Skip to main content

Novel Effects of Phytogenic Bulk Graphene on Germination and Growth of Monocots and Dicots

  • Conference paper
  • First Online:
Recent Advances in Material Sciences

Abstract

Recent years have witnessed many breakthroughs in graphene including mass production of this material. Most of the work focused on the synthesis and study of the properties of graphene. Herein, we first reported on a successful procedure for the reduction of graphite using Stevia leaf extract which resulted in two-dimensional carbon atomic crystals, graphene. This phytogenic graphene (PG) was characterized by ultraviolet visible spectroscopy (UV–Vis), Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering technique. High-resolution transmission electron microscopy (HRTEM) and atomic force microscopy (AFM) micrographs showed the variations in surface morphology of the formed graphene which has a stable single-layer structure and was significantly water soluble. AFM data reveals two different sizes 24.9 (G1) and 71.7 nm (G2) of PG. The germination percentage was 19% higher with G1 and G2 treatments than control in peanut a dicot plant, whereas in monocotyledonous plants (rice and maize) the G1 treatment exhibited germination percentage of 50% in maize and 100% in rice. Size-dependent behavior of PG was not noticed in the growth and development of dicot plant (peanut), whereas in monocot plants (maize and rice) size-dependent effects were noticed. These results point to the use of carbonaceous materials in agriculture as bio-efficient plant growth promoting agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Begum, P., Ikhtiari, R., Fugetsu, B: Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 49(12), 3907–3919 (2011)

    Article  CAS  Google Scholar 

  2. Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Stormer, H.L.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9), 351–355 (2008)

    Article  CAS  Google Scholar 

  3. Du, X., Skachko, I., Barker, A., Andrei, E.Y.: Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3(8), 491–495 (2008)

    Article  CAS  Google Scholar 

  4. Thakur, S., Karak, N.: Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50(14), 5331–5339 (2012)

    Article  CAS  Google Scholar 

  5. Hummers Jr., W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958)

    Article  CAS  Google Scholar 

  6. Gurunathan, S., Han, J.W., Eppakayala, V., Kim, J.H.: Microbial reduction of graphene oxide by Escherichia coli: a green chemistry approach. Colloids Surf., B 102, 772–777 (2013)

    Article  CAS  Google Scholar 

  7. Prasad, T.N.V.K.V., Kambala, V.S.R., Convery, B, Naidu, R.: Novel phytosynthesis of nanoparticles using indigenous Australian plants. Nat. Proc. (2011). https://doi.org/10.1038/npre.2011.6307.1

  8. Fernandez-Merino, M.J., Guardia, L., Paredes, J.I., Villar-Rodil, S., Solís-Fernández, P., Martínez-Alonso, A., Tascón, J.M.D.: Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C 114(14), 6426–6432 (2010)

    Article  CAS  Google Scholar 

  9. Esfandiar, A., Akhavan, O., Irajizad, A.: Melatonin as a powerful bio-antioxidant for reduction of graphene oxide. J. Mat. Chem. 21(29), 10907–10914 (2011)

    Article  CAS  Google Scholar 

  10. Zhu, C., Guo, S., Fang, Y., Dong, S.: Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4(4), 2429–2437 (2010)

    Article  CAS  Google Scholar 

  11. Wang, Y., Shi, Z.X., Yin, J.: Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. ACS Appl. Mat. Interfaces 3(4), 1127–1133 (2011)

    Article  CAS  Google Scholar 

  12. Salas, E.C., Sun, Z., Lüttge, A., Tour, J.M.: Reduction of graphene oxide via bacterial respiration. ACS Nano 4(8), 4852–4856 (2010)

    Article  CAS  Google Scholar 

  13. Chen, G.Y., Pang, D.P., Hwang, S.M., Tuan, H.Y., Hu, Y.C.: A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomat 33(2), 418–427 (2012)

    Article  Google Scholar 

  14. Lee, W.C., Lim, C.H.Y., Shi, H., Tang, L.A., Wang, Y., Lim, C.T., Loh, K.P.: Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5(9), 7334–7341 (2011)

    Article  CAS  Google Scholar 

  15. Lin, S., Reppert, J., Hu, Q., Hudson, J.S., Reid, M.L., Ratnikova, T.A., Ke, P.C.: Uptake, translocation and transmission of carbon nano materials in rice plants. Small 5(10), 1128–1132 (2009)

    CAS  Google Scholar 

  16. Stampoulis, Dimitrios, Sinha, Saion K., White, Jason C.: Assay-dependent phytotoxicity of nanoparticles to plants. Environ. Sci. Technol. 43(24), 9473–9479 (2009)

    Article  CAS  Google Scholar 

  17. Zhang, X., Hu, W., Li, J., Tao, L., Wei, Y.: A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond. Toxicol. Res. 1(1), 62–68 (2012)

    Article  CAS  Google Scholar 

  18. Akhavan, O., Ghaderi, E.: Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4(10), 5731–5736 (2010)

    Article  CAS  Google Scholar 

  19. Rai, V., Acharya, S., Dey, N.: Implications of nanobiosensors in agriculture. J. Biomater. Nanobiotech. 3, 315–324 (2012)

    Article  CAS  Google Scholar 

  20. Khodakovskaya, M.V., de Silva, K., Nedosekin, D.A., Dervishi, E., Biris, A.S., Shashkov, E.V., Zharov, V.P.: Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc. Nat. Acad. Sci. 108(3), 1028–1033 (2011)

    Article  CAS  Google Scholar 

  21. Nel, A., Xia, T., Mädler, L., Li, N.: Toxic potential of materials at the nano level. Science 311(5761), 622–627 (2006)

    Article  CAS  Google Scholar 

  22. Soejarto, D.D., Douglas Kinghorn, A., Farnsworth, N.R.: Potential sweetening agents of plant origin. III. Organoleptic evaluation of Stevia leaf herbarium samples for sweetness. J. Natl. Prod. 45(5), 590–599 (1982)

    Article  CAS  Google Scholar 

  23. Martelli, A., Frattini, C., Chialva, F.: Unusual essential oils with aromatic properties—I. Volatile components of Stevia rebaudiana bertoni. Flavour Fragr. J. 1(1), 3–7 (1985)

    Article  CAS  Google Scholar 

  24. Rajbhandari, A., Roberts, M.F.: The flavonoids of Steviarebaudiana. J. Nat. Prod. 46(2), 194–195 (1983)

    Article  CAS  Google Scholar 

  25. Maguire, J.D.: Speed of germination—aid in selection and evaluation for seedling emergence and vigor. Crop Sci. 2(2), 176–177 (1962)

    Article  Google Scholar 

  26. Arnon, D.I.: Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol. 24, 1–15 (1949)

    Article  CAS  Google Scholar 

  27. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193(1), 265–275 (1951)

    CAS  Google Scholar 

  28. Jain, P.K., Lee, K.S., El-Sayed, I.H., El-Sayed, M.A.: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys. Chem. B 110(14), 7238–7248 (2006)

    Article  CAS  Google Scholar 

  29. Armendariz, V., Herrera, I., Jose-yacaman, M., Troiani, H., Santiago, P., Gardea-Torresdey, J.L.: Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J. Nanopart. Res. 6(4), 377–382 (2004)

    Article  CAS  Google Scholar 

  30. William, W.P.: The two photosystems and their interactions. In: Barber, J. (ed.) The Primary Processes of Photosynthesis, pp. 99–147. Elsevier, Amsterdam (1977)

    Google Scholar 

  31. Woolhouse, H.W.: Toxicity and tolerance in the responses of plants to metals. Physiological Plant Ecology III, pp. 245–300. Springer, Berlin (1983)

    Chapter  Google Scholar 

  32. Chaoui, A., Mazhoudi, S., Ghorbal, M.H., El Ferjani, E.: Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci. 127(2), 139–147 (1997)

    Article  CAS  Google Scholar 

  33. Rico, M.C., Majumdar, S., Duarte-gardea, M., Peralta-Videa, R.J., Gardea-Torresdey, L.J.: Interaction of nanoparticles with edible plants and their possible implications in the food chain. J. Agric. Food Chem. 59(8), 3485–3498 (2011)

    Article  CAS  Google Scholar 

  34. Ghodake, G., Seo, Y.D., Park, D., Lee, D.S.: Phytotoxicity of carbon nanotubes assessed by Brassica juncea and Phaseolus mungo. J Nanoelectron. Optoelectron. 5(2), 157–160 (2010)

    Article  CAS  Google Scholar 

  35. Jin, H., Heller, D.A., Sharma, R., Strano, M.S.: Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano 3(1), 149–158 (2009)

    Article  CAS  Google Scholar 

  36. Lin, C., Fugetsu, B., Su, Y., Watari, F.: Studies on toxicity of multi walled carbon nanotubes on Arabidopsis T87 suspension cells. J. Hazard. Mater. 170(2–3), 578–583 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. V. K. V. Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prasad, T.N.V.K.V. et al. (2019). Novel Effects of Phytogenic Bulk Graphene on Germination and Growth of Monocots and Dicots. In: Pujari, S., Srikiran, S., Subramonian, S. (eds) Recent Advances in Material Sciences . Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-7643-6_40

Download citation

Publish with us

Policies and ethics