Skip to main content

Agriculture Application of Pseudomonas: A View on the Relative Antagonistic Potential Against Pests and Diseases

  • Chapter
  • First Online:
Plant Growth Promoting Rhizobacteria for Agricultural Sustainability

Abstract

Agriculture is an important factor for improving economy of the country. Productivity of the crop is drastically reduced due to the incidence of biotic factors such as pests, diseases and nematodes as their infestation causes huge economic loss to the farmers. Biocontrol agents are excellent candidates for the reduction of biotic stressesĀ and effective alternative to the chemicals as chemicals cause a huge menace to the environment. Among biocontrol agents, plant growth-promoting rhizobacteria (PGPR) is important group of root-colonizing bacteria which help in the promotion of plant growth in addition to the suppression of pests and diseases. Pseudomonas is an important candidate belonging to PGPR which is a gram-negative and rod-shaped bacteria. Efficacy of various strains of these bacteria in enhancing the plant growth and suppression of pest and diseases were well proved. This chapter deals with the pioneering and recent works of Pseudomonas in the management of pests, diseases and nematodes. This review will help in the research work that involves Pseudomonas as a potential bioagent in the management of pests, diseases and nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhtar S, Panwar J (2012) Efficacy of root associated fungi and PGPR on the growth of Pisumsativum (cv. Arkil) and reproduction of the root knot nematode, Meloidogyne incognita. J Basic Microbiol 23:1521ā€“4028

    Google ScholarĀ 

  • Alexandra A, Olga A, Valentina A, Julia V, Zaitseva A, Katkova-Zhukotskaya AS, Leonid S, Inessa A (2014) Inhibitory and toxic effects of volatiles emitted by strains of Pseudomonas and Serratia on growth and survival of selected microorganisms, Caenorhabditis elegans and Drosophila melanogaster. Bio Med Res Int 1:1ā€“11

    Google ScholarĀ 

  • Ali NI, Shaukat SS, Zaki MJ (2002) Nematicidal activity of some strains of Pseudomonas spp. Soil Biol Biochem 34:1051ā€“1058

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Anamika SS, Singh KP, Ghosh G (2011) Distribution of root-knot nematode on major field crops in Uttar Pradesh (India). Arch Phytopathology Plant protect 44(2):191ā€“197

    ArticleĀ  Google ScholarĀ 

  • Arseneault T, Goyer C, Filion M (2013) Phenazine production by Pseudomonas sp. LBUM223 contributes to the biological control of potato common scab. Phytopathology 103:995ā€“1000

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ashoub AH, Amara MT (2010) Biocontrol activity of some bacterial genera against root knot nematode, Meloidogyne incognita. J Am Sci 6(10):321ā€“328

    Google ScholarĀ 

  • Aswathy V (2015) Management of epilachna beetle, Henosepilachna vigintioctopunctata (Fab.) with phylloplane and pathogenic microorganisms. Dissertation, Agricultural University, Thrissur

    Google ScholarĀ 

  • Bakthavatchalu S, Shivakumar S, Sullia S (2013) Molecular detection of antibiotic related genes from Pseudomonas aeruginosa FP6, an antagonist towards rhizoctonia solani and colletotrichum gloeosporioides. Turk J Biol 37:289ā€“295

    CASĀ  Google ScholarĀ 

  • Barazani O, Friedman J (1999) Is IAA the major root growth factor secreted from plant-growth-mediating bacteria. J Chem Ecol 25:2397ā€“2406

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape and structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1ā€“13

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bong CFJ, Sikorowski PP (1991) Effects of cytoplasmic polyhedrosis virus and bacterial contamination on growth and development of the corn earworm, Helicoverpa zea. J Invertebr Pathol 57:406ā€“412

    ArticleĀ  Google ScholarĀ 

  • Burkhead K, Geoghegan MJ (1994) Antibiotics. In: Burkhead K (ed) Soil borne plant pathogens. Macmillan, New York, pp 351ā€“368

    Google ScholarĀ 

  • Chavan BP, Kadam R (2009) Effect of combination of adjuvants of liquid formulations of Verticillium lecanii (Zimmermann) viegas and their efficacy. J Biol Ctrl 23(1):73ā€“77

    Google ScholarĀ 

  • Chen C, Belanger RR, Benhamou N, Paulitz TC (2000) Defense enzymes induced in cucumber roots by treatment with plant-growth promoting rhizobacteria (PGPR). Physiol Mol Plant Pathol 56:13ā€“23

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Commare RR, Nandakumar R, Kandan A, Suresh S, Bharathi M, Raguchander T, Samiyappan R (2002) Pseudomonas fluorescens based bio-formulation for the management of sheath blight disease and leaf folder insect in rice. Crop Prot 21:671ā€“677

    ArticleĀ  Google ScholarĀ 

  • Cronin DYM, Loccoz A, Ffenton C, Dunne DN, Dowlind GFA (1997) Role of 2,4-Diacethlphloroglucinol in the interactions of the biocontrol Pseudomonas strain F113 with the potato cyst nematode, G. rostochiensis. Appl Environ Microbiol 63(4):1357ā€“1361

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • De Lima Pimenta A, Di Martino P, Le Bouder E, Hulen C, Blight MA (2003) In vitro identification of two adherence factors required for in vivo virulence of Pseudomonas fluorescens. Microb Infect 5:1177ā€“1187

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Devi KK, Kothamasi D (2009) Pseudomonas fluorescens CHA0 can kill subterranean termite Odontotermes obesus by inhibiting cytochromec oxidase of the termite respiratory chain. FEMS Microbiol Lett 300:195ā€“200

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • El-Hamshary OIM, El-Nagdi WMA, Youssef MMA (2004) Genetical studies and antagonistic effects of a newly bacterial fusant against M. incognita root knot nematode, infecting sunflower and plant pathogen Fusarium oxysporum. J Genet Eng Biotechnol (NRC) 2(2):233ā€“246

    Google ScholarĀ 

  • Faisal M, Nagendran P, Karthikeyan G, Raguchander T, Prabakar K (2014) Water in oil based PGPR formulation of Pseudomonas fluorescens (FP7) showed enhanced resistance against Colletotrichum musae. Crop Protect 65:186ā€“193

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ganesan P, Gnanamanickam SS (1987) Biological control of Sclerotium rolfsii Sacc., in peanut by inoculation with Pseudomonas fluorescens. Soil Biol Biochem 19:35ā€“39

    ArticleĀ  Google ScholarĀ 

  • Gaur AC (1990) Phosphate solubilising microorganisms as biofertilizers. Omega Scientific Publishers, New Delhi

    Google ScholarĀ 

  • Gopal M, Gupta A, Sathiamma B (2002) Microbial pathogens of the coconut pest Oryctes rhinoceros: influence of weather factors on their infectivity and study of their coincidental ecology in Kerala, India. World J Microbiol Biotechnol 18:417

    ArticleĀ  Google ScholarĀ 

  • Haas D, Defago G (2005) Biological control of soil borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307ā€“319

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hallamann J, Quadt-Hallamann A, Miller WG, Sikora RA, Lindow SE (2001) Endophyte colonization of plants by biocontrol agents Rhizobium etli G12 in relation to Meloidogyne incognita infection. Phytopathology 91(4):415ā€“442

    ArticleĀ  Google ScholarĀ 

  • Hamid M, Siddiqui IA, Shahid Shaukat S (2003) Improvement of Pseudomonas fluorescens CHA0 biocontrol activity against root-knot nematode by the addition of ammonium molybdate. Lett Appl Microbiol 36(4):239ā€“244

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hanna AI, Riad FW, Tawfik AE (1999) Efficacy of antagonistic rhizobacteria on the control of root knot nematode, Meloidogyne incognita in tomato plants. Egypt J Agric Res 77(4):1467ā€“1476

    Google ScholarĀ 

  • Haseeb A, Sharma A, Shukla PK (2005) Studies on the management of root-knot nematode, Meloidogyne incognita-wilt fungus, Fusarium oxysporum disease complex of green gram, Vigna radiata cv ML-1108. J Zhejiang Univ Sci B 6(8):736ā€“742

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hashimoto Y (2002) Study of the bacteria pathogenic for aphids, isolation of bacteria and identification of insecticidal compound. Rep Hokkaido Prefect Agric Exp Sta 102:1ā€“48

    CASĀ  Google ScholarĀ 

  • Jang JY, Yang SY, Kim YC, Lee CW, Park MS, Kim JC, Kim IS (2013) Identification of orfamide A as an insecticidal metabolite produced by Pseudomonas protegens F6. J Agric Food Chem 61:6786ā€“6791

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Jayashree K, Shanmugam V, Raguchander T, Ramanathan A, Samiyappan R (2000) Evaluation of Pseudomonas fluorescens (Pf-1) against black gram. J Biol Ctrl 14(2):55ā€“61

    Google ScholarĀ 

  • Jonathan EI, Sandeep A, Cannayane I, Umamaheswari R (2006) Bioefficacy of Pseudomonas fluorescens on Meloidogyne incognita in banana. Nematol medit 34:19ā€“25

    Google ScholarĀ 

  • Jothi G, Sivakumar M, Rajendran G (2003) Management of root knot nematode by Pseudomonas fluorescens in tomato. Indian J Nematol 33(1):87ā€“88

    Google ScholarĀ 

  • Karssen G, Moens M (2006) Root-knot nematodes. In: Perry RN, Moens M (eds) Plant nematol. CABI Publishing, Wallingford, pp 59ā€“90

    ChapterĀ  Google ScholarĀ 

  • Karthiba L, Saveetha K, Suresh S, Raguchander T, Saravanakumar D, Samiyappan R (2010) PGPR and entomopathogenic fungus bioformulation for the synchronous management of leaf folder pest and sheath blight disease of rice. Pest Manag Sci 66:555ā€“564

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kavino M, Harish S, Kumar N, Saravanakumar D, Samiyappan R (2010) Effect of chitinolytic PGPR on growth, yield and physiological attributes of banana (Musa spp.) under field conditions. Appl Soil Ecol 45:71ā€“77

    ArticleĀ  Google ScholarĀ 

  • Khakipour N, Khavazi K, Mojallali H, Pazira E, Asadirahmani H (2008) Production of auxin hormone by fluorescent pseudomonads. J Agric Environ Sci 4:687ā€“692

    Google ScholarĀ 

  • Khan MR (2007) Prospects of microbial control of root knot nematodes infecting vegetable crops. In: Sharma N, Singh HB (eds) Biotechnology: plant health management. International Book Distributing Co, Lucknow, pp 643ā€“665

    Google ScholarĀ 

  • Khan MR, Akram M (2000) Effect of certain antagonistic fungi and rhizobacteria on wilt disease complex caused by Meloidogyne incognita and Fusarium oxysporum f.sp. lycopersici on tomato. Nematol Mediterr 28:139ā€“144

    Google ScholarĀ 

  • Khan MR, Haque Z (2011) Soil application of Pseudomonas fluorescens and Trichoderma harzianum reduces root knot nematode, Meloidogyne incognita on tobacco. Phytopathol Mediterr 50:257ā€“266

    CASĀ  Google ScholarĀ 

  • Khan MR, Tarannum Z (1999) Effect of field application of various microorganisms on the root-knot disease of tomato. Nematol Mediterr 27:33ā€“38

    Google ScholarĀ 

  • Khan MR, Khan SM, Khan N (2001) Effects of soil application of certain fungal and bacterial bioagents against Meloidogyne incognita infecting chickpea. Paper presented at the National congress on Centenary of Nematology in India: Appraisal and Future Plans, Division of Nematology, Indian Agricultural Research Institute, New Delhi, 5ā€“7 December 2001

    Google ScholarĀ 

  • Khan MR, Altaf S, Mohiddin FA, Khan U, Anwer A (2009) Biological control of plant nematodes with phosphate solubilizing microorganisms. In: Khan MS, Zaidi A (eds) Phosphate solubilizing microbes for crop improvement. Nova Science Publishers Inc, New York, pp 395ā€“426

    ChapterĀ  Google ScholarĀ 

  • Khan MR, Mohidin FA, Ahamad F (2016) Native Pseudomonas spp. suppressed the root knot nematode in in vitro and in vivo, and promoted the nodulation and grain yield in the field grown mung bean. Biol Contrl 101:159ā€“168

    ArticleĀ  Google ScholarĀ 

  • Kramer KJ, Muthukrishnan S (1997) Insect chitinases: molecular biology and potential use as biopesticides. Insect Biochem Mol Biol 27(11):887ā€“900

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lanteigne C, Vijay J, Wallon T, Novinscak A, Filion M (2012) Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato. Phytopathology 102:967ā€“973

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lysenko O, Kucera M (1971) The mechanism of pathogenicity of Pseudomonas aeruginosa. Folia Microbiol Prague 13:259ā€“299

    Google ScholarĀ 

  • Mane PB, Mhase NL (2017) Bioefficacy of different bioagents against root knot nematode, Meloidogyne incognita infesting bottle gourd under laboratory conditions. Int J Plant Prot 10(1):87ā€“91

    ArticleĀ  Google ScholarĀ 

  • Manikandan R, Raguchander T (2014) Fusarium oxysporum f.sp. lycopersici retardation through induction of defensive response in tomato plants using a liquid formulation of Pseudomonas fluorescens (Pf1). Eur J Plant Pathol 140:469ā€“480

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Manikandan R, Saravanakumar D, Rajendran L, Raguchander T, Sammiyappan R (2010) Standardization of liquid formulation of Pseudomonas fluorescens, Pf 1 for its efficacy against Fusarium wilt of tomato. Biol Ctrl 54(2):83ā€“89

    Google ScholarĀ 

  • Maria PT, Denny J, Esther F, Marcella D, Henkels K, Donahue M (2008) Molecular analysis of a novel gene cluster encoding an insect toxin in plant associated strains of Pseudomonas fluorescens. Environ Microbiol 9(2):3ā€“19

    Google ScholarĀ 

  • Meca A, Sepulveda B, Ogona JC, Grados N, Moret A, Morgan M (2009) In vitro pathogenicity of northern Peru native bacteria on Phyllocnistis citrella Stainton (Gracillariidae: Phyllocnistinae), on predator insects (Hippodamia convergens and Chrysoperla externa), on Citrus aurantifolia Swingle and white rats. Span J Agric Res 7(1):137ā€“145

    ArticleĀ  Google ScholarĀ 

  • Melvin JM, Muthukumaran N (2008) Role of certain elicitors on the chemical induction of resistance in tomato against the leaf caterpillar, Spodoptera litura. Not Bot Hort Agrobot Cluj 36(2):71ā€“75

    CASĀ  Google ScholarĀ 

  • Miyata S, Casey M, Frank DW, Ausubel FM, Drenkard E (2003) Use of the Galleria mellonella caterpillar as a model host to study the role of the type III secretion system in Pseudomonas aeruginosa pathogenesis. Infect Immun 71:2404ā€“2413

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Mohandkaci HO, Khemili S, Benzena F, Halouane F (2015) Isolation and identification of entomopathogenic bacteria from Algerian desert soil and their effects against migratory locust, Locusta migratoria (L.). Egyptian J Biol Pest Control 25(3):739ā€“746

    Google ScholarĀ 

  • Muthulakshmi M, Devrajan K (2015) Management of Meloidogyne incognita by Pseudomonas fluorescens and Trichoderma viride in Mulberry. Int J Plant Prot 8(1):1ā€“6

    ArticleĀ  Google ScholarĀ 

  • Nakkeeran S, Kavitha K, Chandrasekar G, Renukadevi P, Fernando WGD (2006) Induction of plant defence compounds by Pseudomonas chlororaphis PA23 and Bacillus subtilis BSCBE4 in controlling damping-off of hot pepper caused by Pythium aphanidermatum. Biocontrol Sci Tech 16:403ā€“416

    ArticleĀ  Google ScholarĀ 

  • Narasimhamurthy HB, Ravindra H, Sehgal M, Ekabote SD, Ganapathi (2017) Bio management of rice root-knot nematode (Meloidogyne graminicola). J Entomol Zool Stud 5(4):1433ā€“1439

    Google ScholarĀ 

  • Olcott MH, Henkels MD, Rosen KL, Walker FL, Sneh B, Loper JE, Taylor BJ (2010) Lethality and developmental delay in Drosophila melanogaster larvae after ingestion of selected Pseudomonas fluorescens strains. PLoS One 5(9):e12504. https://doi.org/10.1371/journal.pone.0012504

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Opota O, Vallet-Gely I, Vincentelli R, Kellenberger C, Iacovache I, Gonzalez MR (2011) Monalysin, a novel Ɵ-pore-forming toxin from the Drosophila pathogen Pseudomonas entomophila, contributes to host intestinal damage and lethality. PLoS Pathog 7:e1002259

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Otsu Y, Matsuda Y, Mori H, Ueki H, Nakajima T, Fujiwara K (2004) Stable phylloplane colonization by entomopathogenic bacterium Pseudomonas fluorescens KPM-018P and biological control of phytophagous ladybird beetles Epilachna vigintioctopunctata (Coleoptera: Coccinellidae). Biocontrol Sci Tech 14:427ā€“439

    ArticleĀ  Google ScholarĀ 

  • Pechy Tarr M, Bruck DJ, Maurhofer M, Fischer E, Vogne C, Henkels MD (2008) Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environ Microbiol 10:2368ā€“2386

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pechy-Tarr M, Borel N, Kupferschmied P, Turner V, Binggeli O, Radovanovic D (2013) Control and host dependent activation of insect toxin expression in a root associated biocontrol pseudomonad. Environ Microbiol 15:736ā€“750

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pieterse CM, Leon-Reyes A, Vander ES, Van Wees SC (2009) Networking by small molecule hormones in plant immunity. Nat Chem Biol 5:308ā€“316

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pimenta DLA, Martino DP, Bouder LE, Hulen C, Blight MA (2003) In vitro identification of two adherence factors required for in vivo virulence of Pseudomonas fluorescens. Microbiol Infecta 5:1177ā€“1187

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Prabakaran G, Paily KP, Padmanabhan V, Hoti SL, Balaraman K (2002) Isolation of a Pseudomonas fluorescens metabolite/exotoxin active against both larvae and pupae of vector mosquitoes. Pest Manag Sci 59:21ā€“24

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Qingwen Z, Ping L, Gang W, Qingnian C (1998) On the biochemical mechanism of induced resistance of cotton to cotton bollworm by cutting of young seedling at plumular axis. Acta Phytophylacica Sin 25:209ā€“212

    Google ScholarĀ 

  • Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. FEMS Microbiol Rev 34:1037ā€“1062

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rajinikanth R, Rao MS, Pavani KV, Manojkumar R, Chaya MK, Rathnamma K, Shivananda TN (2013) Management of nematode induced disease complex in seedlings of cauliflower (Brassica oleracea var botrytis) using biopesticide. Pest Manag Hort Ecosyst 19(2):203ā€“210

    Google ScholarĀ 

  • Rajkumar RR, Sivakumar G, Nagesh M (2013) Screening and in vitro evaluation of native Pseudomonas spp., against nematode pathogens and soil borne fungal pathogens. J Biol Control 27(4):305ā€“311

    Google ScholarĀ 

  • Ramyasmruthi S, Pallavi O, Pallavi S, Tilak K, Srividya S (2012) Chitinolytic and secondary metabolite producing Pseudomonas fluorescens isolated from Solanaceae rhizosphere effective against broad spectrum fungal phytopathogens. Asian J Plant Sci and Res 2:16ā€“24

    CASĀ  Google ScholarĀ 

  • Rao AB (1990) Role of microorganisms in plant nutrition under acid conditions. In: Vyas LL (ed) Biofertilizers. Scientific Publ, Jaudpur, pp 67ā€“84

    Google ScholarĀ 

  • Rao MS, Naik D, Shylaja M (2004) Bio intensive management of root-knot nematodes on bell pepper using Pochonia chlamydosporia and Pseudomonas fluorescens. Nematol Medit 32:159ā€“163

    Google ScholarĀ 

  • Rao MS, Umamaheswari R, Prabu P, Priti K, Chaya MK, Kamalnath M, Grace GN, Rajinikanth R, Gopalakrishnan C (2017) Field Performance of Pseudomonas putida (IIHR Pp-2) for the Management of Meloidogyne incognita and Fusarium oxysporum f. sp. vasinfectum disease complex in Okra (Abelmoschus esculentus). Vegetos. https://doi.org/10.5958/2229-4473.2017.00185.9

    ArticleĀ  Google ScholarĀ 

  • Ruffner B (2013). Insecticidal activity in plant-beneficial pseudomonads: molecular basis and ecological relevance. Dissertation, ETH Zurich

    Google ScholarĀ 

  • Ruffner B, Pechy-Tarr M, Ryffel F, Hoegger P, Obrist C, Rindlisbacher A (2013) Oral insecticidal activity of plant-associated pseudomonads. Environ Microbiol 15:751ā€“763

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ryals JK, Neuenschwander UH, Willits MG, Molina A, Steiner H, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809ā€“1819

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Sandeep Kumar M, Pandey P, Maheshwari DK (2009) Reduction in dose of chemical fertilizers and growth enhancement of sesame (Sesamum indicum L.) with application of rhizospheric competent Pseudomonas aeruginosa LES4. Euro J Soil Biol 45:334ā€“340

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sankari Meena K, Jonathan EI, Devrajan K, Raguchander T (2002) P. fluorescens induced systemic resistance in tomato against Meloidogyne incognita. Indian J Nematol 42(1):5ā€“10

    Google ScholarĀ 

  • Sankari Meena K, Jonathan EI, Devrajan K (2014) Viability studies of Pseudomonas fluorescens, Pf 1 in liquid formulation, its effect on plant growth and on root knot nematode, Meloidogyne incognita. Ind J Agric Sci 84(8):993ā€“998

    Google ScholarĀ 

  • Sankari Meena K, Ramyabharathi S, Raguchander T (2016) Biomanagement of nematodeĀ ā€“ fungus disease complex in tuberose using plant growth promoting rhizobacteria. Int J Sci Nat 7(3):557ā€“565

    CASĀ  Google ScholarĀ 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from P. fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283ā€“1292

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Saravanakumar D, Lavanya N, Muthumeena B, Raguchander T, Suresh S, Samiyappan R (2007) Pseudomonas fluorescens enhances resistance and natural enemy population in rice plant against leaf folder. J Appl Entomol 132:469ā€“479

    ArticleĀ  Google ScholarĀ 

  • Saravanakumar D, Lavanya N, Muthumeena K, Raguchander T, Samiyappan R (2009) Fluorescent pseudomonad mixtures mediate disease resistance in rice plants against sheath rot (Sarocladium oryzae) disease. Biol Control 54:273ā€“286

    Google ScholarĀ 

  • Seenivasan N, Lakshmanan PL (2001) Effect of culture filtrates of Pseudomonas fluorescens on rice root nematode, Hirschmanniella gracilis. Pestol 25:11ā€“12

    Google ScholarĀ 

  • Senthilkumar P, Jonathan EI, Samiyappan R (2008) Bioefficacy of Pseudomonas fluorescens against burrowing nematode Radopholus similis in banana. Madras Agril J 95:407ā€“414

    Google ScholarĀ 

  • Senthilraja G, Anand T, Durairaj C, Raguchander T, Samiyappan R (2010) Chitin-based bioformulation of Beauveria bassiana and Pseudomonas fluorescens for improved control of leafminer and collar rot in groundnut. Crop Protect 29:1003ā€“1010

    ArticleĀ  Google ScholarĀ 

  • Sezen K, Demir Y, Kati H, Demirbag Z (2004) Investigations on bacteria as a potential biological control agent of summer chafer, Amphimallon solstitiale L. (Coleoptera: Scarabaeidae). J Microbiol 43(5):463ā€“468

    Google ScholarĀ 

  • Sezen K, Demir Y, Demirbag Z (2007) Identification and pathogenicity of entomopathogenic bacteria from common cockchafer, Melolontha melolontha (Coleoptera: Scarabaeidae). Z J Crop Hort Sci 35(1):79ā€“85

    ArticleĀ  Google ScholarĀ 

  • Siddiqui ZA, Aakhtar MS (2008) Effects of organic wasters Glomus interadices and Pseudomonas putida on the growth of tomato and on the reproduction of the root-knot nematode Meloidogyne incognita. Phytoparasitica 36(5):460ā€“471

    ArticleĀ  Google ScholarĀ 

  • Siddiqui AI, Ehteshamul-Haque S (2001) Suppression of the root rot-root knot disease complex by Pseudomonas aeruginosa in tomato: the influence of inoculum density, nematode populations, moisture and other associated plant bacteria. Plant Soil 237:81ā€“89

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Siddiqui IA, Haque SE (2001) Suppression of the root rotĀ ā€“ root knot disease complex by Pseudomonas aeruginosa in tomato: The influence of inoculum density, nematode populations, moisture and other plant-associated bacteria. Plant Soil 237(1):81ā€“89

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Siddiqui ZA, Mahmood I (1999) Role of bacteria in the management of plant parasitic nematodes: a review. Bio resource Tech 69:167ā€“179

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Siddiqui IA, Shaukat SS (2003) Impact of biocontrol Pseudomonas fluorescens CHAO and its genetically modified derivatives on penetration of Meloidogyne javanica in Mung bean roots. Nematol Mediterr 31:43ā€“45

    Google ScholarĀ 

  • Siddiqui ZA, Baghel G, Akhtar MS (2007) Biocontrol of Meloidogyne javanica by Rhizobium and plant growth-promoting rhizobacteria on lentil. Phytoparasitica 23:435ā€“441

    CASĀ  Google ScholarĀ 

  • Sikora RA, Fernandez E (2005) Nematode parasites of vegetables. In: Luc M, Sikora RA, Bridge J (eds) Plant-Parasitic nematodes in subtropical and tropical agriculture. CABI Pub. UK, Wallingford, pp 319ā€“392

    ChapterĀ  Google ScholarĀ 

  • Spence C, Alff E, Johnson C, Ramos C, Donofrio D, Venkatesan S, Harish B (2014) Natural rice rhizospheric microbes suppress rice blast infections. BMC Plant Biol 14:130

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Srinivasan N, Parameswaran S, Sridar RP, Gopalakrishnan C, Gnanamurthy P (2001) Bioagent of Meloidogyne incognita on turmeric. Paper presented at National Congress on Centenary of Nematology in India: Appraisal and Future Plans, Division of Nematology, Indian Agricultural Research Institute, 5ā€“7 December 2001

    Google ScholarĀ 

  • Stavrinides J, McCloskey JK, Ochman H (2009) Pea aphid as both host and vector for the phytopathogenic bacterium Pseudomonas syringae. Appl Environ Microbiol 75:2230ā€“2235

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Sulochana MB, Jayachandra SY, Kumar SKA, Dayanand A (2012) Antifungal attributes of siderophore produced by the Pseudomonas aeruginosa JAS-25. J Basic Microbiol 20:1ā€“7

    Google ScholarĀ 

  • Surajit K, Chowdhury AK (2008) Biological control of rhizome rot disease of turmeric. J Mycopathol Res 46:127ā€“128

    Google ScholarĀ 

  • Taylor CE (1990) Nematode interactions with other pathogens. Ann Appl Biol 116:405ā€“416

    ArticleĀ  Google ScholarĀ 

  • Thiyagarajan SS, Kuppusamy H (2014) Biological control of root knot nematodes in chillies through Pseudomonas fluorescens antagonistic mechanism. J Plant Sci 2(5):152ā€“158

    Google ScholarĀ 

  • Toohey JI, Netson CD, Krotkov G (1965) Isolation and identification of two phenazines from a strain of Pseudomonas aureofaciens. Can J Bot 43:1055ā€“1062

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Trifonova Z, Tsvetkov I, Bogatzevska N, Batchvarova R (2014) Efficiency of Pseudomonas spp. for biocontrol of the Potato cyst nematode, Globodera rostochiensis (Woll.). Bulgarian J Agric Sci 20(3):666ā€“669

    Google ScholarĀ 

  • Upadhyay A, Srivastava S (2010) Evaluation of multiple plant growth promoting traits of an isolate of Pseudomonas fluorescens strain Psd. Indian J Exp Biol 48:601ā€“609

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Vallet-Gely I, Opota O, Boniface A, Novikov A, Lemaitre B (2010) A secondary metabolite acting as a signalling molecule controls Pseudomonas entomophila virulence. Cell Microbiol 12:1666ā€“1679

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Vidhyasekharan P (1998) Biological suppression of major diseases of field crops using bacterial antagonists. In: Singh SP, Hussaini SS (eds) Biological suppression of plant disease, phytoparasitic nematodes and weeds. Project Directorate of Biological Control, Bangalore, pp 81ā€“95

    Google ScholarĀ 

  • Vivekananthan R, Ravi M, Ramanathan A, Samiyappan R (2004) Lytic enzymes induced by Pseudomonas fluorescens and other biocontrol organisms mediate defense against the anthracnose pathogen in mango. World J Microbiol Biotechnol 20:235ā€“244

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Vodovar N, Vallenet D, Cruveiller S, Rouy Z, Baarbe V, Acosta C, Cattolico L, Jubin C, Lajus A, Segurens B, Vacherie B, Wincker P, Weissenbach J, Lemaitre B, Medigue C, Broccard F (2006) Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat Biotechnol 24:673ā€“679

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309ā€“348

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgement

The authors are thankful to the Director, ICAR-NRRI, Cuttack, Odisha, for providing the necessary facilities to write this article.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sankari Meena, K. et al. (2019). Agriculture Application of Pseudomonas: A View on the Relative Antagonistic Potential Against Pests and Diseases. In: Kumar, A., Meena, V. (eds) Plant Growth Promoting Rhizobacteria for Agricultural Sustainability . Springer, Singapore. https://doi.org/10.1007/978-981-13-7553-8_4

Download citation

Publish with us

Policies and ethics