Skip to main content

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 309 Accesses

Abstract

This chapter introduces the concept and motivation of disordered photonics . Starting from the definitions of order , disorder , and randomness , we describe the importance of exploring the intermediate areas of disorder between order and randomness in physics. With a brief summary of the role of order and randomness in photonics , we introduce a top-down implementation of anomalous photonic disorder as a toolkit for the independent control of optical quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aieta, F., Genevet, P., Kats, M.A., Yu, N., Blanchard, R., Gaburro, Z., Capasso, F.: Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12, 4932–4936 (2012)

    Article  ADS  Google Scholar 

  • Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  • Ashcroft, N.W., Mermin, N.D., Rodriguez, S.: Solid state physics. Cengage Learn. (1976)

    Google Scholar 

  • Boyd, R.W.: Nonlinear Optics. Elsevier (2003)

    Google Scholar 

  • Bozhevolnyi, S.I., Volkov, V.S., Devaux, E., Laluet, J.Y., Ebbesen, T.W.: Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006). https://doi.org/10.1038/nature04594

    Article  ADS  Google Scholar 

  • Bozzola, A., Liscidini, M., Andreani, L.C.: Broadband light trapping with disordered photonic structures in thin-film silicon solar cells. Prog. Photovolt: Res. Appl. 22, 1237–1245 (2014)

    Google Scholar 

  • Cheng, Z., Savit, R., Merlin, R.: Structure and electronic properties of Thue-Morse lattices. Phys. Rev. B 37, 4375 (1988)

    Article  ADS  Google Scholar 

  • Chen, X., Park, H.-R., Pelton, M., Piao, X., Lindquist, N.C., Im, H., Kim, Y.J., Ahn, J.S., Ahn, K.J., Park, N.: Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves. Nat. Commun. 4, 2361 (2013)

    Article  ADS  Google Scholar 

  • Chen, W.T., Zhu, A.Y., Sanjeev, V., Khorasaninejad, M., Shi, Z., Lee, E., Capasso, F.: A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotech. 13, 220 (2018)

    Article  ADS  Google Scholar 

  • Chung, K., Yu, S., Heo, C.J., Shim, J.W., Yang, S.M., Han, M.G., Lee, H.S., Jin, Y., Lee, S.Y., Park, N.: Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings. Adv. Mater. 24, 2375–2379 (2012)

    Article  Google Scholar 

  • Dulea, M., Johansson, M., Riklund, R.: Trace-map invariant and zero-energy states of the tight-binding Rudin-Shapiro model. Phys. Rev. B 46, 3296 (1992)

    Article  ADS  Google Scholar 

  • Gabrielli, L.H., Liu, D., Johnson, S.G., Lipson, M.: On-chip transformation optics for multimode waveguide bends. Nat. Commun. 3, 1217 (2012)

    Article  ADS  Google Scholar 

  • Huang, R., Miranowicz, A., Liao, J.-Q., Nori, F., Jing, H.: Nonreciprocal photon blockade. Phys. Rev. Lett. 121, 153601 (2018)

    Article  ADS  Google Scholar 

  • Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: Molding The Flow of Light. Princeton University Press (2011)

    Google Scholar 

  • Jung, Y.J., Park, D., Koo, S., Yu, S., Park, N.: Metal slit array Fresnel lens for wavelength-scale optical coupling to nanophotonic waveguides. Opt. Express 17, 18852–18857 (2009)

    Article  ADS  Google Scholar 

  • Kim, Y., Yu, S., Park, N.: Low-dimensional gap plasmons for enhanced light-graphene interactions. Sci. Rep. 7, 43333 (2017)

    Article  ADS  Google Scholar 

  • Kumar, M.S., Piao, X., Koo, S., Yu, S., Park, N.: Out of plane mode conversion and manipulation of Surface Plasmon Polariton Waves. Opt. Express 18, 8800–8805 (2010a)

    Article  ADS  Google Scholar 

  • Kumar, M.S., Menabde, S., Yu, S., Park, N.: Directional emission from photonic crystal waveguide terminations using particle swarm optimization. JOSA B 27, 343–349 (2010b)

    Article  ADS  Google Scholar 

  • Lee, H., Chen, T., Li, J., Yang, K.Y., Jeon, S., Painter, O., Vahala, K.J.: Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photon. 6, 369–373 (2012)

    Article  ADS  Google Scholar 

  • Levine, D., Steinhardt, P.J.: Quasicrystals: a new class of ordered structures. Phys. Rev. Lett. 53, 2477 (1984)

    Article  ADS  Google Scholar 

  • Li, Z.-Y., Zhang, Z.-Q.: Fragility of photonic band gaps in inverse-opal photonic crystals. Phys. Rev. B 62, 1516 (2000)

    Article  ADS  Google Scholar 

  • Li, L., Li, T., Tang, X.-M., Wang, S.-M., Wang, Q.-J., Zhu, S.-N.: Plasmonic polarization generator in well-routed beaming. Light Sci. Appl. 4, e330 (2015)

    Article  Google Scholar 

  • Marder, M.P.: Condensed Matter Physics. Wiley (2010)

    Google Scholar 

  • Mason, D.R., Menabde, S.G., Yu, S., Park, N.: Plasmonic excitations of 1D metal-dielectric interfaces in 2D systems: 1D surface plasmon polaritons. Sci. Rep. 4, 4536 (2014)

    Article  ADS  Google Scholar 

  • Notomi, M., Kuramochi, E., Tanabe, T.: Large-scale arrays of ultrahigh-Q coupled nanocavities. Nat. Photon. 2, 741–747 (2008). https://doi.org/10.1038/nphoton.2008.226

    Article  ADS  Google Scholar 

  • Nozaki, K., Tanabe, T., Shinya, A., Matsuo, S., Sato, T., Taniyama, H., Notomi, M.: Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Photon. 4, 477–483 (2010)

    Article  ADS  Google Scholar 

  • Okamoto, K.: Fundamentals of Optical Waveguides. Academic Press (2010)

    Google Scholar 

  • Schwartz, T., Bartal, G., Fishman, S., Segev, M.: Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007)

    Article  ADS  Google Scholar 

  • Slussarenko, S., Alberucci, A., Jisha, C.P., Piccirillo, B., Santamato, E., Assanto, G., Marrucci, L.: Guiding light via geometric phases. Nat. Photon. 10, 571 (2016)

    Article  ADS  Google Scholar 

  • Snyder, A.W., Love, J.: Optical Waveguide Theory. Springer Science & Business Media, Boston (2012)

    Google Scholar 

  • Sounas, D.L., Alù, A.: Non-reciprocal photonics based on time modulation. Nat. Photon. 11, 774 (2017)

    Article  ADS  Google Scholar 

  • Tanaka, Y., Upham, J., Nagashima, T., Sugiya, T., Asano, T., Noda, S.: Dynamic control of the Q factor in a photonic crystal nanocavity. Nat. Mater. 6, 862–865 (2007). https://doi.org/10.1038/nmat1994

    Article  ADS  Google Scholar 

  • Teich, M.C., Saleh, B.: Fundamentals of Photonics. Wiley Interscience (2007)

    Google Scholar 

  • Thiel, M., Rill, M.S., von Freymann, G., Wegener, M.: Three-dimensional Bi-Chiral photonic crystals. Adv. Mater. 21, 4680–4682 (2009)

    Article  Google Scholar 

  • Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  ADS  Google Scholar 

  • Wiersma, D.S.: Disordered photonics. Nat. Photon. 7, 188–196 (2013)

    Article  ADS  Google Scholar 

  • Woo, I., Yu, S., Lee, J.S., Shin, J.H., Jung, M., Park, N.: Plasmonic structural-color thin film with a wide reception angle and strong retro-reflectivity. Photonics J., IEEE 4, 2182–2188 (2012)

    Article  ADS  Google Scholar 

  • Xia, Y., Fan, J., Hill, D.: Cascading failure in Watts-Strogatz small-world networks. Phys. A 389, 1281–1285 (2010)

    Article  Google Scholar 

  • Yariv, A., Yeh, P.: Photonics: Optical Electronics in Modern Communications. Oxford University Press, Inc. (2006)

    Google Scholar 

  • Yi, J.-M., Smirnov, V., Piao, X., Hong, J., Kollmann, H., Silies, M., Wang, W., Groß, P., Vogelgesang, R., Park, N.: Suppression of radiative damping and enhancement of second harmonic generation in bull’s eye nanoresonators. ACS Nano 10, 475–483 (2015)

    Article  Google Scholar 

  • Yoo, K., Becker, S.F., Silies, M., Yu, S., Lienau, C., Park, N.: Bridging Microscopic Nonlinear Polarizations Toward Far-Field Second Harmonic Radiation (2017). arXiv:1711.09568

  • Yoo, K., Becker, S.F., Silies, M., Yu, S., Lienau, C., Park, N.: Steering second-harmonic radiation through local excitations of plasmon. Opt. Express 27, 18246 (2019)

    Article  ADS  Google Scholar 

  • Yu, Z., Fan, S.: Complete optical isolation created by indirect interband photonic transitions. Nat. Photon. 3, 91–94 (2009). https://doi.org/10.1038/nphoton.2008.273

    Article  ADS  Google Scholar 

  • Yu, S., Piao, X., Hong, J., Park, N.: Bloch-like waves in random-walk potentials based on supersymmetry. Nat. Commun. 6, 8269 (2015)

    Article  ADS  Google Scholar 

  • Yu, S., Piao, X., Hong, J., Park, N.: Metadisorder for designer light in random systems. Sci. Adv. 2, e1501851 (2016a)

    Article  ADS  Google Scholar 

  • Yu, S., Piao, X., Hong, J., Park, N.: Interdimensional optical isospectrality inspired by graph networks. Optica 3, 836–839 (2016b)

    Article  Google Scholar 

  • Yu, S., Piao, X., Park, N.: Target decoupling in coupled systems resistant to random perturbation. Sci. Rep. 7, 2139 (2017a)

    Article  ADS  Google Scholar 

  • Yu, S., Piao, X., Park, N.: Controlling random waves with digital building blocks based on supersymmetry. Phys. Rev. Appl. 8, 054010 (2017b)

    Article  ADS  Google Scholar 

  • Yu, S., Piao, X., Park, N.: Disordered potential landscapes for anomalous delocalization and superdiffusion of light. ACS Photon. 5, 1499 (2018a)

    Article  Google Scholar 

  • Yu, S., Piao, X., Park, N.: Bohmian photonics for independent control of the phase and amplitude of waves. Phys. Rev. Lett. 120, 193902 (2018b)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunkyu Yu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Singapore Pte. Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, S., Piao, X., Park, N. (2019). Introduction. In: Top-Down Design of Disordered Photonic Structures. SpringerBriefs in Physics. Springer, Singapore. https://doi.org/10.1007/978-981-13-7527-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7527-9_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7526-2

  • Online ISBN: 978-981-13-7527-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics