Skip to main content

Abstract

Cancer is the second leading cause of mortality according to the current WHO report, which states that 30–50% of cancer cases can be prevented by maintaining a healthy lifestyle. One of the ways to maintain a healthy lifestyle is by consumption of healthy food containing antioxidant molecules and enzymes. Curcumin and polyphenolic compounds are now proven as anticarcinogenic molecules. The structures of these molecules are the reason for their anticarcinogenic property. There are many compounds available in nature that may be used as anticancer or antioxidant molecules. Some of these molecules have similar chemical structures and some have different structures. Moreover, in the absence of the known 3D structure of the natural compound, design and optimization of lead molecules are based on physicochemical properties and quantitative structure activity relationships. In this chapter, ligand-based designing of naturally available anticarcinogenic molecules is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EGCG:

Epigallocatechin gallate

GSH:

Reduced glutathione

GST:

Glutathione-S-transferase

LPO:

Lipid peroxidation

QSAR:

Quantitative structure activity relationship

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  • Anderson AC (2003) The process of structure-based drug design. Chem Biol 10:787–797

    Article  CAS  Google Scholar 

  • Baldi A (2010) Computational approaches for drug design and discovery: an overview. Syst Rev Pharm 1:99

    Article  CAS  Google Scholar 

  • Barker HE, Paget JT, Khan AA, Harrington KJ (2015) The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer 15:409

    Article  CAS  Google Scholar 

  • Boeing H, Bechthold A, Bub A, Ellinger S, Haller D, Kroke A, Leschik-Bonnet E, Müller MJ, Oberritter H, Schulze M, Stehle P (2012) Critical review: vegetables and fruit in the prevention of chronic diseases. Eur J Nutr 51:637–663

    Article  CAS  Google Scholar 

  • Borek C (2004) Dietary antioxidants and human cancer. Integr Cancer Ther 3:333–341

    Article  CAS  Google Scholar 

  • Cabrera C, Artacho R, Giménez R (2006) Beneficial effects of green tea – a review. J Am Coll Nutr 25:79–99

    Article  CAS  Google Scholar 

  • Cohen MM (2014) Tulsi-Ocimum sanctum: a herb for all reasons. J Ayurveda Integr Med 5:251

    Article  Google Scholar 

  • Cragg GM (1998) Paclitaxel (Taxol®): a success story with valuable lessons for natural product drug discovery and development. Med Res Rev 18:315–331

    Article  CAS  Google Scholar 

  • Demain AL, Vaishnav P (2011) Natural products for cancer chemotherapy. Microb Biotechnol 4:687–699

    Article  Google Scholar 

  • Devi PU (2004) Basics of carcinogenesis. Health Adm 17:16–24

    Google Scholar 

  • Du GJ, Zhang Z, Wen XD, Yu C, Calway T, Yuan CS, Wang CZ (2012) Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea. Nutrients 4:1679–1691

    Article  CAS  Google Scholar 

  • Fantini M, Benvenuto M, Masuelli L, Frajese GV, Tresoldi I, Modesti A, Bei R (2015) In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: perspectives on cancer treatment. Int J Mol Sci 16:9236–9282

    Article  CAS  Google Scholar 

  • Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2008) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917

    Article  Google Scholar 

  • Gupta S, Hastak K, Afaq F, Ahmad N, Mukhtar H (2004) Essential role of caspases in epigallocatechin-3-gallate-mediated inhibition of nuclear factor kappaB and induction of apoptosis. Oncogene 23:2507

    Article  CAS  Google Scholar 

  • Hall EJ, Giaccia AJ (2006) Radiobiology for the radiologist. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Hosseini A, Ghorbani A (2015) Cancer therapy with phytochemicals: evidence from clinical studies. Avicenna J Phytomedicine 5:84

    CAS  Google Scholar 

  • Huang WY, Cai YZ, Zhang Y (2009) Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer 62:1–20

    Article  Google Scholar 

  • Hutchinson E (2001) Alfred Knudson and his two-hit hypothesis. Lancet Oncol 2:642–645

    Article  Google Scholar 

  • Leelananda SP, Lindert S (2016) Computational methods in drug discovery. Beilstein J Org Chem 12:2694

    Article  CAS  Google Scholar 

  • Liu Y, Wu YM, Zhang PY (2015) Protective effects of curcumin and quercetin during benzo (a) pyrene induced lung carcinogenesis in mice. Eur Rev Med Pharmacol Sci 19:1736–1743

    CAS  PubMed  Google Scholar 

  • Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4:118

    Article  CAS  Google Scholar 

  • Lounnas V, Ritschel T, Kelder J, McGuire R, Bywater RP, Foloppe N (2013) Current progress in structure-based rational drug design marks a new mindset in drug discovery. Comput Struct Biotechnol J 5:e201302011

    Article  Google Scholar 

  • Martis EA, Somani RR (2012, May 23) Drug designing, discovery and development techniques. In: Basnet P (ed) Promising pharmaceuticals. IntechOpen, London. https://doi.org/10.5772/38948. Available from: https://www.intechopen.com/books/promisingpharmaceuticals/drug-designing-discovery-anddevelopment-techniques

    Google Scholar 

  • Menon VP, Sudheer AR (2007) Antioxidant and anti-inflammatory properties of curcumin. In: Aggarwal BB, Surh YJ, Shishodia S (eds) The molecular targets and therapeutic uses of Urcumin in health and disease. Springer, Texas, pp 105–125

    Chapter  Google Scholar 

  • Middleton E Jr, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751

    CAS  PubMed  Google Scholar 

  • Oliveira PA, Colaço A, Chaves R, Guedes-Pinto H, De-La-Cruz P, Luis F, Lopes C (2007) Chemical carcinogenesis. An Acad Bras Cienc 79:593–616

    Article  CAS  Google Scholar 

  • Pitot HC (1993) The molecular biology of carcinogenesis. Cancer 72(3 Suppl):962–970

    Article  CAS  Google Scholar 

  • Podolskiy DI, Gladyshev VN (2016) Intrinsic versus extrinsic cancer risk factors and aging. Trends Mol Med 22:833–834

    Article  Google Scholar 

  • Prada-Gracia D, Huerta-Yépez S, Moreno-Vargas LM (2016) Application of computational methods for anticancer drug discovery, design, and optimization. Bol Médico Hosp Infantil Méx (Engl Ed) 73:411–423

    Google Scholar 

  • Rahman HS (2016) Natural products for cancer therapy. Dual Diagn Open Acc 1:15

    Article  Google Scholar 

  • Rajesh E, Sankari LS, Malathi L, Krupaa JR (2015) Naturally occurring products in cancer therapy. J Pharm Bioallied Sci 7(Suppl 1):S181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Surh YJ, Chun KS (2007) Cancer chemopreventive effects of curcumin. In: Aggarwal BB, Surh YJ, Shishodia S (eds) The molecular targets and therapeutic uses of urcumin in health and disease. Springer, London, pp 149–172

    Chapter  Google Scholar 

  • Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147:275–292

    Article  CAS  Google Scholar 

  • Verma J, Khedkar VM, Coutinho EC (2010) 3D-QSAR in drug design-a review. Curr Top Med Chem 10:95–115

    Article  CAS  Google Scholar 

  • Xue L, Bajorath J (2000) Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Comb Chem High Throughput Screen 3:363–372

    Article  CAS  Google Scholar 

  • Yu HB, Pan CE, Wu WJ, Zhao SH, Zhang HF (2008) Effects of resveratrol on matrix metalloproteinase-9 expression in hepatoma cells. Zhong Xi Yi Jie He Xue Bao 6:270–273

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, V. et al. (2019). Ligand-Based Designing of Natural Products. In: Sharma, A. (eds) Bioactive Natural Products for the Management of Cancer: from Bench to Bedside. Springer, Singapore. https://doi.org/10.1007/978-981-13-7607-8_8

Download citation

Publish with us

Policies and ethics