 

  • Yogesh P, Akshaya G (2016) Evaluation of bioremediation potential of isolated bacterial culture YPAG-9 (Pseudomonas aeruginosa) for decolorization of sulfonated di-azo dye Reactive Red HE8B under optimized culture conditions. Int J Curr Microbiol App Sci 5:258–272

    Article  CAS  Google Scholar 

  • Zhang Z, Shu W, Lan C, Wong M (2001) Soil seed bank as an input of seed source in revegetation of lead/zinc mine tailings. Restor Ecol 9:378–385

    Article  Google Scholar 

  • Zou T, Li T, Zhang X, Yu H, Luo H (2011) Lead accumulation and tolerance characteristics of Athyrium wardii (hook.) as a potential phytostabilizer. J Haz Mat 186(1):683–689

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sen Gupta, G., Yadav, G., Tiwari, S. (2020). Bioremediation of Heavy Metals: A New Approach to Sustainable Agriculture. In: Upadhyay, A., Singh, R., Singh, D. (eds) Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-7665-8_13

Download citation

Publish with us

Policies and ethics