Skip to main content

Plant Growth-Promoting Bacteria: Strategies to Improve Wheat Growth and Development Under Sustainable Agriculture

  • Chapter
  • First Online:
Plant Growth Promoting Rhizobacteria for Agricultural Sustainability

Abstract

A part of rhizospheric bacteria are considered plant growth-promoting bacteria (PGPB) due to their positive effect on the plant growth and development. Plant growth-promoting bacteria based on their metabolic activity can be grouped as biofertilizers, fitostimulants, or biopesticides. These efficient bacteria due to various direct or indirect effects exerted on plants have crucial role in agricultural sustainability. Recently were reported diverse genera as PGPB like Acetobacter, Achromobacter, Arthrobacter, Azoarcus, Azospirillum, Azotobacter, Bacillus, Burkholderia, Frankia, Phyllobacterium, Pseudomonas, Serratia, and Rhizobium. Bacterial strains for this study were isolated from a natural habitat (raised bog) and agricultural environment. Selected bacterial strains based on 16S rRNA gene sequence analysis were identified as Achromobacter spanius, Delftia lacustris, Pseudomonas protegens, P. jessenii, and Acinetobacter lwoffii. These bacterial strains have different plant growth-promoting (PGP) activities like multi-stress resistances (temperature, pH, salinity) and others such as cellulose, phytin, and lecithin degradation, alkaline phosphatase and alkaline protease activity, and siderophore production. The selected strains were tested on plants either alone or in consortia. Based on the reports, it was confirmed that Delftia lacustris BI5, P. jessenii BI7, bacterial strains, and the bacterial consortia P. jessenii BI7 and A. lwoffii BI13 showed positive effect due to their PGP characteristics on wheat shoot growth under laboratory conditions. These promising strains have potential as inoculation agents in eco-friendly crop production contributing to environmental sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Rahman HM, Salem AA, Moustafa MMA, El-Garhy HAS (2017) A novice Achromobacter sp. EMCC1936 strain acts as a plant-growth-promoting agent. Acta Physiol Plant 39:61. https://doi.org/10.1007/s11738-017-2360-6

    Article  CAS  Google Scholar 

  • Adinarayana K, Jyothi B, Ellaiah P (2005) Production of alkaline protease with immobilized cells of Bacillus subtilis PE-11 in various matrices by entrapment technique. AAPS Pharm Sci Tech 6:391–397. https://doi.org/10.1208/pt060348

    Article  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. JKSUS 26(1):1–20. https://doi.org/10.1016/j.jksus.2013.05.001

    Article  Google Scholar 

  • Akram MS, Shahid M, Tahir M, Mehmood F, Ijaz M (2017) Plant-microbe interactions: current perspectives of mechanisms behind symbiotic and pathogenic associations. In: Singh D, Singh H, Prabha R Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, 97–126

    Chapter  Google Scholar 

  • Anwar MS, Siddique MT, Verma A, Rao YR, Nailwal T, Ansari M, Pande V (2014) Multitrait plant growth promoting (PGP) rhizobacterial isolates from Brassica juncea rhizosphere : keratin degradation and growth promotion. Commun Integr Biol 7:e27683. https://doi.org/10.4161/cib.27683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32(11):1559–1570. https://doi.org/10.1007/s10529-010-0347-0

    Article  CAS  PubMed  Google Scholar 

  • Barnawal D, Bharti N, Pandey SS, Pandey A, Chanotiya CS, Kalra A (2017) Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol Plant 161:502–514. https://doi.org/10.1111/ppl.12614. Epub 2017 Oct 10

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya PN, Goswami PM, Bhattacharyya LH (2016) Perspective of beneficial microbes in agriculture under changing climatic scenario: a review. J Phytology 8:26–41. https://doi.org/10.19071/jp.2016.v8.3022

    Article  CAS  Google Scholar 

  • Bouvet PJM, Grimont PAD (1986) Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov. Acinetobacter haemolyticus sp. nov. Acinetobacter johnsonii sp. nov. and Acinetobacter junii sp. nov. and embedded descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii. Int J Syst Evol Bacteriol 36(2):228–240

    Article  CAS  Google Scholar 

  • Chatterjee R, Roy A, Thirumdasu RK (2017) Microbial inoculants in organic vegetable production: current perspective. In: Zaidi A, Khan M (eds) Microbial strategies for vegetable production. Springer, Cham, pp 1–21

    Google Scholar 

  • Coenye T, Vancanneyt M, Falsen E, Swings J, Vandamme P (2003) Achromobacter insolitus sp. nov. and Achromobacter spanius sp. nov., from human clinical samples. Int J Syst Evol Microbiol 53:1819–1824. https://doi.org/10.1099/ijs.0.02698-0

    Article  CAS  PubMed  Google Scholar 

  • Dal Cortivo C, Barion G, Visioli G, Mattarozzi M, Mosca G, Vamerali T (2017) Increased root growth and nitrogen accumulation in common wheat following PGPR inoculation: assessment of plant-microbe interactions by ESEM. Agric Ecosyst Environ 247:396–408. https://doi.org/10.1016/j.agee.2017.07.006

    Article  CAS  Google Scholar 

  • De Souza R, Ambrosini A, Passaglia LMP (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38(4):401–419

    Article  Google Scholar 

  • El-Sayed WS, Akhkha A, El-Naggar MY, Elbadry M (2014) In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil. Front Microbiol 5:1–11. https://doi.org/10.3389/fmicb.2014.00651

    Article  Google Scholar 

  • Farokh R-Z, Sachdev D, Kazemi-Pour N, Engineer A, Pardesi KR, Zinjarde S, Dhakephalkar PK, Chopade BA (2011) Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. Microbiol Biotechnol 21(6):556–566. https://doi.org/10.4014/jmb.1012.12006

    Article  CAS  Google Scholar 

  • Freitas D, Banerjee MR, Germida JJ (1997) Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol Fertil Soils 24:358–364. https://doi.org/10.1007/s003740050258

    Article  Google Scholar 

  • Gopal V (2013) Isolation and molecular characterization of diazotrophs from citrus and poplar cropping systems. Thesis, Punjab Agricultural University Ludhiana-141 004, pp 1–210

    Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Laxmipathi Gowda CL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 5:355–377. https://doi.org/10.1007/s13205-014-0241-x

    Article  PubMed  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:096–102. https://doi.org/10.4172/1948-5948.1000188

    Article  CAS  Google Scholar 

  • Hantsis-Zacharov E, Halpern M (2007) Culturable psychrotrophic bacterial communities in raw milk and their proteolytic and lipolytic traits. Appl Environ Microbiol 73:7162–7168. https://doi.org/10.1128/AEM.00866-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janahiraman V, Anandham R, Kwon SW, Sundaram S, Karthik Pandi V, Krishnamoorthy R, Kim K, Samaddar S, Sa T (2016) Control of wilt and rot pathogens of tomato by antagonistic pink pigmented facultative methylotrophic Delftia lacustris and Bacillus spp. Front Plant Sci 7:1626. https://doi.org/10.3389/fpls.2016.01626

    Article  PubMed  PubMed Central  Google Scholar 

  • Jorgensen NOG, Brandt KK, Nybroe O, Hansen M (2009) Delftia lacustris sp. nov., a peptidoglycan degrading bacterium from fresh water, and emended description of Delftia tsuruhatensis as a peptidoglycan-degrading bacterium. Int J Syst Evol Microbiol 59:2195–2199. https://doi.org/10.1099/ijs.0.008375-0

    Article  CAS  PubMed  Google Scholar 

  • Kang Y, Shen M, Wang H, Zhao Q (2013) A possible mechanism of action of plant growth-promoting rhizobacteria (PGPR) strain Bacillus pumilus WP8 via regulation of soil bacterial community structure. J Gen Appl Microbiol 59:267–277

    Article  CAS  Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480

    Article  CAS  Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R (2014) Isolation and characterization of PGPR and their effect on growth, yield and nutrient content in wheat (Triticum aestivum L.). Biocatal Agric Biotechnol 3(4):121–128. https://doi.org/10.1016/j.bcab.2014.08.003

    Article  Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Tofazzal Islam M (2017a) Co-inoculation with Enterobacter and rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under indo-Gangetic plain of India. J Plant Growth Regul 36(3):608–617. https://doi.org/10.1007/s00344-016-9663-5

    Article  CAS  Google Scholar 

  • Kumar J, Singh D, Ghosh P, Kumar A (2017b) Endophytic and epiphytic modes of microbial interactions and benefits. In: Singh D, Singh H, Prabha R Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, 227–255

    Chapter  Google Scholar 

  • Lü J, Li F, Chen S, Li J (2005) The secretion of lecithinase of Pseudomonas alcaligenes S2 was via type II secretion pathway. Chin Sci Bull 50:1731–1736. https://doi.org/10.1360/982005-548

    Article  CAS  Google Scholar 

  • Majeed A, Abbasi MK, Hameed S, Imran A, Rahim N (2015) Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Front Microbiol 6. https://doi.org/10.3389/fmicb.2015.00198

  • Masciarelli O, Llanes A, Luna V (2014) A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation. Microbiol Res 169:609–615. https://doi.org/10.1016/j.micres.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2015) Isolation of low temperature surviving plant growth – promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol 4(4):806–811. https://doi.org/10.1016/j.bcab.2015.08.006

    Article  Google Scholar 

  • Morel MA, Ubalde MC, Braña V, Castro-Sowinski S (2011) Delftia sp. JD2: a potential Cr(VI)-reducing agent with plant growth-promoting activity. Arch Microbiol 193(1):63–68. https://doi.org/10.1007/s00203-010-0632-2

    Article  CAS  PubMed  Google Scholar 

  • Oldal B, Jevcsák I, Kecskés M (2002) The role of siderophore producing activity in the biological investigation of the antagonistic effect of Pseudomonas sp. strains against plant pathogens (in Hungarian). Biokémia 26(3):57–73

    Google Scholar 

  • Prasad M, Srinivasan R, Chaudhary M, Choudhary M, Jat LK (2019) Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture. In: Singh AK, Kumar A, Singh PK PGPR amelioration in sustainable agriculture. Woodhead Publishing, Duxford, 129–157. https://doi.org/10.1016/b978-0-12-815879-1.00007-0

    Chapter  Google Scholar 

  • Qaisrani MM, Mirza MS, Zaheer A, Malik KA (2014) Isolation and identification by 16s rRNA sequence analysis of Achromobacter, Azospirillum and Rhodococcus strains from the rhizosphere of maize and screening for the beneficial effect on plant growth. Pak J Agric Sci 51(1):91–99

    Google Scholar 

  • Ramette A, Frapolli M, Fischer-Le Saux M, Gruffaz C, Meyer JM, Défago G, Sutra L, Moënne-Loccoz Y (2011) Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin. Syst Appl Microbiol 34:180–188. https://doi.org/10.1016/j.syapm.2010.10.005

    Article  CAS  PubMed  Google Scholar 

  • Rana A, Saharan B, Nain L, Prasanna R, Shivay YS (2012) Enhancing micronutrient uptake and yield of wheat through bacterial PGPR consortia. Soil Sci Plant Nutr 58:573–582. https://doi.org/10.1080/00380768.2012.716750

    Article  CAS  Google Scholar 

  • Rodarte MP, Dias DR, Vilela DM, Schwan RF (2011) Proteolytic activities of bacteria, yeasts and filamentous fungi isolated from coffee fruit (Coffea arabica L.). Acta Sci Agron 33:457–464. https://doi.org/10.4025/actasciagron.v33i3.6734

    Article  CAS  Google Scholar 

  • Ruiz JA, Bernar EM, Jung K (2015) Production of Siderophores increases resistance to Fusaric acid in Pseudomonas protegens Pf-5. PLoS One 10(1):e0117040. https://doi.org/10.1371/journal.pone.0117040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadeghi A, Soltani BM, Jouzani GS, Karimi E, Nekouei MK, Sadeghizadeh M (2014) Taxonomic study of a salt tolerant Streptomyces sp. strain C-2012 and the effect of salt and ectoine on ion expression level. Microbiol Res 169:232–238. https://doi.org/10.1016/j.micres.2013.06.010

    Article  CAS  PubMed  Google Scholar 

  • Saha M, Sarkar S, Sarkar B, Kumar Sharma B, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res Int 23(5):3984–3999. https://doi.org/10.1007/s11356-015-4294-0

    Article  CAS  PubMed  Google Scholar 

  • Saraf M, Pandya U, Thakkar A, Patel P (2013) Evaluation of rhizobacterial isolates for their biocontrol potential of seed borne fungal pathogens of Jatropha curcas L. Int J Innov Res Sci Eng Technol 2:7560–7566

    Google Scholar 

  • Sarikhani MR, Malboobi MA, Aliasgharzad N, Greiner R, Yakhchali B (2010) Functional screening of phosphatase-encoding genes from bacterial sources. Iran J Biotechnol 8:275–279

    CAS  Google Scholar 

  • Sexton DJ, Glover RC, Loper JE, Schuster M (2017) Pseudomonas protegens Pf-5 favours self-produced siderophore over free-loading in interspecies competition for iron. Environ Microbiol 19(9):3514–3525. https://doi.org/10.1111/1462-2920.13836

    Article  CAS  PubMed  Google Scholar 

  • Shahzad SM, Arif MS, Riaz M, Iqbal Z, Ashraf M (2013) PGPR with varied ACC-deaminase activity induced different growth and yield response in maize (Zea mays L.) under fertilized conditions. Eur J Soil Biol 57:27–34. https://doi.org/10.1016/j.ejsobi.2013.04.002

    Article  CAS  Google Scholar 

  • Shukla AK (2019) Ecology and diversity of plant growth promoting Rhizobacteria in agricultural landscape. In: Singh AK, Kumar A, Singh PK (eds) PGPR amelioration in sustainable agriculture. Woodhead Publishing, Duxford, 1–15. https://doi.org/10.1016/b978-0-12-815879-1.00001-x

    Chapter  Google Scholar 

  • Singh K, Verma C, Kumar R (2015) Comparative study of PGPR isolated from crop plants (mustard and maize) and wild medicinal plant (Lantana) and their potency for enhancement of wheat plant. Int J Pharm Biol Sci Arch 6(1):42–48

    Google Scholar 

  • Sugiyama A, Ueda Y, Zushi T, Takase H, Yazaki K (2014) Changes in the bacterial Community of Soybean Rhizospheres during growth in the field. PLoS One 9(6):e100709. https://doi.org/10.1371/journal.pone.0100709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suresh A, Pallavi P, Srinivas P, Kumar VP, Chandra SJ, Reddy SR (2010) Plant growth promoting activities of fluorescent pseudomonads associated with some crop plants. Afr J Microbiol Res 4:1491–1494

    CAS  Google Scholar 

  • Trotel-Aziz P, Couderchet M, Biagianti S, Aziz A (2008) Characterization of new bacterial biocontrol agents Acinetobacter, Bacillus, Pantoea and Pseudomonas spp mediating grapevine resistance against Botrytis cinerea. Environ Exp Bot 64(1):21–32. https://doi.org/10.1016/j.envexpbot.2007.12.009

    Article  Google Scholar 

  • Turan M, Gulluce M, Cakmakci R, Oztas T, Sahin F (2010) The effect of PGPR strain on wheat yield and quality parameters. In: Proceeding of 19th world congress of soil science, soil solutions for a changing world (Brisbane, Australia, 1–6 Aug), pp 141–143

    Google Scholar 

  • Valverde A, Burgos A, Fiscella T, Rivas R, Velazquez E, Rodrıguez-Barrueco C, Cervantes E, Chamber M, Igual JM (2007) Differential effects of coinoculations with Pseudomonas jessenii PS06 (a phosphate-solubilizing bacterium) and Mesorhizobium cicero C-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions. Plant Soil 287:43–50. https://doi.org/10.1007/s11104-006-9057-8

    Article  CAS  Google Scholar 

  • Verhille S, Baida N, Dabboussi F, Izard D, Leclerc H (1999) Taxonomic study of bacteria isolated from natural mineral waters: proposal of Pseudomonas jessenii sp. nov. and Pseudomonas mandelii sp. nov. Syst Appl Microbiol 22:45–58

    Article  CAS  Google Scholar 

  • Viruel E, Lucca ME, Siñeriz F (2011) Plant growth promotion traits of phosphobacteria isolated from Puna, Argentina. Arch Microbiol 193:489–496. https://doi.org/10.1007/s00203-011-0692-y

    Article  CAS  PubMed  Google Scholar 

  • Wu J-R, Shien J-H, Shieh HK, Hu CC, Gong SR, Chen LY, Chang PC (2007) Cloning of the gene and characterization of the enzymatic properties of the monomeric alkaline phosphatase (PhoX) from Pasteurella multocida strain X-73. FEMS Microbiol Lett 267:113–120. https://doi.org/10.1111/j.1574-6968.2006.00542.x

    Article  CAS  Google Scholar 

  • Yuttavanichakul W, Lawongsa P, Wongkaew S, Teaumroong N, Boonkerd N, Nomura N, Tittabutr P (2012) Improvement of peanut rhizobial inoculant by incorporation of plant growth promoting rhizobacteria (PGPR) as biocontrol against the seed borne fungus, Aspergillus niger. Biol Control 63:87–97

    Article  Google Scholar 

Download references

Acknowledgments

A part of the laboratory experiments were realized with the financial support from the “BIOPREP – Microbial biopreparates for increasing the productivity and crop protection” research funded by the Sectoral Operational Programme, Increase of Economic Competitiveness Operation 2.1.1. of the Romanian Ministry of Labour, and Family and Social Protection, through financial agreement POSCEE No. 469/11817. The financial support for the identification of the bacterial strains was given by ÖMKi – Research Institute of Organic Agriculture, financial agreement No. I./2012. The authors are very grateful to the anonymous reviewers and editors for their valuable and constructive input.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Éva Laslo or Gyöngyvér Mara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abod, É., Laslo, É., Szentes, S., Lányi, S., Mara, G. (2019). Plant Growth-Promoting Bacteria: Strategies to Improve Wheat Growth and Development Under Sustainable Agriculture. In: Kumar, A., Meena, V. (eds) Plant Growth Promoting Rhizobacteria for Agricultural Sustainability . Springer, Singapore. https://doi.org/10.1007/978-981-13-7553-8_1

Download citation

Publish with us

Policies and ethics