Skip to main content

Low-Young’s-Modulus Materials for Biomedical Applications

  • Chapter
  • First Online:
Novel Structured Metallic and Inorganic Materials
  • 1279 Accesses

Abstract

Young’s moduli of metallic biomaterials for implant devices such as artificial hip joints, bone plates, intramedullary rods, and rods for spinal fixation devices should be similar to that of cortical bone to prevent stress shielding [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Niinomi, M. Nakai, Titanium-based biomaterials for preventing stress shielding between implant devices and bone. Int. J. Biomater. (2011). Article ID 836587

    Google Scholar 

  2. M. Niinomi, M, Nakai, J. Hieda, Development of new metallic alloys for biomedical applications. Acta Biomater. 8, 3888–3903

    Article  CAS  Google Scholar 

  3. J. Domingo, Vanadium and tungsten derivatives as antidiabetic agents—a review of their toxic effects. Biol. Trace Elem. Res. 88, 97–112 (2002)

    Article  CAS  Google Scholar 

  4. B. Boyce, J. Byars, S. McWilliams, M. Mocan, H. Elder, I. Boyle, B. Junor, Histological and electron microprobe studies of mineralisation in aluminium-related osteomalacia. Br. Med. J. 45, 502–508 (1992)

    CAS  Google Scholar 

  5. S.G. Steinemann, in Evaluation of Biomaterials, ed. by G.D. Winter, J.L. Leray, K. de Goot (Wiley, New York, 1980), pp. 1–34

    Google Scholar 

  6. H. Kawahara, Cytotoxicity of implantable metals and alloys. Bull. Jpn. Inst. Metal. Mater. 31, 1033–1039 (1992)

    Article  Google Scholar 

  7. Y. Okazaki, Y. Ito, A. Ito, T. Tateishi, Effect of alloying elements on mechanical properties of titanium alloys for medical implants. J. Jpn. Inst. Metals Mater. 57, 332–337 (1993)

    Google Scholar 

  8. M. Niinomi, Development of high biocompatible titanium alloys. Funct. Mater. 20(3), 36–44

    Google Scholar 

  9. M. Morinaga, M. Kato, T. Kamimura, M. Fukumotom, I. Harada, K. Kubo, Theoretical design of β-type titanium alloys, in Proceedings of 7th International Conference on Titanium, 1992, Science and Technology, San Diego, CA, USA, June 29–July 2, 1992, pp. 276–283

    Google Scholar 

  10. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro, Design and mechanical properties of new β type titanium alloys for implant materials. Mater. Sci. Eng. A A243, 244–249 (1998)

    Article  CAS  Google Scholar 

  11. A. Suzuki, M. Okabe, T. Kato, Mechanical properties of titanium alloys produced by levitation melting and counter-gravity low-pressure casting process. Electr. Furnace Steel 70(3), 231–237 (1999)

    Article  CAS  Google Scholar 

  12. M. Niinomi, T. Hattori, K. Morikawa, T. Kasuga, A. Suzuki, H. Fukui, S. Niwa, Development of low rigidity β-type titanium alloy for biomedical applications. Mater. Trans. 43(12), 2970–2977 (2002)

    Google Scholar 

  13. M. Niinomi, Titanium alloys for medical and dental applications. In: Medical Devices Materials, ed. by S. Shrivastava (ASM International, 2004), pp. 417–422

    Google Scholar 

  14. H. Yilmazer, M. Niinomi, T. Akahori, M. Nakai, H. Tsutsumi, Effects of severe plastic deformation and thermo-mechanical treatments on microstructures and mechanical properties of β-type titanium alloys for biomedical applications, in Proceedings of PFAMXIII (2009), pp. 1401–1410

    Google Scholar 

  15. M. Niinomi, H. Fukui, T. Hattori, K. Kyo, A. Suzuki, Development of high biocompatible titanium alloy. Materia Jpn. 41, 221–223 (2002)

    Article  Google Scholar 

  16. M. Niinomi, Tend and present state of titanium alloys with body centered structure for biomedical applications. Bull. Iron Steel Inst. Jpn. 15(11), 661–670 (2010)

    Google Scholar 

  17. H. Yilmazer, M. Niinomi, M. Nakai, J. Hieda, Y. Todaka, T. Miyazaki, Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high pressure torsion. Mater. Sci. Eng. C 33, 2499–2507 (2013)

    Article  CAS  Google Scholar 

  18. M. Niinomi, T. Akahori, Improvement of fatigue life of titanium alloys for biomedical devices through microstructural control. Expert Rev. Med. Dev. 7(4), 481–488 (2010)

    Article  CAS  Google Scholar 

  19. M. Nakai, M. Niinomi, T. Oneda, Improvement in fatigue strength of biomedical β-type Ti–Nb–Ta–Zr alloy while maintaining low Young’s modulus through optimizing ω-phase precipitation. Metall. Mater. Trans. A 43(1), 294–302 (2012)

    Article  Google Scholar 

  20. X. Song, M. Niinomi, H. Tsutsumi, T. Akahori, M. Nakai, S. Yonezawa, L. Wang, Effect of Y2O3 on mechanical properties of Ti-29Nb-13Ta-4.6Zr for biomedical applications, in Materials Science Forum, vol. 654–656 (2010), pp. 2142–2145

    Google Scholar 

  21. M. Nakai, M. Niinomi, X.F. Zhao, X. Zhao, Self-adjustment of Young’s modulus in biomedical titanium alloys during orthopaedic operation. Mater. Lett. 65, 688–690 (2011)

    Article  CAS  Google Scholar 

  22. M. Niinomi, T. Hattori, Effect of Young’s modulus in metallic implants on atrophy and bone remodeling, in Interface Oral Health Science 2009, ed. by T. Sasano, O. Suzuki, P. Stashenko, K. Sasaki, N. Takahashi, T. Kawai, M.A. Taubman, H.C. Margolis (Springer, 2010), pp. 90–99

    Google Scholar 

  23. T. Akahori1, M. Niinomi1, H. Fukui, A. Suzuki, Fatigue, fretting fatigue and corrosion characteristics. Mater. Trans. 45(5), 1540–1548

    Google Scholar 

  24. M. Niinomi, M. Nakai, Mechanically bio-functional titanium alloys for substituting failed hard tissue, in Proceedings of Fray International Symposium on Metals and Materials Processing in a Clean Environment, 27 Nov–1 Dec 2011, Cancun, Mexico, appeared in Volume 7: Composites, Ceramics, Nanomaterials & Titanium Processing, ed. by F.K. Flogen (2012), pp. 409–433

    Google Scholar 

  25. T. Kasuga, M. Nogami, M. Niinomi, T. Hattori, L.L. Hench, Enhancing effect of autoclaving on bioactivity of β-titanium alloy coated with calcium phosphate glass-ceramic. Key Eng. Mater. 284–286, 243–246 (2005)

    Article  Google Scholar 

  26. H. Tsutsumi, M. Niinomi, M. Nakai, T. Gozawa, T. Akahori, K. Saito, R. Tu, T. Goto, Fabrication of hydroxyapatite film on Ti-29Nb-13Ta-4.6Zr using a MOCVD technique. Mater. Trans. 51(12), 2277–2283 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuo Niinomi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niinomi, M., Nakai, M. (2019). Low-Young’s-Modulus Materials for Biomedical Applications. In: Setsuhara, Y., Kamiya, T., Yamaura, Si. (eds) Novel Structured Metallic and Inorganic Materials. Springer, Singapore. https://doi.org/10.1007/978-981-13-7611-5_30

Download citation

Publish with us

Policies and ethics