Advertisement

Interpretation of the Structure Function of Rotation Measure in the Interstellar Medium

Chapter
  • 217 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The observed structure function (SF) of rotation measure (RM) varies as a broken power-law function of angular scales. The systematic shallowness of its spectral slope is inconsistent with the standard Kolmogorov scaling. This motivates us to examine the statistical analysis on RM fluctuations. The correlations of RM constructed by Lazarian and Pogosyan (ApJ 818:178, 2016 [1]) are demonstrated to be adequate in explaining the observed features of RM SFs through a direct comparison between the theoretically obtained and observationally measured SF results. By segregating the density and magnetic field fluctuations and adopting arbitrary indices for their respective power spectra, we find that when the SFs of RM and emission measure have a similar form over the same range of angular scales, the statistics of the RM fluctuations reflect the properties of density fluctuations. RM SFs can be used to evaluate the mean magnetic field along the line of sight, but cannot serve as an informative source on the properties of turbulent magnetic field in the interstellar medium. This chapter is based on Xu and Zhang (in ApJ 824:113, 2016 [2]).

References

  1. 1.
    Lazarian A, Pogosyan D (2016) ApJ 818:178Google Scholar
  2. 2.
    Xu S, Zhang B (2016) ApJ 824:113Google Scholar
  3. 3.
    Biskamp D (ed) (2003) Magnetohydrodynamic turbulence. Cambridge University Press, CambridgeGoogle Scholar
  4. 4.
    Brandenburg A, Lazarian A (2013) Space Sci Rev 178:163ADSCrossRefGoogle Scholar
  5. 5.
    Beresnyak A, Lazarian A (2015) Astrophysics and space science library. In: Lazarian A, de Gouveia Dal Pino EM, Melioli C (eds) vol 407, p 163Google Scholar
  6. 6.
    Vestuto JG, Ostriker EC, Stone JM (2003) ApJ 590:858ADSCrossRefGoogle Scholar
  7. 7.
    Lazarian A (2009) Space Sci Rev 143:357ADSCrossRefGoogle Scholar
  8. 8.
    Goodman J, Narayan R (1985) MNRAS 214:519ADSCrossRefGoogle Scholar
  9. 9.
    Spangler SR, Gwinn CR (1990) ApJ 353:L29ADSCrossRefGoogle Scholar
  10. 10.
    Armstrong JW, Rickett BJ, Spangler SR (1995) ApJ 443:209ADSCrossRefGoogle Scholar
  11. 11.
    Chepurnov A, Lazarian A (2010) ApJ 710:853Google Scholar
  12. 12.
    Cho J, Lazarian A (2003) MNRAS 345:325ADSCrossRefGoogle Scholar
  13. 13.
    Beresnyak A, Lazarian A, Cho J (2005) ApJ 624:L93ADSCrossRefGoogle Scholar
  14. 14.
    Kowal G, Lazarian A, Beresnyak A (2007) ApJ 658:423ADSCrossRefGoogle Scholar
  15. 15.
    Cho J, Vishniac ET, Beresnyak A, Lazarian A, Ryu D (2009) ApJ 693:1449ADSCrossRefGoogle Scholar
  16. 16.
    Beresnyak A (2012) Phys Rev Lett 108:035002ADSCrossRefGoogle Scholar
  17. 17.
    Zrake J (2014) ApJ 794:L26ADSCrossRefGoogle Scholar
  18. 18.
    Kóta J, Jokipii JR (2000) ApJ 531:1067ADSCrossRefGoogle Scholar
  19. 19.
    McKee CF (1999) NATO Advanced Science Institutes (ASI) series C. In: Lada CJ, Kylafis ND (eds), vol 540, p 29Google Scholar
  20. 20.
    Lazarian A, Vishniac ET (1999) ApJ 517:700ADSCrossRefGoogle Scholar
  21. 21.
    Cho J, Vishniac ET (2000) ApJ 539:273ADSCrossRefGoogle Scholar
  22. 22.
    Cho J, Lazarian A, Vishniac ET (2002) ApJ 564:291Google Scholar
  23. 23.
    Maron J, Goldreich P (2001) ApJ 554:1175ADSCrossRefGoogle Scholar
  24. 24.
    Lazarian A, Pogosyan D (2012) ApJ 747:5ADSCrossRefGoogle Scholar
  25. 25.
    Simonetti JH, Cordes JM, Spangler SR (1984) ApJ 284:126ADSCrossRefGoogle Scholar
  26. 26.
    Simonetti JH, Cordes JM (1986) ApJ 310:160ADSCrossRefGoogle Scholar
  27. 27.
    Clegg AW, Cordes JM, Simonetti JM, Kulkarni SR (1992) ApJ 386:143ADSCrossRefGoogle Scholar
  28. 28.
    Minter AH, Spangler SR (1996) ApJ 458:194ADSCrossRefGoogle Scholar
  29. 29.
    Haverkorn M, Katgert P, de Bruyn AG (2003) A&A 403:1045ADSCrossRefGoogle Scholar
  30. 30.
    Haverkorn M, Gaensler BM, McClure-Griffiths NM, Dickey JM, Green AJ (2004) ApJ 609:776ADSCrossRefGoogle Scholar
  31. 31.
    Sun XH, Han JL (2004) The magnetized interstellar medium. In: Uyaniker B, Reich W, Wielebinski R (eds), pp 25–30Google Scholar
  32. 32.
    Haverkorn M, Brown JC, Gaensler BM, McClure-Griffiths NM (2008) ApJ 680:362ADSCrossRefGoogle Scholar
  33. 33.
    Roy S, Pramesh Rao A, Subrahmanyan R (2008) A&A 478:435ADSCrossRefGoogle Scholar
  34. 34.
    Stil J (2009) Panoramic radio astronomy: wide-field 1–2 GHz research on galaxy evolution, p 45Google Scholar
  35. 35.
    Oppermann N et al (2012) A&A 542:A93ADSCrossRefGoogle Scholar
  36. 36.
    Han JL, Ferriere K, Manchester RN (2004) ApJ 610:820ADSCrossRefGoogle Scholar
  37. 37.
    Han J (2009) Cosmic magnetic fields: from planets, to stars and galaxies. In: Strassmeier KG, Kosovichev AG, Beckman JE (eds) IAU symposium, vol 259, pp 455–466Google Scholar
  38. 38.
    Lazarian A, Pogosyan D (2004) ApJ 616:943ADSCrossRefGoogle Scholar
  39. 39.
    Lazarian A, Pogosyan D (2006) ApJ 652:1348ADSCrossRefGoogle Scholar
  40. 40.
    Lazarian A (2005) Magnetic fields in the universe: from laboratory and stars to primordial structures, In: de Gouveia dal Pino EM, Lugones G, Lazarian A (eds) American institute of physics conference series, vol 784, pp 42–53Google Scholar
  41. 41.
    Lazarian A (2011) arXiv:1112.3344
  42. 42.
    Lazarian A (2012) ApJ 757:154Google Scholar
  43. 43.
    Eyink G et al (2013) Nature 497:466Google Scholar
  44. 44.
    Kritsuk AG, Norman ML, Padoan P, Wagner R (2007) ApJ 665:416ADSCrossRefGoogle Scholar
  45. 45.
    Falceta-Gonçalves D, Kowal G, Falgarone E, Chian AC-L (2014) Nonlinear processes in geophysics 21:587Google Scholar
  46. 46.
    McKee CF, Ostriker JP (1977) ApJ 218:148ADSCrossRefGoogle Scholar
  47. 47.
    Spangler SR (1991) ApJ 376:540ADSCrossRefGoogle Scholar
  48. 48.
    Chepurnov A, Lazarian A, Stanimirović S, Heiles C, Peek JEG (2010) ApJ 714:1398ADSCrossRefGoogle Scholar
  49. 49.
    Xu S, Yan H, Lazarian A (2016) ApJ 826:166Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.University of Wisconsin-MadisonMadisonUSA

Personalised recommendations