Skip to main content

Microstructure Design for Oxide/Non-oxide Ceramics for Structural Applications

  • Chapter
  • First Online:
Book cover Novel Structured Metallic and Inorganic Materials
  • 1185 Accesses

Abstract

Mechanical properties of ceramics, such as hardness, strength, and fracture toughness depend not only on electronic/crystal structures but also on their microstructures. The processing–property–microstructure relations and the principles of microstructural design will be critically reviewed in this section. The mechanical reliability of brittle ceramics is improved by decreasing the flaw size during the sintering process. The continuum theory of sintering is useful to find a way to suppress defects formation. The improvement of toughness is an alternative way to improve reliability. A novel nano/microstructure design was proposed to develop the strong and tough nanocrystalline ceramics recently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.F. Becher, Microstructural design of toughened ceramics. J. Am. Ceram. Soc. 74, 255–269 (1991)

    Article  CAS  Google Scholar 

  2. R.K. Bordia, G.W. Scherer, On constrained sintering—I. constitutive model for a sintering body. Acta Metall. Mater. 36, 2393–2397 (1988)

    Article  CAS  Google Scholar 

  3. D. Bernard, O. Guillon, N. Combaret, E. Plougonve, Acta Mater. 59, 6228–6338 (2011)

    Article  CAS  Google Scholar 

  4. P.Z. Cai, D.J. Green, G.L. Messing, Constrained densification of alumina/zirconia hybrid laminates, I: experimental observations of processing defects. J. Am. Ceram. Soc. 80, 1929–1939 (1997)

    Article  CAS  Google Scholar 

  5. A.G. Evans, Structural reliability: a processing-dependent phenomenon. J. Am. Ceram. Soc. 65, 127–137 (1982)

    Article  Google Scholar 

  6. A.G. Evans, Perspective on the development of high-toughness ceramics. J. Am. Ceram. Soc. 72, 187–206 (1990)

    Article  Google Scholar 

  7. A.G. Evans, R.M. Cannon, Toughening of brittle solids by martensitic transformation. Acta Metall. 34, 761–800 (1986)

    Article  CAS  Google Scholar 

  8. D.J. Green, O. Guillon, J. Rödel, Constrained sintering: a delicate balance of scales. J Euro Ceram Soc 28, 1451–1466 (2008)

    Article  CAS  Google Scholar 

  9. O. Guillon, J. Rödel, R.K. Bordia, Effect of green-state processing on the sintering stress and viscosity of alumina compacts. J. Am. Ceram. Soc. 90, 1637–1640 (2007)

    Article  CAS  Google Scholar 

  10. R.H.J. Hannink, P.M. Kelly, B.C. Muddle, Transformation toughening in zirconia-containing ceramics. J. Am. Ceram. Soc. 83, 461–487 (2000)

    Article  CAS  Google Scholar 

  11. S.J.L. Kang, Sintering (Elsevier Butterworth-Heinemann, Burlington, MA, 2005)

    Google Scholar 

  12. T. Kraft, H. Riedel, Numerical simulation of solid state sintering; model and application. J. Euro. Ceram. Soc. 24, 345–361 (2004)

    Article  CAS  Google Scholar 

  13. F.F. Lange, Powder processing science and technology for increased reliability. J. Am. Ceram. Soc. 72, 3–5 (1989)

    Article  CAS  Google Scholar 

  14. M.E. Launey, R.O. Ritchie, On the fracture toughness of advanced materials. Adv. Mater. 21, 2103–2110 (2009)

    Article  CAS  Google Scholar 

  15. D.B. Marshall, Strength characteristics of transformation-toughened zirconia. J. Am. Ceram. Soc. 69, 173–180 (1986)

    Article  CAS  Google Scholar 

  16. R.M. McMeeking, A.G. Evans, Mechanics of transformation-toughening in brittle materials. J. Am. Ceram. Soc. 65, 242–246 (1986)

    Article  Google Scholar 

  17. D. Munz, What can we learn from R-curve measurements? J. Am. Ceram. Soc. 90, 1–15 (2007)

    Article  CAS  Google Scholar 

  18. N. Nishiyama et al., Synthesis of nanocrystalline bulk SiO2 stishovite with very high toughness. Scripta Mater. 67, 955–958 (2012)

    Article  CAS  Google Scholar 

  19. N. Nishiyama et al., Fracture-induced amorphization of polycrystalline SiO2 stishovite: a potential platform for toughening in ceramics. Sci. Rep. 4, 6558 (2014)

    Article  CAS  Google Scholar 

  20. E.A. Olevsky, Theory of sintering: from discrete to continuum. Mater. Sci. Eng. R 23, 41–100 (1998)

    Article  Google Scholar 

  21. H. Riedel, H. Zipse, J. Svoboda, Equilibrium pore surfaces, sintering stresses and constitutive equations for the intermediate and late stages of sintering—II. diffusional densification and creep. Acta Metall. Mater. 42, 445–452 (1994)

    Article  CAS  Google Scholar 

  22. F.L. Riley, Silicon nitride and related materials. J. Am. Ceram. Soc. 83, 245–265 (2000)

    Article  CAS  Google Scholar 

  23. F. Wakai, Mechanics of viscous sintering on the micro- and macro-scale. Acta Mater. 61, 239–247 (2013)

    Article  CAS  Google Scholar 

  24. F. Wakai, R.K. Bordia, Microstructural evolution and anisotropic shrinkage in constrained sintering and sinter forging. J. Am. Ceram. Soc. 95, 2389–2397 (2012)

    Article  CAS  Google Scholar 

  25. F. Wakai, K. Brakke, Mechanics of sintering for coupled grain boundary and surface diffusion. Acta Mater. 59, 5379–5387 (2011)

    Article  CAS  Google Scholar 

  26. F. Wakai, O. Guillon, Evaluation of sintering stress from 3-D visualization of microstructure: case study of glass films sintered by viscous flow and imaged by X-ray microtomography. Acta Mater. 66, 54–62 (2014)

    Article  CAS  Google Scholar 

  27. F. Wakai, K. Katsura, S. Kanchika, Y. Shinoda, T. Akatsu, K. Shinagawa, Sintering force behind the viscous sintering of two particles. Acta Mater. 109, 292–299 (2016)

    Article  CAS  Google Scholar 

  28. F. Wakai, Y. Shinoda, Anisotropic sintering stress for sintering of particles arranged in orthotropic symmetry. Acta Mater. 57, 3955–3964 (2009)

    Article  CAS  Google Scholar 

  29. F. Wakai, Y. Shinoda, T. Akatsu, Methods to calculate sintering stress of porous materials in equilibrium. Acta Mater. 52, 5621–5631 (2004)

    Article  CAS  Google Scholar 

  30. K. Yoshida et al., Large increase in fracture resistance of stishovite with crack extension less than one micrometer. Sci. Rep. 5, 10993 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumihiro Wakai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wakai, F. (2019). Microstructure Design for Oxide/Non-oxide Ceramics for Structural Applications. In: Setsuhara, Y., Kamiya, T., Yamaura, Si. (eds) Novel Structured Metallic and Inorganic Materials. Springer, Singapore. https://doi.org/10.1007/978-981-13-7611-5_8

Download citation

Publish with us

Policies and ethics