Skip to main content

Introduction

  • Chapter
  • First Online:
  • 285 Accesses

Abstract

Aluminum alloys have promising application in automobile and aircraft industries due to their high specific strength and good corrosion resistance. However, porosity is easily produced during welding solidification due to the significant difference of hydrogen solubility in liquid and solid alloy, which is detrimental to welding quality. Because of existence inside the weld seam, porosity has to be detected by destructive test or nondestructive test, resulting in increasing the difficulty to meet the need of efficient production with high quality for modern manufacturing. To solve this problem, this chapter proposes a suitable method for on-line detection of porosity defects during aluminum alloy arc welding, on the basis of introducing the current intelligent welding technology. Furthermore, the chapter points out the challenges the method faces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hsieh CT, Klenow PJ (2009) Misallocation and manufacturing TFP in China and India. Q J Econ 124(4):1403–1448

    Article  Google Scholar 

  2. Li BH, Zhang L, Wang SL et al (2010) Cloud manufacturing: a new service-oriented networked manufacturing model. Comput Integr Manuf Syst 16(1):1–7

    Google Scholar 

  3. Kalpakjian S, Schmid SR, Sekar KS (2014) Manufacturing engineering and technology

    Google Scholar 

  4. Tarn TJ, Chen SB (2007) Robotic welding, intelligence and automation. Springer, Berlin

    Book  MATH  Google Scholar 

  5. Chen SB, Wu J (2009) Intelligentized methodology for arc welding dynamical processes. Springer, Berlin Heidelberg

    Google Scholar 

  6. Chen SB (2014) On intelligentized welding manufacturing. In: International conference on robotic welding, intelligence and automation. Springer, Cham, pp 3–34

    Google Scholar 

  7. Kou S (2003) Welding metallurgy. New Jersey, USA, pp 431–446

    Google Scholar 

  8. Cary HB, Helzer SC (1979) Modern welding technology

    Google Scholar 

  9. Rokhlin SI, Guu AC (1993) A study of arc force, pool depression, and weld penetration during gas tungsten arc welding. Welding J (USA) 72(8):81

    Google Scholar 

  10. Tarng YS, Yang WH (1998) Optimisation of the weld bead geometry in gas tungsten arc welding by the Taguchi method. The Int J Adv Manufact Technol 14(8):549–554

    Article  Google Scholar 

  11. Haidar J (1998) A theoretical model for gas metal arc welding and gas tungsten arc welding. J Appl Phys 84(7):3518–3529

    Article  Google Scholar 

  12. Fuerschbach PW, Knorovsky G (1991) A study of melting efficiency in plasma arc and gas tungsten arc welding. Welding J (USA) 70(11):287

    Google Scholar 

  13. Fan HG, Tsai HL, Na SJ (2001) Heat transfer and fluid flow in a partially or fully penetrated weld pool in gas tungsten arc welding. Int J Heat Mass Trans 44(2):417–428

    Article  MATH  Google Scholar 

  14. Fan HG, Shi YW (1996) Numerical simulation of the arc pressure in gas tungsten arc welding. J Mater Process Technol 61(3):302–308

    Article  Google Scholar 

  15. Short AB (2009) Gas tungsten arc welding of α + β titanium alloys: a review. Mater Sci Technol 25(3):309–324

    Article  Google Scholar 

  16. Bang HS, Bang HS, Jeon GH et al (2012) Gas tungsten arc welding assisted hybrid friction stir welding of dissimilar materials Al6061-T6 aluminum alloy and STS304 stainless steel. Mater Des 37:48–55

    Article  Google Scholar 

  17. Fahimpour V, Sadrnezhaad SK, Karimzadeh F (2012) Corrosion behavior of aluminum 6061 alloy joined by friction stir welding and gas tungsten arc welding methods. Mater Des 39:329–333

    Article  Google Scholar 

  18. Praveen P, Yarlagadda P (2005) Meeting challenges in welding of aluminum alloys through pulse gas metal arc welding. J Mater Process Technol 164:1106–1112

    Article  Google Scholar 

  19. Mendez PF, Eagar TW (2001) Welding processes for aeronautics. Adv Mater Process 159(5):39–43

    Google Scholar 

  20. Huang Y, Zhang Z, Lv N et al (2015) On the mechanism and detection of porosity during pulsed TIG welding of aluminum alloys. Robotic welding, Intelligence and automation. Springer, Cham, pp 133–143

    Google Scholar 

  21. Kou S, Le Y (1985) Grain structure and solidification cracking in oscillated arc welds of 5052 aluminum alloy. Metall Trans A 16(7):1345–1352

    Article  Google Scholar 

  22. Krajewski A, Włosiński W, Chmielewski T et al (2012) Ultrasonic-vibration assisted arc-welding of aluminum alloys. Bull Polish Acad Sci Tech Sci 60(4):841–852

    Google Scholar 

  23. Oliete PB, Pena JI (2007) Study of the gas inclusions in Al2O3/Y3Al5O12 and Al2O3/Y3Al5O12/ZrO2 eutectic fibers grown by laser floating zone. J Cryst Growth 304(2):514–519

    Article  Google Scholar 

  24. Hoppes RV (1968, January 18) The welding of Saturn V new scientist. P 1:28–131

    Google Scholar 

  25. Fan C, Lv F, Chen S (2009) Visual sensing and penetration control in aluminum alloy pulsed GTA welding. Int J Adv Manufact Technol 42(1–2):126–137

    Article  Google Scholar 

  26. Shen H, Lin T, Chen S et al (2010) Real-time seam tracking technology of welding robot with visual sensing. J Intell Rob Syst 59(3–4):283–298

    Article  MATH  Google Scholar 

  27. Xu Y, Yu H, Zhong J et al (2012) Real-time seam tracking control technology during welding robot GTAW process based on passive vision sensor. J Mater Process Technol 212(8):1654–1662

    Article  Google Scholar 

  28. Shen H, Wu J, Lin T et al (2008) Arc welding robot system with seam tracking and weld pool control based on passive vision. Int J Adv Manufact Technol 39(7–8):669–678

    Article  Google Scholar 

  29. Wu D, Chen H, Huang Y et al (2017) Monitoring of weld joint penetration during variable polarity plasma arc welding based on the keyhole characteristics and PSO-ANFIS. J Mater Process Technol 239:113–124

    Article  Google Scholar 

  30. He Y, Xu Y, Chen Y et al (2016) Weld seam profile detection and feature point extraction for multi-pass route planning based on visual attention model. Rob Computer-integrated Manufact 37:251–261

    Article  Google Scholar 

  31. Na LV, Gu F, Yan-ling X et al (2017) Real-time monitoring of welding path in pulse metal-inert gas robotic welding using a dual-microphone array. Int J Adv Manufact Technol 90(9–12):2955–2968

    Article  Google Scholar 

  32. Na L, Ji-yong Z, Hua-bin C et al (2013) Penetration feature extraction and modeling of arc sound signal in GTAW based on wavelet analysis and hidden Markov model. In: IEEE international symposium on industrial electronics. IEEE, pp 1–6

    Google Scholar 

  33. Chen B, Wang J, Chen S (2010) Prediction of pulsed GTAW penetration status based on BP neural network and DS evidence theory information fusion. Int J Adv Manufact Technol 48(1–4):83–94

    Article  Google Scholar 

  34. Chen B, Wang J, Chen S (2009) Modeling of pulsed GTAW based on multi-sensor fusion. Sensor Rev 29(3):223–232

    Article  Google Scholar 

  35. He Y, Chen Y, Xu Y et al (2016) Autonomous detection of weld seam profiles via a model of saliency-based visual attention for robotic arc welding. J Intell Rob Syst 81(3–4):395–406

    Article  Google Scholar 

  36. He Y, Zhou H, Wang J et al (2016) Weld seam profile extraction of T-joints based on orientation saliency for path planning and seam tracking. In: IEEE workshop on advanced robotics and its social impacts (ARSO). IEEE, pp 110–115

    Google Scholar 

  37. Xu Y, Fang G, Lv N et al (2015) Computer vision technology for seam tracking in robotic GTAW and GMAW. Robotics computer-integrated Manufact 32:25–36

    Article  Google Scholar 

  38. Xu Y, Lv N, Fang G et al (2014) Sensing technology for intelligentized robotic welding in arc welding processes. In: International conference on robotic welding, intelligence and automation. Springer, Cham, pp 411–423

    Google Scholar 

  39. Qiu W, Yang L, Zhao S, Yang R, Liu T (2018) A study on plasma plume fluctuation characteristic during A304 stainless steel laser welding. J Manufact Process 33:1–9

    Article  Google Scholar 

  40. Zhao S, Yang L, Liu T, Yang R, Pan J (2017) Analysis of plasma oscillations by electrical detection in Nd:YAG laser welding. J Mater Process Technol 249:479–489

    Article  Google Scholar 

  41. Lv N, Xu Y, Li S et al (2017) Automated control of welding penetration based on audio sensing technology. J Mater Process Technol 250:81–98

    Article  Google Scholar 

  42. Lv N, Xu Y, Zhang Z et al (2013) Audio sensing and modeling of arc dynamic characteristic during pulsed Al alloy GTAW process. Sensor Rev 33(2):141–156

    Article  Google Scholar 

  43. Tam J, Huissoon J (2005) Developing psycho-acoustic experiments in gas metal arc welding. In: IEEE international conference on mechatronics and automation, ICMA 2005, Niagara Fall, ON, pp 1112—1117

    Google Scholar 

  44. Lv N, Xu Y, Zhong J et al (2013) Research on detection of welding penetration state during robotic GTAW process based on audible arc sound. Ind Robot Int J 40(5):474–493

    Article  Google Scholar 

  45. Lv N, Chen S (2011) Investigation on acoustic signals for on-line monitoring of welding. Robotic welding, Intelligence and Automation. Springer, Berlin, Heidelberg, pp 235–243

    Book  Google Scholar 

  46. Lv N, Zhong J, Wang J et al (2014) Automatic measuring and processing system of audio sensing for real-time arc height control of pulsed GTAW. Sensor Rev 34(1):51–66

    Article  Google Scholar 

  47. Wu D, Chen H, He Y et al (2016) A prediction model for keyhole geometry and acoustic signatures during variable polarity plasma arc welding based on extreme learning machine. Sensor Rev 36(3):257–266

    Article  Google Scholar 

  48. Xu Y, Yu H, Zhong J et al (2012) Real-time image capturing and processing of seam and pool during robotic welding process. Industr Rob Int J 39(5):513–523

    Article  Google Scholar 

  49. Ma H, Wei S, Lin T et al (2010) Binocular vision system for both weld pool and root gap in robot welding process. Sensor Rev 30(2):116–123

    Article  Google Scholar 

  50. Chen B, Feng J (2014) Modeling of underwater wet welding process based on visual and arc sensor. Industrial Rob Int J 41(3):311–317

    Article  MathSciNet  Google Scholar 

  51. Ye Z, Fang G, Chen S et al (2013) Passive vision based seam tracking system for pulse-MAG welding. Int J Adv Manuf Technol 67(9–12):1987–1996

    Article  Google Scholar 

  52. He Y, Chen H, Huang Y et al (2016) Parameter self-optimizing clustering for autonomous extraction of the weld seam based on orientation saliency in robotic MAG welding. J Intell Rob Syst 83(2):219–237

    Article  Google Scholar 

  53. Feng J, Li L, Chen Y et al (2012) Effects of welding velocity on the impact behavior of droplets in gas metal arc welding. J Mater Process Technol 212(11):2163–2172

    Article  Google Scholar 

  54. Xu Y, Yu H, Zhong J et al (2012) Real-time seam tracking control technology during welding robot GTAW process based on passive vision sensor. J Mater Process Technol 212(8):1654–1662

    Article  Google Scholar 

  55. Ma H, Wei S, Lin T et al (2010) Mixed logical dynamical model for back bead width prediction of pulsed GTAW process with misalignment. J Mater Process Technol 210(14):2036–2044

    Article  Google Scholar 

  56. Ma H, Chen S (2011) Mixed logical dynamical model for robotic welding system. Robotic Welding, Intelligence and automation. Springer, Berlin, Heidelberg, pp 123–128

    Book  Google Scholar 

  57. Laiping L, Shanben C, Tao L (2005) The modeling of welding pool surface reflectance of aluminum alloy pulse GTAW. Mater Sci Eng A 394(1–2):320–326

    Article  Google Scholar 

  58. Chen B, Wang J, Chen S (2010) A study on application of multi-sensor information fusion in pulsed GTAW. Industrial Rob Int J 37(2):168–176

    Article  MathSciNet  Google Scholar 

  59. Chen B, Feng J (2014) Multisensor information fusion of pulsed GTAW based on improved DS evidence theory. Int J Adv Manuf Technol 71(1–4):91–99

    Article  Google Scholar 

  60. Greses J, Hilton PA, Barlow CY et al (2001) Spectroscopic studies of plume/plasma in different gas environments. In: Proceedings of the 20th ICALEO Congress 2001. Laser Institute of America, 92, pp 1043–1052

    Google Scholar 

  61. Chehrghani A, Torkamany MJ (2013) Spectroscopic characterization of plasma plume induced in TiC formation by pulsed Nd: YAG laser. Opt Lasers Eng 51(1):61–68

    Article  Google Scholar 

  62. Węglowski M (2007) Investigation on the arc light spectrum in GTA welding. J Achievements Mater Manuf Eng 20:519–522

    Google Scholar 

  63. Sibillano T, Rizzi D, Ancona A, Saludes-Rodil S, Rodríguez Nieto J, Chmelíčková H, Šebestová H (2012) Spectroscopic monitoring of penetration depth in CO2 Nd:YAG and fiber laser welding processes. J Mater Process Technol 212:910–916

    Article  Google Scholar 

  64. Kernahan J, Pang P-L (1975) Experimental transition probabilities of’ forbidden sulphur lines. Can J Phys 53:1114–1115

    Article  Google Scholar 

  65. Huber S, Glasschroeder J, Zaeh MF (2011) Analysis of the metal vapour during laser beam welding. Physics Procedia 12:712–719

    Article  Google Scholar 

  66. Zaeh MF, Huber S (2011) Characteristic line emissions of the metal vapour during laser beam welding. Prod Eng Res Devel 5(6):667–678

    Article  Google Scholar 

  67. You D, Gao X, Katayama S (2015) Detection of imperfection formation in disk laser welding using multiple on-line measurements. J Mater Process Technol 219:209–220

    Article  Google Scholar 

  68. Zhang Z, Chen H, Xu Y et al (2015) Multisensor-based real-time quality monitoring by means of feature extraction, selection and modeling for Al alloy in arc welding. Mech Syst Signal Process 60:151–165

    Article  Google Scholar 

  69. Chen G, Zhang M, Zhao Z et al (2013) Measurements of laser-induced plasma temperature field in deep penetration laser welding. Opt Laser Technol 45:551–557

    Article  Google Scholar 

  70. Ma S, Gao H, Wu L (2011) Modified Fowler-Milne method for the spectroscopic determination of thermal plasma temperature without the measurement of continuum radiation. Rev Sci Instrum 82(1):013104

    Article  Google Scholar 

  71. Rizzi D, Sibillano T, Calabrese PP et al (2011) Spectroscopic, energetic and metallographic investigations of the laser lap welding of AISI 304 using the response surface methodology. Opt Lasers Eng 49(7):892–898

    Article  Google Scholar 

  72. Wang J, Wang C, Meng X et al (2011) Interaction between laser-induced plasma/vapor and arc plasma during fiber laser-MIG hybrid welding. J Mech Sci Technol 25(6):1529–1533

    Article  Google Scholar 

  73. Oezmert A, Drenker A, Nazery V (2013) Detectability of penetration based on weld pool geometry and process emission spectrum in laser welding of copper. Phys Procedia 41:509–514

    Article  Google Scholar 

  74. Wang CM, Meng XX, Huang W et al (2011) Role of side assisting gas on plasma and energy transmission during CO2 laser welding. J Mater Process Technol 211(4):668–674

    Article  Google Scholar 

  75. Mirapeix J, Ruiz-Lombera R, Valdiande JJ et al (2011) Defect detection with CCD-spectrometer and photodiode-based arc-welding monitoring systems. J Mater Process Technol 211(12):2132–2139

    Article  Google Scholar 

  76. Tanaka M, Tashiro S, Tsujimura Y (2012) Visualizations and predictions of welding arcs. Trans JWRI 41(2)

    Google Scholar 

  77. Wang L, Hua X, Xiao X et al (2013) Analysis of arc physical property of pulsed tungsten inert gas welding based on Fowler-Milne method. J Shanghai Jiaotong Uni (Science) 3(18):343–347

    Article  Google Scholar 

  78. Liu L, Hao X (2008) Study of the effect of low-power pulse laser on arc plasma and magnesium alloy target in hybrid welding by spectral diagnosis technique. J Phys D Appl Phys 41:1–10

    Article  Google Scholar 

  79. Hao X, Liu L (2009) Effect of laser pulse on arc plasma and magnesium target in low-power laser/arc hybrid welding. IEEE Trans Plasma Sci 37(11):2197–2201

    Article  Google Scholar 

  80. Liu L, Chen M (2011) Interactions between laser and arc plasma during laser–arc hybrid welding of magnesium alloy. Opt Lasers Eng 49(9):1224–1231

    Article  Google Scholar 

  81. Chen M, Liu L (2011) Study on attraction of laser to arc plasma in laser-TIG hybrid welding on magnesium alloy. IEEE Trans Plasma Sci 39(4):1104–1109

    Article  Google Scholar 

  82. Yu H, Chen H, Xu Y et al (2013) Spectroscopic diagnostics of pulsed gas tungsten arc welding plasma and its effect on weld formation of aluminum-magnesium alloy. Spectro Lett 46(5):350–363. Kong F, Ma J, Carlson B et al. (2012) Real-time monitoring of laser welding of galvanized high strength steel in lap joint configuration Optics Laser Technol 44(7):2186–2196

    Google Scholar 

  83. Zou J, Xiao R, Huang T et al (2014) Plume temperature diagnosis with the continuous spectrum and Wien’s displacement law during high power fiber laser welding. Laser Phys 24(10):106007

    Article  Google Scholar 

  84. Liu W, Liu S, Ma J et al (2014) Real-time monitoring of the laser hot-wire welding process. Opt Laser Technol 57:66–76

    Article  Google Scholar 

  85. Sibillano T, Ancona A, Berardi V, Lugara PM (2009) A real-time spectroscopic sensor for monitoring laser welding processes. Sensors 9:3376–3385

    Article  Google Scholar 

  86. Harooni M, Carlson B, Kovacevic R (2014) Detection of defects in laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration by a real-time spectroscopic analysis. Opt Lasers Eng 56:54–66

    Article  Google Scholar 

  87. Groslier D, Pellerin S, Valensi F et al (2011) Explorative approach of the spectral analysis tools to the detection of welding defects in lap welding. Nondestr Test Eval 26(01):13–33

    Article  Google Scholar 

  88. Chen SB, Lv N (2014) Research evolution on intelligentized technologies for arc welding process. J Nanuf Process 16(1):109–122

    Article  Google Scholar 

  89. Zhang Z, Chen X, Chen H et al (2014) Online welding quality monitoring based on feature extraction of arc voltage signal. Int J Adv Manuf Technol 70

    Article  Google Scholar 

  90. Zhang Z, Yu H, Lv N, Chen S (2013) Real-time defect detection in pulsed GTAW of Al alloys through on-line spectroscopy. J Mater Process Technol 213:1146–1156

    Article  Google Scholar 

  91. Zhang Z, Chen S (2017) Real-time seam penetration identification in arc welding based on fusion of sound, voltage and spectrum signals. J Intell Manuf 28(1):207–218

    Article  Google Scholar 

  92. Sibillano T, Rizzi D, Ancona A et al (2012) Spectroscopic monitoring of penetration depth in CO 2 Nd: YAG and fiber laser welding processes. J Mater Process Technol 212(4):910–916

    Article  Google Scholar 

  93. Alfaro SC, Mendonça DDS, Matos MS (2006) Emission spectrometry evaluation in arc welding monitoring system. J Mater ProcessTechnol 179(10):219–224

    Article  Google Scholar 

  94. Mirapeix J, Ruiz-Lombera R, Valdiande JJ et al (2011) Defect detection with CCD-spectrometer and photodiode-based arc-welding monitoring systems. J Mater Process Technol 211(12):2132–2139

    Article  Google Scholar 

  95. Mirapeix J, Cobo A, Conde OM et al (2006) Real-time arc welding defect detection technique by means of plasma spectrum optical analysis. NDT&E Int 39:356–360

    Article  Google Scholar 

  96. Cobo A, Mirapeix J, Linares F et al (2007) Spectroscopic sensor system for quality assurance of the tube-to-tubesheet welding process in nuclear steam generators. IEEE Sens J 7(9):1219–1224

    Article  Google Scholar 

  97. Mirapeix J, Cobo A, Fernandez S, Cardoso R, Lopez-Higuera JM (2008) Spectroscopic analysis of the plasma continuum radiation for on-line arc-welding defect detection. J Phys D Appl Phys 41(13):1–8

    Article  Google Scholar 

  98. Mirapeix J, García-Allende PB, Cobo A, Conde OM, López-Higuera JM (2009) Feasibility study of imaging spectroscopy to monitor the quality of online welding. Appl Optics 48(24):4735–4742

    Article  Google Scholar 

  99. Naso D, Turchiano B, Pantaleo P (2005) A fuzzy-logic based optical sensor for online weld defect-detection. IEEE Trans Industr Inf 1(4):259–273

    Article  Google Scholar 

  100. Jia C, Zhang T, Maksimov SY et al (2013) Spectroscopic analysis of the arc plasma of underwater wet flux-cored arc welding. J Mater Process Technol 213(8):1370–1377

    Article  Google Scholar 

  101. Yu H, Xu Y, Song J et al (2015) On-line monitor of hydrogen porosity based on arc spectral information in Al–Mg alloy pulsed gas tungsten arc welding. Opt Laser Technol 70:30–38

    Article  Google Scholar 

  102. Fodor IK (2002) A survey of dimension reduction techniques. Lawrence Livermore National Lab, CA (US)

    Book  Google Scholar 

  103. Zhang D, Zhou ZH, Chen S (2007) Semi-supervised dimensionality reduction. In:Proceedings of the 2007 SIAM international conference on data mining. society for industrial and applied mathematics, pp 629–634

    Google Scholar 

  104. Turk MA, Pentland AP (1991) Face recognition using eigenfaces. In: Proceedings Computer Vision and Pattern Recognition CVPR’91, IEEE computer society conference on IEEE, pp 586–591

    Google Scholar 

  105. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces versus fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intelligence 19(7):711–720

    Google Scholar 

  106. Yu H, Xu Y, Lv N, Chen H, Chen S (2013) Arc spectral processing technique with its application to wire feed monitoring in Al–Mg alloy pulsed gas tungsten arc welding. J Mater Process Technol 213:707–716

    Article  Google Scholar 

  107. Zhang Z, Kannatey-Asibu E, Chen S et al (2015) Online defect detection of Al alloy in arc welding based on feature extraction of arc spectroscopy signal. Int J Adv Manuf Technol 79

    Article  Google Scholar 

  108. Colombo D, Colosimo BM, Previtali B (2013) Comparison of methods for data analysis in the remote monitoring of remote laser welding. Opt Lasers Eng 51(1):34–46

    Article  Google Scholar 

  109. Garcia-Allende PB, Mirapeix J, Conde OM et al (2008) Arc-welding spectroscopic monitoring based on feature selection and neural networks. Sensors 8(10):6496–6506

    Article  Google Scholar 

  110. Mirapeix J, García-Allende PB, Cobo A, Conde OM, Lomer M, Lopez-Higuera JM (2009) Welding diagnostics by means of line-to-continuum method and SFFS spectral band selection. In: Proceedings of SPIE, 7503, pp 75034T

    Google Scholar 

  111. Ye Z, Fang G, Chen S et al (2013) A robust algorithm for weld seam extraction based on prior knowledge of weld seam. Sensor Rev 33(2):125–133

    Article  Google Scholar 

  112. Lv N, Zhong J, Chen H et al (2014) Real-time control of welding penetration during robotic GTAW dynamical process by audio sensing of arc length. Int J Adv Manuf Technol 74(1–4):235–249

    Article  Google Scholar 

  113. Lü F, Chen H, Fan C et al (2010) A novel control algorithm for weld pool control. Ind Rob Int J 37(1):89–96

    Article  Google Scholar 

  114. Zhang YM, Kovacevic R, Li L (1996) Adaptive control of full penetration gas tungsten arc welding. IEEE Trans Control Syst Technol 4(4):394–403

    Article  Google Scholar 

  115. Chen SB, Wu L, Wang QL (1997) Self-learning fuzzy neural networks for control of uncertain systems with time delays. IEEE Trans Syst Man Cybern Part B (Cybern) 27(1):142–148

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiming Huang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, Y., Chen, S. (2020). Introduction. In: Key Technologies of Intelligentized Welding Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-13-7549-1_1

Download citation

Publish with us

Policies and ethics