Skip to main content

Influence of Microstructure of Geopolymer Concrete on Its Mechanical Properties—A Review

  • Conference paper
  • First Online:
Advances in Sustainable Construction Materials and Geotechnical Engineering

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 35))

Abstract

Geopolymer concrete (GPC) has been researched during the past few decades as a viable sustainable construction material, which can minimise CO2 emission for its use of industrial by-products. Past research on GPC shows that GPC is best suited for structural application with workable slump and strength as compared to ordinary Portland cement concrete (OPCC). The microstructure of GPC and OPCC has been investigated to understand its influence on engineering properties. It has been observed that GPC contained more amorphous phases, less porosity and more pores in the mesopores range than OPCC. Review of the literature revealed that the production of geopolymer concrete requires great care and correct material compositions. During the activation process in making the geopolymer, high alkalinity also requires safety risk and enhanced energy consumption and generation of greenhouse gases. Furthermore, the production of GPC is also affected by the curing time and curing temperature. Few studies have also been carried out to observe the effect of curing temperature on the polymerisation reaction of GPC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Myers RJ, Bernal SA, San Nicolas R, Provis JL (2013) Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model. Langmuir 29:5294–5306

    Article  Google Scholar 

  2. Richardson IG (2008) The calcium silicate hydrates. Cem Concr Res 38:137–158

    Article  Google Scholar 

  3. Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A, Macphee DE (2011) Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cem Concr Res 41:923–931

    Article  Google Scholar 

  4. Criado M, Fernández-Jiménez A, Palomo A (2007) Alkali activation of fly ash: effect of the SiO2/Na2O ratio. Part I: FTIR study. Microporous Mesoporous Mater 106:180–191

    Article  Google Scholar 

  5. Criado M et al (2008) Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II: 29Si MAS-NMR survey. Microporous Mesoporous 109:525–534

    Article  Google Scholar 

  6. Puertas F et al (2011) A model for the C-A-S-H gel formed in alkali- activated slag cements. J Eur Ceram Soc 31:2043–2056

    Article  Google Scholar 

  7. van Deventer JS et al (2015) Microstructure and durability of alkali- activated materials as key parameters for standardization. J Sustain Cem Mater 4:116–128

    Google Scholar 

  8. Garboczi EJ (1990) Permeability, diffusivity, and microstructural parameters: a critical review. Cem Concr Res 20:591–601. https://doi.org/10.1016/0008-8846(90)90101-3

    Article  Google Scholar 

  9. Lu S, Landis EN, Keane DT (2006) X-ray microtomographic studies of pore structure and permeability in Portland cement concrete. Mater Struct Constr 39:611–620

    Article  Google Scholar 

  10. Häkkinen T (1993) The influence of slag content on the microstructure, permeability and mechanical properties of concrete Part 1 Microstructural studies and basic mechanical properties. Cem Concr Res 23:407–421

    Article  Google Scholar 

  11. Collins F, Sanjayan JG (2000) Effect of pore size distribution on drying shrinking of alkali-activated slag concrete. Cem Concr Res 30:1401–1406

    Article  Google Scholar 

  12. Häkkinen T (1993) The influence of slag content on the microstructure, permeability and mechanical properties of concrete. Part 2 technical properties and theoretical examinations. Cem Concr Res 23:518–530

    Article  Google Scholar 

  13. Mokhtarzadeh A, French C (2000) Time-dependent properties of high-strength concrete with consideration for precast applications. ACI Mater J 97:263–271

    Google Scholar 

  14. Roy DM, Idorn GM (1982) Hydration, structure, and properties of blast furnace slag cements, mortar, and concrete. J Am Concr Inst 79:444–457

    Google Scholar 

  15. Aligizaki KK (2006) Pore structure of cement-based materials. Taylor & Franics, New York

    Google Scholar 

  16. Beaudoin JJ, Feldman RF, Tumidajski PJ (1994) Pore structure of hardened portland cement pastes and its influence on properties. Adv Cem Based Mater 1:224–236

    Article  Google Scholar 

  17. Jennings HM et al (2008) Characterization and modeling of pores and surfaces in cement paste: Correlations to processing and properties. J Adv Concr Technol 6:5–29

    Article  Google Scholar 

  18. Rößler M, Odler I (1985) Investigations on the relationship between porosity, structure and strength of hydrated portland cement pastes I. Effect of porosity. Cem Concr Res 15:320–330

    Article  Google Scholar 

  19. Shi C (1996) Strength, pore structure and permeability of alkali-activated slag mortars. Cem Concr Res 26:1789–1799

    Article  MathSciNet  Google Scholar 

  20. Aydın S, Baradan B (2012) Mechanical and microstructural properties of heat cured alkali-activated slag mortars. Mater Des 35:374–383

    Article  Google Scholar 

  21. Jambunathan N et al (2013) The role of alumina on performance of alkali-activated slag paste exposed to 50 °C. Cem Concr Res 54:143–150

    Article  Google Scholar 

  22. Collins F, Sanjayan JG (2001) Microcracking and strength development of alkali activated slag concrete. Cem Concr Compos 23:345–352

    Article  Google Scholar 

  23. Brough AR, Atkinson A (2002) Sodium silicate-based, alkali—activated slag mortars: Part I. Strength, hydration and microstructure. Cem Concr Res 32:865–879

    Article  Google Scholar 

  24. San Nicolas R, Provis JL (2015) The interfacial transition zone in alkali-activated slag mortars. Front Mater 2:70

    Article  Google Scholar 

  25. Byfors K et al (1989) Durability of concrete made with alkali activated slag. In: Malhotra VM (ed) 3rd international conference proceedings fly ash, silica fume, slag, and natural pozzolans in concrete. Trondheim, Norway, pp 1429–1466

    Google Scholar 

  26. Douglas E, Bilodeau A, Malhotra VM (1992) Properties and durability of alkali-activated slag concrete. ACI Mater J 89:509–516

    Google Scholar 

  27. Bakharev T, Sanjayan JG, Cheng YB (2002) Sulfate attack on alkali-activated slag concrete. Cem Concr Res 32:211–216

    Article  Google Scholar 

  28. Dellinghausen LM et al (2012) Total shrinkage, oxygen permeability, and chloride ion penetration in concrete made with white Portland cement and blast-furnace slag. Constr Build Mater 37:652–659

    Article  Google Scholar 

  29. Bakharev T, Sanjayan JG, Cheng YB (2003) Resistance of alkali- activated slag concrete to acid attack. Cem Concr Res 33:1607–1611

    Article  Google Scholar 

  30. Wang S-D, Pu X-C, Scrivener KL, Pratt PL (1995) Alkali-activated slag cement and concrete: a review of properties and problems. Adv Cem Res 7:93–102

    Article  Google Scholar 

  31. Roy DM, Jiang W, Silsbee MR (2000) Chloride diffusion in ordinary, blended, and alkali-activated cement pastes and its relation to other properties. Cem Concr Res 30:1879–1884

    Article  Google Scholar 

  32. Bakharev T, Sanjayan JG, Cheng YB (2001) Resistance of alkali-activated slag concrete to carbonation. Cem Concr Res 31:1277–1283

    Article  Google Scholar 

  33. Bernal SA et al (2014) Durability and testing—degradation via mass transport. In: Provis JL, Van Deventer JSJ (eds) Alkali activated materials. Springer, London

    Google Scholar 

  34. Bakharev T, Sanjayan JG, Cheng YB (2001) Resistance of alkali-activated slag concrete to alkali–aggregate reaction. Cem Concr Res 31:331–334

    Article  Google Scholar 

  35. Fernández-Jiménez A, Puertas F (2002) The alkali–silica reaction in alkali-activated granulated slag mortars with reactive aggregate. Cem Concr Res 32:1019–1024

    Article  Google Scholar 

  36. Cheng TW, Chiu JP (2003) Fire-resistant geopolymer produce by granulated blast furnace slag. Miner Eng 16:205–210

    Article  Google Scholar 

  37. Kong DLY, Sanjayan JG (2010) Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem Concr Res 40:334–339

    Article  Google Scholar 

  38. Zhao R, Sanjayan JG (2011) Geopolymer and Portland cement concretes in simulated fire. Mag Concr Res 63:163–173

    Article  Google Scholar 

  39. Pan Z, Sanjayan JG, Kong DLY (2012) Effect of aggregate size on spalling of geopolymer and Portland cement concretes subjected to elevated temperatures. Constr Build Mater 36:365–372

    Article  Google Scholar 

  40. Fu Y, Cai L, Yonggen W (2011) Freeze-thaw cycle test and damage mechanics models of alkali-activated slag concrete. Constr Build Mater 25:3144–3148

    Article  Google Scholar 

  41. Powers TC, Mann H, Copeland LE (1958) The flow of water in hardened-portland cement paste, Highway Research Board Special Report

    Google Scholar 

  42. Olson RA, Neubauer CM, Jennings HM (1997) Damage to the pore structure of hardened portland cement paste by mercury intrusion. J Am Ceram Soc 80:2454–2458

    Article  Google Scholar 

  43. Neithalath N, Sumanasooriya MS, Deo O (2010) Characterizing pore volume, sizes, and connectivity in pervious concretes for permeability prediction. Mater Charact 61:802–813

    Article  Google Scholar 

  44. Hu J, Stroeven P (2005) Size characterisation of pore structure for estimating transport properties of cement paste. Heron 50:41–54

    Google Scholar 

  45. Kondraivendhan B, Divsholi BS, Teng S (2013) Estimation of strength, permeability and hydraulic diffusivity of pozzolana blended concrete through pore size distribution. J Adv Concr Technol 11:230–237

    Article  Google Scholar 

  46. Garci Juenger MC, Jennings HM (2001) The use of nitrogen adsorption to assess the microstructure of cement paste. Cem Concr Res 31:883–892

    Article  Google Scholar 

  47. Feldman RF (1987) Diffusion measurements in cement paste by water replacement using Propan-2-OL. Cem Concr Res 17:602–612

    Article  Google Scholar 

  48. Holly J, Hampton D, Thomas MDA (1993) Modelling relationships between permeability and cement paste pore microstructures. Cem Concr Res 23:1317–1330

    Article  Google Scholar 

  49. Bažant ZP, Najjar LJ (1971) Drying of concrete as a nonlinear diffusion problem. Cem Concr Res 1:461–473

    Article  Google Scholar 

  50. Ulm FJ, Coussy O (1995) Modeling of thermo chemo mechanical couplings of concrete at early ages. J Eng Mech 121:785–794

    Article  Google Scholar 

  51. Xi Y, Bažant ZP, Molina L, Jennings HM (1994) Moisture diffusion in cementitious materials Moisture capacity and diffusivity. Adv Cem Based Mater 1:258–266

    Article  Google Scholar 

  52. Collins FG, Sanjayan JG (1999) Workability and mechanical properties of alkali activated slag concrete. Cem Concr Res 29:455–458

    Article  Google Scholar 

  53. Bažant ZP, Chern JC (1985) Concrete creep at variable humidity: constitutive law and mechanism. Mater Struct 18:1–20

    Article  Google Scholar 

  54. de Sa C, Benboudjema F, Thiery M, Sicard J (2008) Analysis of microcracking induced by differential drying shrinkage. Cem Concr Compos 30:947–956

    Article  Google Scholar 

  55. Bissonnette B, Pierre P, Pigeon M (1999) Influence of key parameters on drying shrinkage of cementitious materials. Cem Concr Res 29:1655–1662

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amer Hassan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hassan, A., Arif, M., Shariq, M. (2020). Influence of Microstructure of Geopolymer Concrete on Its Mechanical Properties—A Review. In: Shukla, S., Barai, S., Mehta, A. (eds) Advances in Sustainable Construction Materials and Geotechnical Engineering. Lecture Notes in Civil Engineering , vol 35. Springer, Singapore. https://doi.org/10.1007/978-981-13-7480-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7480-7_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7479-1

  • Online ISBN: 978-981-13-7480-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics