Skip to main content

Ti-Based Biomedical Alloys

  • Chapter
  • First Online:

Abstract

Titanium (Ti) and its alloys are currently getting much attention for structural biomaterials, because they are much advantageous as compared with other metallic biomaterials such as biomedical stainless steels and Co-based alloys, and their practical uses in implant devices are widely spreading. In this paper, types of Ti alloys for biomedical applications are first described. Pure Ti, (α + β)-type, and β-type Ti alloys for biomedical applications including general β-type Ti alloys, superelastic and shape-memory β-type Ti alloys, Young’s modulus self-adjustable β-type Ti alloys, and β-type Ti alloys for reconstructive implants are then described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. T. Nakano, Properties and evaluation methods in living body environment, in Metals for Medicine, ed. by T. Hanawa (Japan Institute of Metals and Materials, 2010), p. 184

    Google Scholar 

  2. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro, Mat. Sci. Eng. A A243, 244 (1998)

    Article  CAS  Google Scholar 

  3. M. Niinomi, Mater. Jpn. 37, 843 (1998)

    Article  CAS  Google Scholar 

  4. Y. Okazaki, S. Rao, T. Tateishi, Y. Ito, Mat. Sci. Eng. A A243, 250 (1998)

    Article  CAS  Google Scholar 

  5. P. Kovacs, J.A. Davidson, in Titanium ’92, ed. by F.H. Froes, I. Caplan (TMS, 1993), p. 2705

    Google Scholar 

  6. T. Ahmed, M. Lomg, J. Silvestri, C. Ruiz, H.J. Rack, A new low modulus, biocompatible titanium alloy, in Titanium ’95, ed. by P.A. Blenkinsop, W.J. Evans, H.M. Flower (The Institute of Materials, 1996), p. 1760

    Google Scholar 

  7. K. Nitta, S. Watanabe, N. Masahashi, H. Hosoda, S. Hanawa, Ni-free Ti-Nb-Sn shape memory alloys, in Structural Biomaterials for the 21st Century, ed. by M. Niinomi, T. Okabe, E.M. Taleff, D.R. Lesuer, H.F. Lippard (TMS, 2001), p. 25

    Google Scholar 

  8. Y. Daimatsu, A. Yamamoto, H. Hosoda, S. Miyazaki, Shape memory characteristics of Ti-Mo-Ga for biomedical applications, in Collected Abstract Fall Meeting of JIM (2001), p. 401

    Google Scholar 

  9. H. Hosoda, A. Yamamoto, S. Miyazaki, Mechanical properties of Ti-Mo-Ge shape memory alloy for biomedical applications, in Collected Abstract Fall Meeting of JIM (2001), p. 401

    Google Scholar 

  10. H. Hiromoto, F. Mizuno, T. Hanawa, C. Kuroda, H. Hosoda, K. Wakashima, S. Miyazaki, Polarization behavior of Ti-Mo-Al shape memory alloy in simulated body liquid, in Collected Abstract Annual Meeting of JIM (2002), p. 443

    Google Scholar 

  11. M. Ikeda, Y. Nakamura, N. Takahama, Effect of Zr contents on heat treatment behaviors and phase constitution of Ti-50 mass% Ta-Zr alloy, in Collected Abstract Annual Meeting of JIM (2003), p. 130

    Google Scholar 

  12. T. Maeshima, T. Eto, H. Uchiyama, K. Uchiyama, M. Nishida, Development of Ti-Sc-Mo shape memory alloy, in Annual Meeting of JIM (2003), p. 134

    Google Scholar 

  13. T. Hatori, K. Morikawa, S. Niwa, M. Niinomi, A. Suzuki, Bone tissue reaction to new β titanium low rigidity alloy: rabit study on bone healing remodeling and atrophy in intramedullary fracture fixation, in Proceedings of International Conference on Biomechanics combined with the Annual Scientific Meeting of Taiwanese Society of Biomechanics (2001), p. 28

    Google Scholar 

  14. Y. Okazaki, S. Asao, S. Rao, T. Tateishi, J. Jpn. Inst. Met. 60, 902 (1996)

    Article  CAS  Google Scholar 

  15. A. Yamamoto, T. Kobayashi, N. Maruyama, K. Nakazawa, M. Sumita, J. Jpn. Inst. Met. 59, 463 (1995)

    Article  CAS  Google Scholar 

  16. T. Akahori, M. Niinomi, K. Fukunaga, I. Inagaki, Met. Mat. Trans. A 31A, 1949 (2000)

    Article  CAS  Google Scholar 

  17. M. Niinomi, T. Akahori, K. Ishimizu, Fatigue and fretting fatigue of biomaterials, Ti-29Nb-13Ta-45.6Zr, in air and simulated body environment, in Materials Lifetime Science and Engineering, ed. by P.K. Liaw, R.A. Buchana, D.L. Klarstrom, R.P. Wei, D.G. Harlow (TMS, 2003), p. 223

    Google Scholar 

  18. K. Nakazawa, M. Sumita, N. Maruyama, J. Jpn. Inst. Met. Mater. 63, 1600 (1999)

    Article  CAS  Google Scholar 

  19. M. Niinomi, C.J. Boehlert, Titanium alloys for biomedical applications, in Advances in Metallic Biomaterials, Tissues, Part 1: Materials and Biological Reactions, ed by M. Niinomi, T. Narushima, M. Nakai. Springer Series in Biomaterials Science and Engineering Series, vol. 3, ed. by M. Wang (Springer, 2015), p. 179

    Google Scholar 

  20. ASTM F67: Standard specification for unalloyed titanium, for surgical implant applications (UNS R50250, UNS R50400, UNS R50550, UNS R50700) (ASTM International, West Conshohocken, PA, USA)

    Google Scholar 

  21. ISO 5832-2: Implants for surgery—metallic materials—part 2: Unalloyed titanium (ISO, Vernier, Geneva, Switzerland)

    Google Scholar 

  22. JIS T7401-1: Titanium materials for surgical implant applications, Part 1: unalloyed titanium (JIS, Tokyo, Japan)

    Google Scholar 

  23. ASTM F136: Standard specification for wrought titanium-6aluminum-4vanadium ELI (extra low interstitial) alloy for surgical implant applications (UNS R56401) (ASTM International, West Conshohocken, PA, USA)

    Google Scholar 

  24. ASTM F1472: Standard specification for wrought titanium-6aluminum-4vanadium alloy for surgical implant applications (UNS R56400) (ASTM International, West Conshohocken, PA, USA)

    Google Scholar 

  25. ISO 5832-3: Implants for surgery—metallic materials—part 3: wrought titanium 6-aluminium 4-vanadium alloy (ISO, Vernier, Geneva, Switzerland)

    Google Scholar 

  26. JIS T7401-2: Titanium materials for surgical implant applications part 2: wrought titanium 6-aluminium 4-vanadium alloy (JIS, Tokyo, Japan)

    Google Scholar 

  27. ASTM F 2146: Standard specification for wrought titanium-3aluminum-2.5vanadium alloy seamless tubing for surgical implant applications (UNS R56320) (ASTM International, West Conshohocken, PA, USA)

    Google Scholar 

  28. R. Zwicker, K. Buheler, R. Mueller, H. Beck, H.J. Schmid, in Titanium ’80: Science and Technology, vol. 2, ed. by H. Kimura, O. Izumi (The Metallurgical Society of AIME, 1980), p. 505

    Google Scholar 

  29. M. Semlitsch, F. Staub, H. Webber, Biomed. Tech. 30, 334 (1985)

    Article  CAS  Google Scholar 

  30. M. Niinomi, Met. Mat. Trans. A 33, 477 (2002)

    Article  Google Scholar 

  31. ISO 5832: Implant for surgery—metallic materials—part 10: wrought titanium 5-aluminum 2.5-iron alloy (ISO, Vernier, Geneva, Switzerland)

    Google Scholar 

  32. ASTM F1295: Standard specification for wrought titanium-6aluminum-7niobium alloy for surgical implant applications (UNS R56700) (ASTM International, West Conshohocken, PA, USA)

    Google Scholar 

  33. ISO 5821-11: Implants for surgery—metallic materials—part 11: wrought titanium 6-aluminium 7-niobium alloy (ISO, Vernier, Geneva, Switzerland)

    Google Scholar 

  34. JIS T7401-5: Titanium materials for surgical implant applications part 5: wrought titanium 6-aluminium 7-niobium alloy (JIS, Tokyo, Japan)

    Google Scholar 

  35. Military Specification, MIL-T-9046 J, Code A-3 (1991)

    Google Scholar 

  36. Y. Sasaki, K. Doi, T. Matsushita, Kinzoku 66, 812 (1996)

    CAS  Google Scholar 

  37. JIS T7401-3: Titanium materials for surgical implant applications part 3: wrought titanium 6-aluminium 2-niobium 1-tantalum alloy (Tokyo, Japan)

    Google Scholar 

  38. Y. Okazaki, Y. Ito, A. Ito, T. Tateishi, New titanium alloys to be considered for medical implants, in Medical Applications of Titanium and Its Alloys, ed. by S.A. Brown, J.E. Lemons. ASTM STP 1272 (ASTM, West Conshohocken, PA, USA, 1996), p. 45

    Google Scholar 

  39. JIS 7401-4: Titanium materials for surgical implant applications part 4: wrought titanium 15-zirconium 4-niobium 4-tantalum alloy (Tokyo, Japan)

    Google Scholar 

  40. M. Niinomi, M. Nakai, J. Hieda, Acta Biomater. 8, 3888 (2012)

    Article  CAS  Google Scholar 

  41. A.K. Mishra, J.A. Davidson, R.A. Poggie, P. Kovacs, T.J. Fitzgerald, Mechanical and tribological properties and biocompatibility of diffusion hardened Ti-13Nb-13Zr—A new titanium alloy for surgical implants, in Medical Applications of Titanium And Its Alloy, ed. by S.A. Brown, J.E. Lemons. ASTM STP 1272 (ASTM, West Conshohocken, PA, USA, 1996), p. 96

    Google Scholar 

  42. ASTM F1713: Standard specification for wrought titanium-13niobium-13zirconium alloy for surgical implant applications (UNS R58130) (ASTM International, West Conshohocken, PA, USA)

    Google Scholar 

  43. K.K. Wang, L.J. Gustavson, J.H. Dumbleton, Microstructure and properties of a new beta titanium alloy, Ti-12Mo-6Zr-2Fe, developed for surgical implants, in Medical Applications of Titanium and Its Alloy, ed. by S.A. Brown, J.E. Lemons. ASTM STP 1272 (ASTM, West Conshohocken, PA, USA, 1996), p. 76

    Google Scholar 

  44. ASTM F1813: Standard specification for wrought titanium–12 molybdenum–6 zirconium–2 iron alloy for surgical implant (UNS R58120) (ASTM International, West Conshohocken, PA, USA)

    Google Scholar 

  45. L.D. Zardiackas, D.W. Mitchell, J.A. Disegi, Characterization of Ti-15Mo beta titanium alloy for orthopedic implant, in Medical Applications of Titanium and Its Alloy, ed. by S.A. Brown, J.E. Lemons. ASTM STP 1272 (ASTM, West Conshohocken, PA, USA, 1996), p. 60

    Google Scholar 

  46. ASTM F2066: Standard specification for wrought titanium-15 molybdenum alloy for surgical implant applications (UNS R58150) (ASTM International, West Conshohocken, PA, USA)

    Google Scholar 

  47. K. Wang, Mater. Sci. A 213, 134 (1996)

    Article  Google Scholar 

  48. S.G. Steinemann, P.A. Mausli, S. Szmukler-Moncler, M. Semlitsch, H.E. Pohler Hintermann, S.M. Perren, in Titanium ’92, Science and Technology, ed. by F.H. Froes, I. Caplan (Warrendale, PA, 1993), p. 2689

    Google Scholar 

  49. ISO 5832-14: Implants for surgery—metallic materials—part 14: wrought titanium 15-molybdenum 5-zirconium 3-aluminium alloy (ISO, Vernier, Geneva, Switzerland)

    Google Scholar 

  50. JIS T7401-6: Titanium materials for surgical implant applications part 6: wrought titanium 15-molybdenum 5-zirconium 3-aluminium alloy (JIS, Tokyo, Japan)

    Google Scholar 

  51. T. Ahmed, M. Long, J. Silvestri, C. Ruiz, H.J. Rack, A new low modulus, biocompatible titanium alloy, in Titanium ’95, Science and Technology, vol. II, ed. by P.A. Blenkinsop, W.J. Evans, H.M. Flower (Institute of Metals, London, UK, 1996), p. 1760

    Google Scholar 

  52. ASTM designation draft #3: Standard specification for wrought taitanium-35Niobium-7zirconium-5tantalum alloy for surgical implant applications (UNS R58350) (ASTM, Philadelphia, PA, USA)

    Google Scholar 

  53. M. Niinomi, T. Hattori, K. Morikawa, T. Kasuga, A. Suzuki, H. Fukui, S. Niwa, Mater. Trans. 43, 2970 (2002)

    Article  CAS  Google Scholar 

  54. ASTM F1713: Standard specification for wrought titanium-13niobium-13zirconium alloy for surgical implant applications (UNS R58130) (ASTM International, West Conshohocken, PA, USA), p. 29

    Google Scholar 

  55. S. Hatanaka, M. Ueda, M. Ikeda, M. Niinomi, Adv. Mater. Res. 89–91, 232 (2010)

    Article  Google Scholar 

  56. M. Ikeda, M. Ueda, R. Matsunaga, M. Ogawa, M. Niinomi, Mater. Trans. 50, 2737 (2009)

    Article  CAS  Google Scholar 

  57. M. Ikeda, M. Ueda, T. Kinoshita, M. Ogawa, M. Niinomi, Mater. Sci. Forum 706–709, 1893 (2012)

    Article  Google Scholar 

  58. P.F. Santos, M. Niinomi, H. Liu, M. Nakai, K. Cho, T. Narushima, Development and performance of a Ti-based beta-type alloy for biomedical applications using Mn and Mo additions, in Abstract of Innovative Research for Biosis-Abiosis Intelligent Interface Symposium, The 6th International Symposium for Interface Oral Health Science, Gonryo Kaika, Sendai, Japan, 18–19 January 2016, p. 66

    Google Scholar 

  59. M. Ikeda, M. Ueda, R. Matsunaga, M. Niinomi, Mater. Sci. Forum 654–656, 855 (2010)

    Article  Google Scholar 

  60. M. Ikeda, D. Sugano, Mater. Sci. Eng., C 25, 377 (2005)

    Article  Google Scholar 

  61. S. Ashida, H. Kyogaku, H. Hosoda, Mater. Sci. Forum 706–709, 1943 (2012)

    Article  Google Scholar 

  62. Y. Murayama, S. Sasaki, Univ. Res. J. Niigata Inst. Tec. 14, 1 (2009)

    Google Scholar 

  63. Y. Kasano, T. Inamura, H. Kanetaka, S. Miyazaki, H. Hosoda, Mater. Sci. Forum 654–656, 2118 (2010)

    Article  Google Scholar 

  64. M. Nakai, M. Niinomi, X.F. Zhao, X.L. Zhao, Mater. Lett. 65, 688 (2011)

    Article  CAS  Google Scholar 

  65. M. Nakai, M. Niinomi, K. Cho, K. Narita, Enhancing functionalities of metallic materials by controlling phase stability for use in orthopedic implants, in Interface Oral Health Science 2014, ed. by K. Sasaki, O. Suzuki, N. Takahashi (Springer, 2015), p. 79

    Google Scholar 

  66. M. Niinomi, Shape memory, super elastic and low Young’s modulus alloys, in Biomaterials for Spinal Surgery, ed. by L. Ambrosio, E. Tanner (Woodhead Publishing Ltd, 2012), p. 462

    Google Scholar 

  67. H.Y. Kim, Y. Ikehara, J.I. Kim, H. Hosoda, S. Miyazaki, Acta Mater. 54, 2419 (2006)

    Article  CAS  Google Scholar 

  68. J.I. Kim, H.Y. Ki, H. Hosoda, S. Miyazaki, Mater. Trans. 46, 852 (2005)

    Article  CAS  Google Scholar 

  69. E. Takahashi, T. Sakurai, S. Watanabe, N. Masahashi, S. Hanada, Mater. Trans. 43, 2978 (2002)

    Article  CAS  Google Scholar 

  70. K. Nitta, S. Watanabe, N. Masahashi, H. Hosoda, S. Hanada, Ni-free Ti-Nb-Sn shape memory alloys, in Structural Biomaterials for the 21st Century, ed. by M. Niinomi, T. Okabe, E.M. Taleff, D.R. Lesuer, H.E. Lippard (TMS, Warrendale, PA, USA, 2001), p. 25

    Google Scholar 

  71. H. Hosoda, Y. Fukui, T. Inamura, K. Wakashima, S. Miyazaki, K. Inoue, Mater. Sci. Forum 426–432, 3121 (2003)

    Article  Google Scholar 

  72. T. Inamura, H. Hosoda, K. Wakashima, S. Miyazaki, Mater. Trans. 46, 1597 (2005)

    Article  CAS  Google Scholar 

  73. H. Kim, H.Y. Ki, T. Inamura, H. Hosoda, S. Miyazaki, Mater. Sci. Eng., A 403, 334 (2005)

    Article  Google Scholar 

  74. H.Y. Kim, H. Hosoda, S. Miyazaki, Development of super elastic Ti-Nb system alloys for biomedical applications, in Collected abstracts of the 2007 Spring Meeting of JIM (2007), p. 91

    Google Scholar 

  75. Y. Ohmatsu, J.I. Kim, H.Y. Kim, H. Hosoda, S. Miyazaki, Shape memory characteristics of Ti-Nb-Mo alloys for biomedical applications, in Collected Abstracts of the 2003 Spring Meeting of JIM (2003), p. 144

    Google Scholar 

  76. Y. Al-Zain, H.Y. Kim, H. Hosoda, T.H. Nam, S. Miyazaki, Acta Mater. 58, 4212 (2010)

    Article  CAS  Google Scholar 

  77. H.Y. Kim, T. Sasaki, K. Okutsu, J.I. Kim, T. Inamura, H. Hosoda, S. Miyazaki, Acta Mater. 54, 423 (2006)

    Article  CAS  Google Scholar 

  78. N. Oshika, S. Hashimoto, J.I. Kim, H.Y. Kim, Y. Ohmatsu, H. Hosoda, S. Miyazaki, Shape memory characteristics of Ti-Nb-Au alloys for biomedical applications, in Collected Abstracts of the 2003 Fall Meeting of JIM (2003), p. 149

    Google Scholar 

  79. D. Ping, Y. Mitarai, F. Yin, Scripta Mater. 52, 1287 (2005)

    Article  CAS  Google Scholar 

  80. M. Niinomi, Multifunctional low-rigidity β-type Ti-Nb-Ta-Zr system alloys as biomaterials, in Interface Oral Health Science 2007, ed. by K. Sasaki, O. Suzuki, N. Takahashi, asso ed. by M. Watanabe, O. Okuno (2007), p. 75

    Google Scholar 

  81. H. Hosoda, N. Hosoda, S. Miyazaki, Trans. MRS-J. 26, 243 (2001)

    CAS  Google Scholar 

  82. H.Y. Kim, Y. Ohmatsu, J.I. Kim, H. Hosoda, S. Miyazaki, Mater. Trans. 45, 1090 (2004)

    Article  CAS  Google Scholar 

  83. N. Hosoda, A. Yamamoto, H. Hosoda, S. Miyazaki, Mechanical properties of Ti-Mo-Ge shape memory alloys for biomedical applications, in Collected Abstracts of the 2001 Fall Meeting of JIM (2001), p. 401

    Google Scholar 

  84. T. Maeshima, M. Nishida, Mater. Trans. 45, 1096 (2004)

    Article  CAS  Google Scholar 

  85. T. Maeshima, M. Nishida, Mater. Trans. 45, 1101 (2004)

    Article  CAS  Google Scholar 

  86. M. Ikeda, S. Komatsu, Y. Nakamura, Mater. Trans. 45, 1106 (2004)

    Article  CAS  Google Scholar 

  87. M. Ikeda, D. Sugano, S. Masuda, M. Ogawa, Mater. Trans. 46, 1604 (2005)

    Article  CAS  Google Scholar 

  88. H. Hosoda, S. Miyazaki, J. Jpn. Soc. Mech. Eng. 107, 509 (2004)

    Google Scholar 

  89. M. Niinomi, Materia. Jpn. 525, 219 (2013)

    Article  Google Scholar 

  90. X.F. Zhao, M. Niinomi, M. Nakai, J. Hieda, Acta Biomater. 8, 2392 (2012)

    Article  CAS  Google Scholar 

  91. H.H. Liu, M. Niinomi, M. Nakai, J. Hieda, K. Cho, J. Mech. Behav. Biomed. 30, 205 (2014)

    Article  CAS  Google Scholar 

  92. E. Kobayashi, M. Ando, Y. Tsutsumi, H. Doi, T. Yoneyama, M. Kobayashi, T. Hanawa, Mater. Trans. 48, 301 (2007)

    Article  CAS  Google Scholar 

  93. G.K. Kambouroglou, T.S. Axelrod, A brief report. J. Hand. Surg. 23, 737 (1998)

    Article  CAS  Google Scholar 

  94. S.D. Cook, E.A. Renz, R.L. Barrack, K.A. Thomas, A.F. Harding, R.J. Haddad, M. Milicic, Clin. Orthop. Relat. Res. (236) (1985)

    Google Scholar 

  95. I. Thibon, D. Ansel, T. Gloriant, J. Alloy. Compd. 470, 127 (2009)

    Article  CAS  Google Scholar 

  96. T. Albrektsson, H.A. Hansson, B. Ivarsson, Biomater. 6, 97 (1985)

    Article  CAS  Google Scholar 

  97. Y. Ikarashi, K. Toyoda, E. Kobayashi, H. Doi, T. Yoneyama, H. Hamanaka, T. Tsuchiya, Mater. Trans. 46, 2260 (2005)

    Article  CAS  Google Scholar 

  98. Y. Tsutsumi, D. Nishimura, H. Doi, N. Nomura, T. Hanawa, Mater. Sci. Eng., C 29, 1702 (2009)

    Article  CAS  Google Scholar 

  99. T. Hanawa, O. Okuno, H. Hamanaka, J. Jpn. Inst. Met. 56, 1168 (1992)

    Article  CAS  Google Scholar 

  100. E. Kobayash, S. Matsumoto, H. Doi, T. Yoneyama, H. Hamanaka, J. Biomed. Mater. Res. 29, 943 (1995)

    Article  Google Scholar 

  101. E. Kobayashi, H. Doi, T. Yoneyama, H. Hamanaka, S. Matsumoto, K. Kudaka, J. J. Dent. Mater. 14, 321 (1995)

    Google Scholar 

  102. W.F. Ho, W.K. Chen, S.C. Wu, H.C. Hsu, J. Mater. Sci. Mater. Med. 19, 3179 (2008)

    Article  CAS  Google Scholar 

  103. A.G. Imgram, D.N. Williams, H.R. Ogden, J. Less-Common Met. 4, 217 (1962)

    Article  CAS  Google Scholar 

  104. M. Takahashi, E. Kobayashi, H. Doi, T. Yoneyama, H. Hamanaka, J. Jpn. Inst. Met. 64, 1120 (2000)

    Article  CAS  Google Scholar 

  105. G.J. Yang, T. Zhang, J. Alloy. Compd. 392, 291 (2005)

    Article  CAS  Google Scholar 

  106. X.L. Zhao, M. Niinomi, M. Nakai, T. Ishimoto, T. Nakano, Mater. Sci. Eng., C 31, 1436 (2011)

    Article  CAS  Google Scholar 

  107. X.L. Zhao, M. Niinomi, M. Nakai, G. Miyamoto, T. Furuhara, Acta Biomater. 7, 3230 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuo Niinomi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niinomi, M., Nakai, M. (2019). Ti-Based Biomedical Alloys. In: Setsuhara, Y., Kamiya, T., Yamaura, Si. (eds) Novel Structured Metallic and Inorganic Materials. Springer, Singapore. https://doi.org/10.1007/978-981-13-7611-5_3

Download citation

Publish with us

Policies and ethics