Skip to main content

Scatter Broadening of Pulsars and Implications on the Interstellar Medium Turbulence

  • Chapter
  • First Online:
Study on Magnetohydrodynamic Turbulence and Its Astrophysical Applications

Part of the book series: Springer Theses ((Springer Theses))

  • 386 Accesses

Abstract

Observations reveal a uniform Kolmogorov turbulence throughout the diffuse ionized interstellar medium (ISM) and supersonic turbulence preferentially located in the Galactic plane. Correspondingly, we consider the Galactic distribution of electron density fluctuations consisting of not only a Kolmogorov density spectrum but also a short-wave-dominated density spectrum with the density structure formed at small scales due to shocks. The resulting dependence of the scatter broadening time on the dispersion measure (DM) naturally interprets the existing observational data for both low and high-DM pulsars. According to the criteria that we derive for a quantitative determination of scattering regimes over wide ranges of DMs and frequencies \(\nu \), we find that the pulsars with low DMs are primarily scattered by the Kolmogorov turbulence, while those at low Galactic latitudes with high DMs undergo more enhanced scattering dominated by the supersonic turbulence, where the corresponding density spectrum has a spectral index \(\approx \)2.6. Besides, by considering a volume filling factor of the density structures with the dependence on \(\nu \) as \(\propto \nu ^{1.4}\) in the supersonic turbulence, our model can also explain the observed shallower \(\nu \) scaling of the scattering time than the Kolmogorov scaling for the pulsars with relatively large DMs. The comparison between our analytical results and the scattering measurements of pulsars in turn makes a useful probe of the properties of the large-scale ISM turbulence, e.g., an injection scale of \(\sim \)100 pc, and also characteristics of small-scale density structures. This chapter is based on Xu and Zhang (ApJ 835:2, 2017 [1]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Unlike the density spectrum which can have the spectral index either higher or lower than \(\beta =3\), turbulent velocity spectrum always has \(\beta >3\) [42], and it becomes even steeper than the Kolmogorov scaling in supersonic turbulence (see simulations by, e.g., [43,44,45,46] and observations by, e.g., [47,48,49]).

  2. 2.

    The density spectrum in the interstellar turbulence steeper than \(\beta =4\) is rejected since its associated refractive modulation index is inconsistently larger than that observed from the nearby pulsars [8, 81, 82].

  3. 3.

    Visualizations of the density structures developed in simulations of supersonic turbulence show the prevalence of filaments and sheets [14, 23].

References

  1. Xu S, Zhang B (2017) ApJ 835:2

    Article  ADS  Google Scholar 

  2. Williamson IP (1972) MNRAS 157:55

    Article  ADS  Google Scholar 

  3. Scheuer PAG (1968) Nature 218:920

    Article  ADS  Google Scholar 

  4. Romani RW, Narayan R, Blandford R (1986) MNRAS 220:19

    Article  ADS  Google Scholar 

  5. Lee LC, Jokipii JR (1976) ApJ 206:735

    Article  ADS  Google Scholar 

  6. Rickett BJ (1977) ARA&A 15:479

    Article  ADS  Google Scholar 

  7. Rickett BJ (1990) ARA&A 28:561

    Article  ADS  Google Scholar 

  8. Armstrong JW, Rickett BJ, Spangler SR (1995) ApJ 443:209

    Article  ADS  Google Scholar 

  9. Goldreich P, Sridhar S (1995) ApJ 438:763

    Article  ADS  Google Scholar 

  10. Lithwick Y, Goldreich P (2001) ApJ 562:279

    Article  ADS  Google Scholar 

  11. Cho J, Lazarian A (2002) Phys Rev Lett 88:245001

    Article  ADS  Google Scholar 

  12. Cho J, Lazarian A (2003) MNRAS 345:325

    Article  ADS  Google Scholar 

  13. Beresnyak A, Lazarian A, Cho J (2005) ApJ 624:L93

    Article  ADS  Google Scholar 

  14. Kowal G, Lazarian A, Beresnyak A (2007) ApJ 658:423

    Article  ADS  Google Scholar 

  15. Lazarian A, Kowal G, Beresnyak A (2008) Numerical modeling of space plasma flows. In: Pogorelov NV, Audit E, Zank GP (eds) Astronomical society of the pacific conference series, vol 385, p 3

    Google Scholar 

  16. Burkhart B, Falceta-Gonçalves D, Kowal G, Lazarian A (2009) ApJ 693:250

    Article  ADS  Google Scholar 

  17. Burkhart B, Stanimirović S, Lazarian A, Kowal G (2010) ApJ 708:1204

    Article  ADS  Google Scholar 

  18. Collins DC, Kritsuk AG, Padoan P, Li H, Xu H, Ustyugov SD, Norman ML (2012) ApJ 750:13

    Article  ADS  Google Scholar 

  19. Federrath C, Klessen RS (2012) ApJ 761:156

    Article  ADS  Google Scholar 

  20. Burkhart B, Collins DC, Lazarian A (2015a) ApJ 808:48

    Article  ADS  Google Scholar 

  21. McKee CF, Ostriker EC (2007) ARA&A 45:565

    Article  ADS  Google Scholar 

  22. Lazarian A, Eyink G, Vishniac E, Kowal G (2015b) Philos Trans R Soc Lond Ser A 373:20140144

    Article  ADS  Google Scholar 

  23. Kim J, Ryu D (2005) ApJ 630:L45

    Article  ADS  Google Scholar 

  24. Padoan P, Jimenez R, Nordlund Ã…, Boldyrev S (2004b) Phys Rev Lett 92:191102

    Article  ADS  Google Scholar 

  25. Mac Low M-M, Klessen RS (2004) Rev Mod Phys 76:125

    Article  ADS  Google Scholar 

  26. Spangler SR (2001) Space Sci Rev 99:261

    Article  ADS  Google Scholar 

  27. Burkhart B, Lazarian A (2012) ApJ 755:L19

    Article  ADS  Google Scholar 

  28. Hill AS, Benjamin RA, Kowal G, Reynolds RJ, Haffner LM, Lazarian A (2008) ApJ 686:363

    Article  ADS  Google Scholar 

  29. Haffner LM et al (2009) Rev Mod Phys 81:969

    Article  ADS  Google Scholar 

  30. Tielens AGGM (2005) The physics and chemistry of the interstellar medium

    Google Scholar 

  31. Haverkorn M, Spangler SR (2013) Space Sci Rev 178:483

    Article  ADS  Google Scholar 

  32. Kulkarni SR, Heiles C (1987) Interstellar processes. In: Hollenbach DJ, Thronson HA Jr (eds) Astrophysics and space science library, vol 134, pp 87–122

    Google Scholar 

  33. Haffner LM, Reynolds RJ, Tufte SL (1999) ApJ 523:223

    Article  ADS  Google Scholar 

  34. Gaensler BM et al (2011) Nature 478:214

    Article  ADS  Google Scholar 

  35. Burkhart B, Lazarian A, Gaensler BM (2012) ApJ 749:145

    Article  ADS  Google Scholar 

  36. Chepurnov A, Lazarian A (2010b) ApJ 710:853

    Article  ADS  Google Scholar 

  37. Haverkorn M, Gaensler BM, Brown JC, Bizunok NS, McClure-Griffiths NM, Dickey JM, Green AJ (2006) ApJ 637:L33

    Article  ADS  Google Scholar 

  38. Haverkorn M, Brown JC, Gaensler BM, McClure-Griffiths NM (2008) ApJ 680:362

    Article  ADS  Google Scholar 

  39. Zuckerman B, Palmer P (1974) ARA&A 12:279

    Article  ADS  Google Scholar 

  40. Larson RB (1981) MNRAS 194:809

    Article  ADS  Google Scholar 

  41. Falceta-Gonçalves D, Kowal G, Falgarone E, Chian AC-L (2014) Nonlinear Process Geophys 21:587

    Article  ADS  Google Scholar 

  42. Cho J, Lazarian A, Vishniac ET (2003c) ApJ 595:812

    Article  ADS  Google Scholar 

  43. Kritsuk AG, Norman ML, Padoan P, Wagner R (2007) ApJ 665:416

    Article  ADS  Google Scholar 

  44. Schmidt W, Federrath C, Hupp M, Kern S, Niemeyer JC (2009) A&A 494:127

    Article  ADS  Google Scholar 

  45. Federrath C, Roman-Duval J, Klessen RS, Schmidt W, Mac Low M-M (2010) A&A 512:A81

    Article  ADS  Google Scholar 

  46. Kowal G, Lazarian A (2010b) ApJ 720:742

    Google Scholar 

  47. Padoan P, Juvela M, Kritsuk A, Norman ML (2006) ApJ 653:L125

    Article  ADS  Google Scholar 

  48. Kowal G, Lazarian A (2009) ApJ 707:L153

    Article  Google Scholar 

  49. Chepurnov A, Lazarian A, Stanimirović S, Heiles C, Peek JEG (2010) ApJ 714:1398

    Article  ADS  Google Scholar 

  50. Deshpande AA, Dwarakanath KS, Goss WM (2000) ApJ 543:227

    Article  ADS  Google Scholar 

  51. Stutzki J, Bensch F, Heithausen A, Ossenkopf V, Zielinsky M (1998) A&A 336:697

    ADS  Google Scholar 

  52. Padoan P, Jimenez R, Juvela M, Nordlund Ã… (2004a) ApJ 604:L49

    Article  ADS  Google Scholar 

  53. Swift JJ (2006) PhD thesis, University of California, Berkeley

    Google Scholar 

  54. Lazarian A (2009) Space Sci Rev 143:357

    Article  ADS  Google Scholar 

  55. Hennebelle P, Falgarone E (2012) A&A Rev 20:55

    Article  ADS  Google Scholar 

  56. Malkov MA, Diamond PH, O’C. Drury L, Sagdeev RZ (2010) ApJ 721:750

    Google Scholar 

  57. Xu S, Zhang B (2016a) ApJ 824:113

    Article  ADS  Google Scholar 

  58. Armstrong JW, Cordes JM, Rickett BJ (1981) Nature 291:561

    Article  ADS  Google Scholar 

  59. Cordes JM, Rickett BJ (1998a) ApJ 507:846

    Article  ADS  Google Scholar 

  60. Cordes JM, Wharton RS, Spitler LG, Chatterjee S, Wasserman I (2016) arXiv:1605.05890

  61. Ramachandran R, Mitra D, Deshpande AA, McConnell DM, Ables JG (1997) MNRAS 290:260

    Article  ADS  Google Scholar 

  62. Löhmer O, Mitra D, Gupta Y, Kramer M, Ahuja A (2004) A&A 425:569

    Article  ADS  Google Scholar 

  63. Krishnakumar MA, Mitra D, Naidu A, Joshi BC, Manoharan PK (2015) ApJ 804:23

    Article  ADS  Google Scholar 

  64. Cordes JM, Weisberg JM, Boriakoff V (1985) ApJ 288:221

    Article  ADS  Google Scholar 

  65. Johnston S, Nicastro L, Koribalski B (1998a) MNRAS 297:108

    Article  ADS  Google Scholar 

  66. Löhmer O, Kramer M, Mitra D, Lorimer DR, Lyne AG (2001) ApJ 562:L157

    Article  ADS  Google Scholar 

  67. Lewandowski W, Dembska M, Kijak J, Kowalińska M (2013) MNRAS 434:69

    Article  ADS  Google Scholar 

  68. Bhat NDR, Cordes JM, Camilo F, Nice DJ, Lorimer DR (2004) ApJ 605:759

    Article  ADS  Google Scholar 

  69. Lewandowski W, Kowalińska M, Kijak J (2015) MNRAS 449:1570

    Article  ADS  Google Scholar 

  70. Cordes JM, Lazio TJW (2002) arXiv:astro-ph/0207156

  71. Cordes JM, Lazio TJW (2003a) arXiv:astro-ph/0301598

  72. Cordes JM, Lazio TJW (2004) ApJ 616:943

    Article  Google Scholar 

  73. Cordes JM, Lazio TJW (2006) ApJ 652:1348

    Article  Google Scholar 

  74. Lazarian A, Esquivel A (2003) ApJ 592:L37

    Article  ADS  Google Scholar 

  75. Esquivel A, Lazarian A (2005) ApJ 631:320

    Article  ADS  Google Scholar 

  76. Burkhart B, Lazarian A, Leão IC, de Medeiros JR, Esquivel A (2014) ApJ 790:130

    Article  ADS  Google Scholar 

  77. Lazarian A, Pogosyan D (2000) ApJ 537:720

    Article  ADS  Google Scholar 

  78. Lazarian A (2006b) Spectral line shapes: XVIII. In: Oks E, Pindzola MS (eds) American institute of physics conference series, vol 874, pp 301–315

    Google Scholar 

  79. Minter AH, Spangler SR (1996) ApJ 458:194

    Article  ADS  Google Scholar 

  80. Coles WA, Rickett BJ, Codona JL, Frehlich RG (1987) ApJ 315:666

    Article  ADS  Google Scholar 

  81. Rickett BJ, Lyne AG (1990) MNRAS 244:68

    ADS  Google Scholar 

  82. Lambert HC, Rickett BJ (2000) ApJ 531:883

    Article  ADS  Google Scholar 

  83. Cordes JM, Lazio TJW (2016b) ApJ 818:178

    Article  Google Scholar 

  84. Lang KR (1971) ApJ 164:249

    Article  ADS  Google Scholar 

  85. Stinebring DR, Smirnova TV, Hankins TH, Hovis JS, Kaspi VM, Kempner JC, Myers E, Nice DJ (2000) ApJ 539:300

    Article  ADS  Google Scholar 

  86. Fleck RC Jr (1996) ApJ 458:739

    Article  ADS  Google Scholar 

  87. Elmegreen B, Ossenkopf V, Stutzki J, Winnewisser G (eds) (1999) The physics and chemistry of the interstellar medium

    Google Scholar 

  88. Elmegreen BG (1997) ApJ 477:196

    Article  ADS  Google Scholar 

  89. Kowal G, Lazarian A (2007) ApJ 666:L69

    Article  ADS  Google Scholar 

  90. Gaustad JE, van Buren D (1993) PASP 105:1127

    Article  ADS  Google Scholar 

  91. Berkhuijsen EM, Mitra D, Mueller P (2006) Astronomische Nachrichten 327:82

    Article  ADS  Google Scholar 

  92. Berkhuijsen EM, Müller P (2008) A&A 490:179

    Article  ADS  Google Scholar 

  93. Chepurnov A, Burkhart B, Lazarian A, Stanimirovic S (2015) ApJ 810:33

    Article  ADS  Google Scholar 

  94. Spangler SR, Gwinn CR (1990) ApJ 353:L29

    Article  ADS  Google Scholar 

  95. Franco J, Carraminana A (1999) Interstellar turbulence

    Google Scholar 

  96. Cordes JM, Lazio TJW (2001) ApJ 549:997

    Article  ADS  Google Scholar 

  97. Cordes JM, Lazio TJW (1998b) MNRAS 297:108

    Article  Google Scholar 

  98. Cordes JM, Lazio TJW (2016b) ApJ 832:199

    Article  Google Scholar 

  99. van Haarlem MP et al (2013) A&A 556:A2

    Article  ADS  Google Scholar 

  100. Tingay S et al (2012) Resolving the sky-radio interferometry: past, present and future, p 36

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyao Xu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, S. (2019). Scatter Broadening of Pulsars and Implications on the Interstellar Medium Turbulence. In: Study on Magnetohydrodynamic Turbulence and Its Astrophysical Applications. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-7515-6_4

Download citation

Publish with us

Policies and ethics