Skip to main content

Laser-Induced Processes for Functionalization of Materials Surface

  • Chapter
  • First Online:
  • 1185 Accesses

Abstract

Femtosecond laser-induced process, periodic nanostructures formation, for the creation of new functions on a titanium dioxide (TiO2) film is reviewed in this chapter. It has recently been reported that coating a TiO2 film on Ti plates may improve the biocompatibility of Ti. The periodic nanostructures have useful effects on the control of cell spreading. The scanning of femtosecond laser at wavelengths of 388 and 775 nm successfully produces periodic nanostructures on TiO2 film through the laser ablation process. The periodicity of nanostructures formed with those wavelengths are calculated using the surface plasmon polariton (SPP) model. The experimental results with those wavelengths were in the ranges of the calculated period, respectively. This suggests that the mechanism for the formation of periodic nanostructures on TiO2 film by femtosecond laser irradiation is due to the excitation of SPPs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. T. Hanawa, Biofunctionalization of titanium for dental implant. Jpn. Dent. Sci. Rev. 46(2), 93–101 (2010)

    Article  Google Scholar 

  2. L.H. Li, Y.M. Kong, H.W. Kim, Y.W. Kim, H.E. Kim, S.J. Heo, J.Y. Koak, Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials 25(14), 2867–2875 (2004)

    Article  CAS  Google Scholar 

  3. X. Liu, P.K. Chub, C. Ding, Surface modification of titanium, titanium alloy sand related materials for biomedical applications. Mater. Sci. Eng. Rep. 47(3–4), 49–121 (2004)

    Article  Google Scholar 

  4. Y. Tsutsumi, M. Niinomi, M. Nakai, H. Tsutsumi, H. Doi, N. Nomura, T. Hanawa, Micro-arc oxidation treatment to improve the hard-tissue compatibility of Ti-29Nb-13Ta-4.6Zr alloy. Appl. Surf. Sci. 262, 34–38 (2012)

    Article  CAS  Google Scholar 

  5. J. Akedo, M. Ichiki, K. Kikuchi, R. Maeda, Jet molding system for realization of three-dimensional microstructures. Sens. Actuators A Phys. 69(1), 106–112 (1998)

    Article  CAS  Google Scholar 

  6. M. Tsukamoto, T. Fujihara, N. Abe, S. Miyake, M. Katto, T. Nakayama, J. Akedo, Hydroxyapatite coating on titanium plate with an ultrafine particle beam. Jpn. J. Appl. Phys. 42(2A), L120–L122 (2003)

    Article  CAS  Google Scholar 

  7. J. Lu, M.P. Rao, N.C. MacDonald, D. Khang, T.J. Webster, Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features. Acta Biomater. 4(1), 192–201 (2008)

    Article  CAS  Google Scholar 

  8. A. Matsugaki, G. Aramoto, T. Nakano, The alignment of MC3T3-E1 osteoblasts on steps of slip traces introduced by dislocation motion. Biomaterials 33(30), 7327–7335 (2012)

    Article  CAS  Google Scholar 

  9. S. Fujita, M. Ohshima, H. Iwata, Time-lapse observation of cell alignment on nanogrooved patterns. J. R. Soc. Interface 6(Suppl. 3), S269–S277 (2009)

    CAS  Google Scholar 

  10. K. Matsuzaka, X.F. Walboomers, J.E. de Ruijter, J.A. Jansen, The effect of poly-L-lactic acid with parallel surface micro groove on osteoblast-like cells in vitro. Biomaterials 20(14), 1293–1301 (1999)

    Article  CAS  Google Scholar 

  11. M. Tsukamoto, K. Asuka, H. Nakano, M. Hashida, M. Katto, N. Abe, M. Fujita, Periodic microstructures produced by femtosecond laser irradiation on titanium plate. Vacuum 80(11–12), 1346–1350 (2006)

    Article  CAS  Google Scholar 

  12. M. Tsukamoto, T. Kayahara, H. Nakano, M. Hashida, M. Katto, M. Fujita, M. Tanaka, N. Abe, Microstructures formation on titanium plate by femtosecond laser ablation. J. Phys: Conf. Ser. 59, 666–669 (2007)

    CAS  Google Scholar 

  13. K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, S. Sakabe, Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation. Phys. Rev. B 82(16), 165417 (2010)

    Article  Google Scholar 

  14. S. Sakabe, M. Hashida, S. Tokita, S. Namba, K. Okamuro, Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse. Phys. Rev. B 79(3), 033409 (2009)

    Article  Google Scholar 

  15. S.K. Das, D. Dufft, A. Rosenfeld, J. Bonse, M. Bock, R. Grunwald, Femtosecond laser induced quasiperiodic nanostructures on TiO2 surfaces. J. Appl. Phys. 105(8), 084912 (2009)

    Article  Google Scholar 

  16. N. Yasumaru, K. Miyazaki, J. Kiuchi, Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC. Appl. Phys. A Mater. Sci. Proc. 76, 983–985 (2003)

    Article  CAS  Google Scholar 

  17. D. Dufft, A. Rosenfeld, S.K. Das, R. Grunwald, J. Bonse, Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO. J. Appl. Phys. 105(3), 034908 (2009)

    Article  Google Scholar 

  18. G. Miyaji, K. Miyazaki, Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses. Opt. Express 16(20), 16265–16271 (2008)

    Article  CAS  Google Scholar 

  19. G. Miyaji, K. Miyazaki, K. Zhang, T. Yoshifuji, J. Fujita, Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water. Opt. Express 20(14), 14848–14856 (2012)

    Article  CAS  Google Scholar 

  20. K. Miyazaki, G. Miyaji, Nanograting formation through surface plasmon fields induced by femtosecond laser pulses. J. Appl. Phys. 114(15), 153108 (2013)

    Article  Google Scholar 

  21. T. Shinonaga, M. Tsukamoto, A. Nagai, K. Yamashita, T. Hanawa, N. Matsushita, G. Xie, N. Abe, Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser. Appl. Surf. Sci. 288, 649–653 (2014)

    Article  CAS  Google Scholar 

  22. J. Reif, F. Costache, M. Henyk, S.V. Pandelov, Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics. Appl. Surf. Sci. 197–198, 891–895 (2002)

    Article  Google Scholar 

  23. R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, S. Juodkazis, Mechanism of fine ripple formation on surfaces of (semi) transparent materials via a half-wavelength cavity feedback. Nanotechnology 22(5), 055304 (2011)

    Article  Google Scholar 

  24. C. Wang, H. Huo, M. Johnson, M. Shen, E. Mazur, The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations. Nanotechnology 21(7), 075304 (2010)

    Article  Google Scholar 

  25. Y. Shimotsuma, P.G. Kazansky, J. Qiu, K. Hirao, Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91(24), 247405 (2003)

    Article  Google Scholar 

  26. F.A. Umran, Y. Liao, M.M. Elias, K. Sugioka, R. Stoian, G. Cheng, Y. Cheng, Formation of nanogratings in a transparent material with tunable ionization property by femtosecond laser irradiation. Opt. Express 21(13), 15259–15267 (2013)

    Article  CAS  Google Scholar 

  27. M. Tsukamoto, T. Kawa, T. Shinonaga, P. Chen, A. Nagai, T. Hanawa, Cell spreading on titanium periodic nanostructures with periods of 200, 300 and 600 nm produced by femtosecond laser irradiation. Appl. Phys. A Mater. Sci. Process. 122 (2016)

    Google Scholar 

  28. M. Tsukamoto, N. Abe, Y. Soga, M. Yoshida, H. Nakano, M. Fujita, J. Akedo, Control of electrical resistance of TiO2 films by short-pulse laser irradiation. Appl. Phys. A Mater. Sci. Proc. 93, 193–196 (2008)

    Article  CAS  Google Scholar 

  29. M. Tsukamoto, T. Shinonaga, M. Takahashi, M. Fujita, N. Abe, Photoconductive properties of titanium dioxide film modified by femtosecond laser irradiation. Appl. Phys. A Mater. Sci. Proc. 110, 679–682 (2013)

    Article  CAS  Google Scholar 

  30. K. Sokolowski-Tinten, D. von der Linde, Generation of dense electron-hole plasmas in silicon. Phys. Rev. B 61(4), 2643–2650 (2000)

    Article  CAS  Google Scholar 

  31. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988)

    Google Scholar 

  32. E.D. Palik, Handbook of Optical Constants of Solids (Academic, 1997)

    Google Scholar 

  33. B. Enright, D. Fitzmaurice, Spectroscopic determination of electron and hole effective masses in a nanocrystalline semiconductor film. J. Phys. Chem. 100(3), 1027–1035 (1996)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Tsukamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsukamoto, M. (2019). Laser-Induced Processes for Functionalization of Materials Surface. In: Setsuhara, Y., Kamiya, T., Yamaura, Si. (eds) Novel Structured Metallic and Inorganic Materials. Springer, Singapore. https://doi.org/10.1007/978-981-13-7611-5_15

Download citation

Publish with us

Policies and ethics