Advertisement

MHD Turbulence in a Partially Ionized Medium

Chapter
  • 231 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Astrophysical fluids are turbulent, magnetized and frequently partially ionized. As an example of astrophysical turbulence, the interstellar turbulence extends over a remarkably large range of spatial scales and participates in key astrophysical processes happening in different ranges of scales. A significant progress has been achieved in the understanding of the magnetohydrodynamic (MHD) turbulence since the turn of the century, and this enables us to better describe turbulence in magnetized and partially ionized plasmas. The modern revolutionized picture of the MHD turbulence physics facilitates the development of various theoretical domains, including the damping process for dissipating MHD turbulence. This chapter is based on the work by Xu et al. (ApJ 810:44, 2015, [1]), Xu et al. (ApJ 826:166, 2016, [2]), Xu et al. (New J Phys 19:065005, 2017, [3]).

Keywords

Magnetohydrodynamics Turbulence Turbulent dynamo Interstellar medium 

References

  1. 1.
    Xu S, Lazarian A, Yan H (2015) ApJ 810:44Google Scholar
  2. 2.
    Xu S, Yan H, Lazarian A (2016) ApJ 826:166Google Scholar
  3. 3.
    Xu S, Lazarian A (2017) New J Phys 19:065005Google Scholar
  4. 4.
    Draine BT (2011) Physics of the interstellar and intergalactic mediumGoogle Scholar
  5. 5.
    Piddington JH (1956) MNRAS 116:314Google Scholar
  6. 6.
    Kulsrud R, Pearce WP (1969) ApJ 156:445Google Scholar
  7. 7.
    Schekochihin AA, Boldyrev SA, Kulsrud RM (2002) ApJ 567:828Google Scholar
  8. 8.
    Mac Low M-M, Klessen RS (2004) Rev Mod Phys 76:125Google Scholar
  9. 9.
    McKee CF, Ostriker EC (2007) ARA&A 45:565Google Scholar
  10. 10.
    Armstrong JW, Rickett BJ, Spangler SR (1995) ApJ 443:209Google Scholar
  11. 11.
    Chepurnov A, Lazarian A (2010) ApJ 710:853Google Scholar
  12. 12.
    Stanimirović S, Lazarian A (2001) ApJ 551:L53Google Scholar
  13. 13.
    Stanimirović S, Lazarian A (2009) ApJ 707:L153Google Scholar
  14. 14.
    Chepurnov A, Burkhart B, Lazarian A, Stanimirovic S (2015) ApJ 810:33Google Scholar
  15. 15.
    Spangler SR (1982) ApJ 261:310Google Scholar
  16. 16.
    Spangler SR (2010) ApJ 720:1181Google Scholar
  17. 17.
    Xu S, Zhang B (2016) ApJ 824:113Google Scholar
  18. 18.
    Leamon RJ, Smith CW, Ness NF, Matthaeus WH, Wong HK (1998) J Geophys Res 103:4775Google Scholar
  19. 19.
    Montgomery D, Turner L (1981) Phys Fluids 24:825Google Scholar
  20. 20.
    Shebalin JV, Matthaeus WH, Montgomery D (1983) J Plasma Phys 29:525Google Scholar
  21. 21.
    Higdon JC (1984) ApJ 285:109Google Scholar
  22. 22.
    Goldreich P, Sridhar S (1995) ApJ 438:763Google Scholar
  23. 23.
    Lazarian A, Vishniac ET (1999) ApJ 517:700Google Scholar
  24. 24.
    Cho J, Vishniac ET (2000) ApJ 539:273Google Scholar
  25. 25.
    Maron J, Goldreich P (2001) ApJ 554:1175Google Scholar
  26. 26.
    Maron J, Goldreich P (2002) ApJ 564:291Google Scholar
  27. 27.
    Lithwick Y, Goldreich P (2001) ApJ 562:279Google Scholar
  28. 28.
    Cho J, Lazarian A (2002) Phys Rev Lett 88:245001Google Scholar
  29. 29.
    Cho J, Lazarian A (2003) MNRAS 345:325Google Scholar
  30. 30.
    Cho J, Lazarian A (2010) ApJ 720:742Google Scholar
  31. 31.
    Boldyrev S (2005) ApJ 626:L37Google Scholar
  32. 32.
    Boldyrev S (2006) Phys Rev Lett 96:115002Google Scholar
  33. 33.
    Beresnyak A, Lazarian A (2006) ApJ 640:L175Google Scholar
  34. 34.
    Beresnyak A, Lazarian A (2010) ApJ 722:L110Google Scholar
  35. 35.
    Beresnyak A, Lazarian A (2014) ApJ 784:L20Google Scholar
  36. 36.
    Beresnyak A, Lazarian A (2015) ApJ 801:L9Google Scholar
  37. 37.
    Lazarian A, Vishniac ET, Cho J (2004) ApJ 603:180Google Scholar
  38. 38.
    Oishi JS, Mac Low M-M (2006) ApJ 638:281Google Scholar
  39. 39.
    Tilley DA, Balsara DS (2008) MNRAS 389:1058Google Scholar
  40. 40.
    Tilley DA, Balsara DS (2010) MNRAS 406:1201Google Scholar
  41. 41.
    Burkhart B, Lazarian A, Balsara D, Meyer C, Cho J (2015) ApJ 805:118Google Scholar
  42. 42.
    Batchelor GK (1950) Proc R Soc Lond Ser A 201:405Google Scholar
  43. 43.
    Kazantsev AP (1968) Sov J Exp Theor Phys 26:1031Google Scholar
  44. 44.
    Kulsrud RM, Anderson SW (1992) ApJ 396:606Google Scholar
  45. 45.
    Cho J, Vishniac ET, Beresnyak A, Lazarian A, Ryu D (2009) ApJ 693:1449Google Scholar
  46. 46.
    Beresnyak A, Jones TW, Lazarian A (2009) ApJ 707:1541Google Scholar
  47. 47.
    Beresnyak A (2012) Phys Rev Lett 108:035002Google Scholar
  48. 48.
    Beresnyak A, Lazarian A (2015) Lazarian A, de Gouveia Dal Pino EM, Melioli C (eds) Astrophysics and space science library, vol 407, p 163Google Scholar
  49. 49.
    Xu S, Lazarian A (2016) ApJ 833:215Google Scholar
  50. 50.
    Lalescu CC, Shi Y-K, Eyink GL, Drivas TD, Vishniac ET, Lazarian A (2015) Phys Rev Lett 115:025001Google Scholar
  51. 51.
    Cho J, Lazarian A, Vishniac ET (2002) ApJ 566:L49Google Scholar
  52. 52.
    Cho J, Lazarian A, Vishniac ET (2003) ApJ 595:812Google Scholar
  53. 53.
    Haugen NE, Brandenburg A, Dobler W (2004) Phys Rev E 70:016308Google Scholar
  54. 54.
    Biskamp, D (2003) Biskamp D (ed) Magnetohydrodynamic turbulence. Cambridge University Press, CambridgeGoogle Scholar
  55. 55.
    Dobrowolny M, Mangeney A, Veltri P (1980) A&A 83:26Google Scholar
  56. 56.
    Stone JM, Ostriker EC, Gammie CF (1998) ApJ 508:L99Google Scholar
  57. 57.
    Iroshnikov PS (1964) Sov Ast 7:566Google Scholar
  58. 58.
    Kraichnan RH (1965) Phys Fluids 8:1385Google Scholar
  59. 59.
    Matthaeus WH, Montgomery DC, Goldstein ML (1983) Phys Rev Lett 51:1484Google Scholar
  60. 60.
    Cho J, Lazarian A, Vishniac ET (2003) Falgarone E, Passot T (eds) Turbulence and magnetic fields in astrophysics. Lecture notes in physics, vol 614. Springer, Heidelberg, pp 56–98Google Scholar
  61. 61.
    Lazarian A, Kowal G, Takamoto M, de Gouveia Dal Pino EM, Cho J (2016) Gonzalez W, Parker E (eds) Astrophysics and space science library, vol 427, p 409Google Scholar
  62. 62.
    Kulsrud RM (2005) Kulsrud RM (ed) Plasma physics for astrophysicsGoogle Scholar
  63. 63.
    Kulsrud RM (1953) The theory of homogeneous turbulenceGoogle Scholar
  64. 64.
    Kolmogorov A (1941) Akademiia Nauk SSSR Doklady 30:301Google Scholar
  65. 65.
    Galtier S, Nazarenko SV, Newell AC, Pouquet A (2000) J Plasma Phys 63:447Google Scholar
  66. 66.
    Galtier S, Nazarenko SV, Newell AC, Pouquet A (2006) ApJ 645:L25Google Scholar
  67. 67.
    Esquivel A, Lazarian A (2005) ApJ 631:320Google Scholar
  68. 68.
    Esquivel A, Lazarian A (2012) ApJ 747:5Google Scholar
  69. 69.
    Vestuto JG, Ostriker EC, Stone JM (2003) ApJ 590:858Google Scholar
  70. 70.
    Vestuto JG, Ostriker EC, Stone JM (2003) ApJ 582:1220Google Scholar
  71. 71.
    Vestuto JG, Ostriker EC, Stone JM (2004) ApJ 614:757Google Scholar
  72. 72.
    Shu FH (1992) The physics of astrophysics. Volume II: gas dynamicsGoogle Scholar
  73. 73.
    Langer WD (1978) ApJ 225:95Google Scholar
  74. 74.
    Braginskii SI (1965) Rev Plasma Phys 1:205Google Scholar
  75. 75.
    Balsara DS (1996) ApJ 465:775Google Scholar
  76. 76.
    Khodachenko ML, Arber TD, Rucker HO, Hanslmeier A (2004) A&A 422:1073Google Scholar
  77. 77.
    Forteza P, Oliver R, Ballester JL, Khodachenko ML (2007) A&A 461:731Google Scholar
  78. 78.
    Pudritz RE (1990) ApJ 350:195Google Scholar
  79. 79.
    Kumar N, Roberts B (2003) Sol Phys 214:241Google Scholar
  80. 80.
    Zaqarashvili TV, Khodachenko ML, Rucker HO (2011) A&A 529:A82Google Scholar
  81. 81.
    Mouschovias TC, Ciolek GE, Morton SA (2011) MNRAS 415:1751Google Scholar
  82. 82.
    Soler R, Carbonell M, Ballester JL, Terradas J (2013) ApJ 767:171Google Scholar
  83. 83.
    Soler R, Carbonell M, Ballester JL (2013) ApJS 209:16Google Scholar
  84. 84.
    Mac Low, M-M (2002) APS meeting abstracts, p 1005Google Scholar
  85. 85.
    Li PS, McKee CF, Klein RI, Fisher RT (2008) ApJ 684:380Google Scholar
  86. 86.
    Mouschovias TC (1987) Morfill GE, Scholer M (eds) NATO ASIC proceedings of the 210: physical processes in interstellar clouds, pp 453–489Google Scholar
  87. 87.
    Kamaya H, Nishi R (1998) ApJ 500:257Google Scholar
  88. 88.
    Kamaya H, Nishi R (2016) ApJ 833:131Google Scholar
  89. 89.
    Schekochihin AA, Cowley SC, Taylor SF, Maron JL, McWilliams JC (2004) ApJ 612:276Google Scholar
  90. 90.
    Schekochihin AA, Cowley SC, Taylor SF, Maron JL, McWilliams JC (1978) Physical processes in the interstellar mediumGoogle Scholar
  91. 91.
    Bykov AM, Toptygin IN (2001) Astron Lett 27:625Google Scholar
  92. 92.
    Draine BT, Roberge WG, Dalgarno A (1983) ApJ 264:485Google Scholar
  93. 93.
    Vranjes J, Krstic PS (2013) A&A 554:A22Google Scholar
  94. 94.
    Myers PC, Khersonsky VK (1995) ApJ 442:186Google Scholar
  95. 95.
    Zweibel EG, Brandenburg A (1997) ApJ 478:563Google Scholar
  96. 96.
    Zweibel EG (2002) ApJ 567:962Google Scholar
  97. 97.
    Li PS, McKee CF, Klein RI (2006) ApJ 653:1280Google Scholar
  98. 98.
    Yan H, Lazarian A (2002) Phys Rev Lett 89:B1102+Google Scholar
  99. 99.
    Yan H, Lazarian A (2008) ApJ 673:942Google Scholar
  100. 100.
    Draine BT, Lazarian A (1998) ApJ 494:L19Google Scholar
  101. 101.
    Crutcher RM, Wandelt B, Heiles C, Falgarone E, Troland TH (2010) ApJ 725:466Google Scholar
  102. 102.
    Crutcher RM, Wandelt B, Heiles C, Falgarone E, Troland TH (2016) Mod Phys Lett A 31:1630013Google Scholar
  103. 103.
    González-Casanova DF, Lazarian A (2017) ApJ 835:41Google Scholar
  104. 104.
    González-Casanova DF, Lazarian A (2017) ApJ 837:L24Google Scholar
  105. 105.
    Yuen KH, Lazarian A (2017) arXiv:1703.03026
  106. 106.
    Clark SE, Hill JC, Peek JEG, Putman ME, Babler BL (2015) Phys Rev Lett 115:241302Google Scholar
  107. 107.
    Tu C-Y, Marsch E (1993) J Geophys Res 98:1257Google Scholar
  108. 108.
    Gray PC, Pontius DH Jr, Matthaeus WH (1996) Heophys Res Lett 23:965Google Scholar
  109. 109.
    Bieber JW, Wanner W, Matthaeus WH (1996) J Geophys Res 101:2511Google Scholar
  110. 110.
    Giacalone J, Jokipii JR (1999) ApJ 520:204Google Scholar
  111. 111.
    Jokipii JR (1966) ApJ 146:480Google Scholar
  112. 112.
    Schlickeiser R, Miller JA (1998) ApJ 492:352Google Scholar
  113. 113.
    Brunetti G, Lazarian A (2007) MNRAS 378:245Google Scholar
  114. 114.
    Voelk HJ (1975) Rev Geophys Space Phys 13:547Google Scholar
  115. 115.
    López-Barquero V, Farber R, Xu S, Desiati P, Lazarian A (2016) ApJ 830:19Google Scholar
  116. 116.
    López-Barquero V, Xu S, Desiati P, et al (2017) APJ 842:54. arXiv:1610.03097
  117. 117.
    Houde M, Bastien P, Peng R, Phillips TG, Yoshida H (2000) ApJ 536:857Google Scholar
  118. 118.
    Houde M, Peng R, Phillips TG, Bastien P, Yoshida H (2000) ApJ 537:245Google Scholar
  119. 119.
    Lai S-P, Velusamy T, Langer WD (2003) ApJ 596:L239Google Scholar
  120. 120.
    Li H-B, Houde M (2008) ApJ 677:1151Google Scholar
  121. 121.
    Falceta-Gonçalves D, Lazarian A, Houde M (2010) ApJ 713:1376Google Scholar
  122. 122.
    Lazarian A, Pogosyan D (2000) ApJ 537:720Google Scholar
  123. 123.
    Lazarian A, Pogosyan D, Vázquez-Semadeni E, Pichardo B (2001) ApJ 555:130Google Scholar
  124. 124.
    Lazarian A, Pogosyan D, Vázquez-Semadeni E, Pichardo B (2010) ApJ 710:125Google Scholar
  125. 125.
    Lazarian A, Pogosyan D, Vázquez-Semadeni E, Pichardo B (2011) ApJ 740:117Google Scholar
  126. 126.
    Tofflemire BM, Burkhart B, Lazarian A (2011) ApJ 736:60Google Scholar
  127. 127.
    Falceta-Gonçalves D, Lazarian A, Kowal G (2008) ApJ 679:537Google Scholar
  128. 128.
    Houde M, Hezareh T, Jones S, Rajabi F (2013) ApJ 764:24Google Scholar
  129. 129.
    Houde M, Hezareh T, Jones S, Rajabi F (2007) J Quant Spectrosc Radiat Transf 106:225Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.University of Wisconsin-MadisonMadisonUSA

Personalised recommendations