Skip to main content

Applications and Patents of Bacillus spp. in Agriculture

  • Chapter
  • First Online:
Intellectual Property Issues in Microbiology

Abstract

Biological control using biopesticides has been an environmentally friendly solution in recent years. Bacillus spp. was discovered as a soil bacterium, which has been used as a biopesticide in agriculture, forestry, and mosquito control. Specifically, B. thuringiensis has been widely applied in the control of crops insect pests due to insecticidal proteins produced by the bacterium during sporulation. To fight against the phytopathogens, Bacillus spp. bacteria produce secondary metabolites which have several biological activities that make it possible that bacterium can survive in the natural environment. These developments have amplified the target range of Bacillus spp. in special B. thuringiensis, for better understanding its role in soil ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad AR, Dong H, Lo S, Shi X (2008a) Bacillus thuringiensis toxin with anti-coleopteran activity. WO2008011586

    Google Scholar 

  • Abad A, Dong H, Lo SB, McCutchen BF, Shi X (2008b) Method for identifying novel genes. WO2008011565

    Google Scholar 

  • Abdullah MAF (2012) Use and efficacy of Bt compared to less environmentally safe alternatives. In: Sansinenea E (ed) Bacillus thuringiensis biotechnology. Springer, Dordrecht, pp 19–39

    Google Scholar 

  • Adams LF, Thomas MD, Sloma AP, Widner WR (1995) Formation of and methods for the production of large Bacillus thuringiensis crystals with increased pesticidal activity. WO9502695

    Google Scholar 

  • Arachchilage APW, Wang F, Feyer V, Plekan O, Prince KCJ (2012) Photoelectron spectra and structures of three cyclic dipeptides: PhePhe, TyrPro, and HisGly. Chem Phys 135:1243301–1243301

    Google Scholar 

  • Aroian R, Li X-Q (2007) Methods and compositions for controlling parasitic infections with Bt crystal proteins. WO2007062064

    Google Scholar 

  • Baum J, Donovan J, Donovan W, Engleman JT, Krasomil-Osterfeld K, Pitkin JW, Roberts JK (2006) Insecticidal proteins secreted from Bacillus species and uses therefor. WO2005019414

    Google Scholar 

  • Becker N, Mercatoris P (1999) Ice granules containing endotoxins of Bacillus thuringiensisisraelensis (Bti) or Bacillussphaericus (Bs). EP0948259

    Google Scholar 

  • Bie X, Zhaoxin L, Lu F (2009) Identification of fengycin homologues from Bacillus subtilis with ESI-MS/CID. J Microbiol Methods 79:272–278

    Article  CAS  Google Scholar 

  • Bradfisch G, Thompson M, Schwab G (1992) Hybrid Bacillus thuringiensis gene, plasmid and transformed Pseudomonas fluorescens. US5128130

    Google Scholar 

  • Brar SK, Tyagi VRD, Valéro JR (2006) Recent advances in downstream processes and formulations of Bacillus thuringiensis based biopesticide. Process Biochem 41:323–342

    Article  CAS  Google Scholar 

  • Brookes G, Barfoot P (2008) Global impact of biotech crops: socio-economic and environ-mental effects 1996–2006. AgBioForum 11:21–38

    Google Scholar 

  • Carozzi N, Hargiss T, Koziel M, Duck N, Carr B (2008) Delta-endotoxin genes and methods for their use. EP1947184

    Google Scholar 

  • Carpenter JE (2010) Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nat Biotechnol 28:319–321

    Article  CAS  Google Scholar 

  • Carrillo C, Teruel JA, Aranda FJ, Ortiz A (2003) Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta 1611:91–97

    Article  CAS  Google Scholar 

  • Chaaboni I, Guesmi A, Cherif A (2012) Secondary metabolites of Bacillus: potentials in biotechnology. In: Sansinenea E (ed) Bacillus thuringiensis biotechnology. Springer, Dordrecht, pp 347–366

    Chapter  Google Scholar 

  • Dean DH, Abdullah MA (2005) Modified insecticidal crystal proteins derived from Bacillus thuringiensisδ-endotoxin Cry19Aa and Cry4Ba with enhanced toxicity. US 20050124803 A1 20050609

    Google Scholar 

  • Debeaujon I, Koornneef M (2000) Gibberellin requirement for Arabidopsis seed germination is determined both by test a characteristics and embryonic abscisic acid. Plant Physiol 122:415–424

    Article  CAS  Google Scholar 

  • Deleu M, Paquot M, Nylander T (2008) Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model membranes. Biophys J 94:2679–2667

    Article  Google Scholar 

  • Federici B, Siegel J (2008) Safety assessment of Bacillus thuringiensis and Bt crops used in insect control. In: Hammond BG (ed) Food safety of proteins in agricultural biotechnology. CRC Press, Boca Raton

    Google Scholar 

  • Fernandez MF, Sanchez JV, Garcia JBA, Sanchez AT (2015) A Bacillus subtilis strain deposited under deposit number CECT 8258 and method for protecting or treating plants. EP 2871245 A1

    Google Scholar 

  • Florez AM, Osorio C, Alzate O (2012) Protein engineering of Bacillus thuringiensis δ-endotoxins. In: Sansinenea E (ed) Bacillus thuringiensis biotechnology. Springer, The Netherlands, pp 19–39

    Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  CAS  Google Scholar 

  • George Z, Crickmore N (2012) Bacillus thuringiensis applications in agriculture. In: Sansinenea E (ed) Bacillus thuringiensis biotechnology. Springer, The Netherlands, pp 19–39

    Chapter  Google Scholar 

  • Gilbert P, McBain AJ (2003) Potential impact of increased use of biocides in consumer products on prevalence of antibiotic resistance. Clin Microbiol Rev 16(2):189–208

    Article  CAS  Google Scholar 

  • Gomi K, Matsuoka M (2003) Gibberellin signaling pathway. Curr Opin Plant Biol 6:489–493

    Article  CAS  Google Scholar 

  • Han JS, Cheng JH, Yoon TM, Song J, Rajkarnikar A, Kim WG, Yoo ID, Yang YY, Suh JW (2005) Biological control agent of common scab disease by antagonistic strain Bacillus sp. sunhua. J Appl Microbiol 99:213–221

    Article  CAS  Google Scholar 

  • Handelsman J, Raffel S, Mester EH, Wunderlich L, Grau CR (1990) Biological control of damping-off of alfalfa seedlings with Bacillus cereus UW85. Appl Environ Microbiol 56:713–718

    CAS  PubMed  PubMed Central  Google Scholar 

  • Handelsman J, Nesmith WS, Raffel SJ (1991a) Microassay for biological and chemical control of infection of tobacco by Plrytophthara parasitica var. nicotianae. Curr Microbiol 22:317–319

    Article  Google Scholar 

  • Handelsman J, Halverson LJ, Balandyk PJ (1991b) Fungicidal toxin and method and inoculum for controlling root rot and damping off. US patent 5,049,379

    Google Scholar 

  • Heins SD, Manker DC, Jimenez DR, McCoy RJ, Marrone PG, Orjala JE (2000) Strain of Bacillus for controlling plant diseases and corn rootworm. US006060051A

    Google Scholar 

  • Hinarejos E, Del Val R, Tarancon N, Riquelme E (2014) New strain of Bacillus subtilis for combating plant diseases. EP 2 781 592 A1

    Google Scholar 

  • Hirsch AM, Kaplan D (2016) Plant growth-promoting microorganisms and methods of use thereof. US20160143295 A1

    Google Scholar 

  • Hu LB, Shi ZO, Zhang T, Yang ZM (2007) Fengycin antibiotics isolated from B-FSO1 culture inhibit the growth of Fusarium moniliforme Sheldon ATCC38932. FEMS Microbiol Lett 272:91–98

    Article  CAS  Google Scholar 

  • Kaur S (2007) Deployment of Bt transgenic crops: development of resistance and management strategies in the Indian scenario. Biopest Int 3:23–42

    Google Scholar 

  • Keswani C, Sarma BK, Singh HB (2016a) Synthesis of policy support, quality control and regulatory management of biopesticides in sustainable agriculture. In: Singh HB, Sarma BK, Keswani C (eds) Agriculturally important microorganisms: commercialization and regulatory requirements in Asia. Springer, Singapore, pp 3–122016

    Chapter  Google Scholar 

  • Keswani C, Bisen K, Singh V, Sarma BK, Singh HB (2016b) Formulation technology of biocontrol agents: present status and future prospects. In: Arora NK, Mehnaz S, Balestrini R (eds) Bioformulations: for sustainable agriculture. Springer, New Delhi, pp 35–52

    Google Scholar 

  • Kilian M, Steiner U, Krebs B, Junge H, Schmiedeknecht G, Hain R (2000) FZB24© Bacillus subtilis-mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz Nachr 1:72–93

    Google Scholar 

  • Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Frank P, Vater J, Borriss R (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186:1084–1096

    Article  CAS  Google Scholar 

  • Labuschagne N, Hassen AI, Pretorius T (2015) Plant growth promoting rhizobacterial strains and their uses. WO2015114552 A1

    Google Scholar 

  • Lee Y-J, Lee S-J, Kim SH, Lee SJ, Kim B-C, Lee H-S, Jeong H, Lee D-W (2012) Draft genome sequence of Bacillusendophyticus 2102. J Bacteriol 194:5705–5706

    Article  CAS  Google Scholar 

  • Lehman LJ, McCoy RJ, Messenger BJ, Manker DC, Orjala JE, Lndhard D, Marrone PG (2001) Strain of Bacillus pumilus for controlling plant diseases caused by fungi. US 6245551 B1

    Google Scholar 

  • Leifert C, Epton HAS, Sigee DC (1997) Antibiotics for biological control of post harvest diseases. US 5597565 A

    Google Scholar 

  • Lysyk TJ, Selinger LB, Kalischuk-Tymensen LD, Lancaster RC, Baines DDS (2006) Method for controlling insects of the order diptera using a Bacillus thuringiensis strain. WO2006042404

    Google Scholar 

  • Madonna AJ, Voorhees KJ, Taranenko NI, Laiko VV, Doroshenko VM (2003) Detection of cyclic lipopeptide biomarkers from Bacillus species using atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 75:1628–1637

    Article  CAS  Google Scholar 

  • Maget-Dana R, Peypoux F (1994) Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology 87:151–174

    Article  CAS  Google Scholar 

  • Marrone PG, Heins SD, Manker DC, Jimenez DR, Chilcott CN, Wigley P, Broadwell A (1999) Strain of Bacillus for controlling plant disease. US005919447A

    Google Scholar 

  • Milner JL, Raffel SJ, Lethbridge BJ, Handelsman J (1995) Culture conditions that influence accumulation of zwittermicin A by Bacillus cereus UW85. Appl Microbiol Biotechnol 43:685–691

    Article  CAS  Google Scholar 

  • Moyne AL, Cleveland TE, Tuzun S (2004) Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiol Lett 234:43–49

    Article  CAS  Google Scholar 

  • Narva KE, Payne JM, Schwab GE, Hickle LA, Galasan T, Sick AJ (2007) Novel Bacillus thuringiensis microbes active against nematodes, and genes encoding novel nematode–active toxins cloned from Bacillus thuringiensis isolates. JP2007006895

    Google Scholar 

  • Narva KE, Schnepf HE, Knuth M, Pollard MR, Cardineau GA, Schwab GE, Michaels TE (2008) Genes encoding pesticidal toxins of Bacillus thuringiensis and uses in control of plant pests. US 6127180 A 20001003

    Google Scholar 

  • Nihorimbere V, Cawoy H, Sayer A, Brunelle A, Thonart P, Ongena M (2012) Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiol Ecol 79:176–191

    Article  CAS  Google Scholar 

  • Nishikiori T, Naganawa H, Muraoka Y, Aoyagi T, Umezawa H (1986) Plipastatins: new inhibitors of phospholipase A2, produced by Bacillus cereus BMG302-fF67. II. structure of fatty acid residue and amino acid sequence. J Antibiot 39:745–754

    Article  CAS  Google Scholar 

  • Ongena M, Jacques P, Toure Y, Destain J, Jabrane A, Thonart P (2005) Involvement of fengycin type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biotechnol 69:29–38

    Article  CAS  Google Scholar 

  • Ortiz-Castro R, Díaz-Pérez C, Martínez-Trujillo M, del Río RE, Campos-García J, López-Bucio J (2011) Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants. Proc Natl Acad Sci U S A 108:7253–7258

    Article  CAS  Google Scholar 

  • Pathak KV, Keharia H, Gupta K, Thakur SS, Balaram P (2012) Lipopeptides from banyan endophyte, Bacillus subtilis K1: mass spectrometric characterization of a library of fengycins. J Am Soc Mass Spectrom 10:1716–1728

    Article  Google Scholar 

  • Pecci Y, Rivardo F, Martinotti MG, Allegrone G (2010) LC/ESI-MS/MS characterization of lipopeptide biosurfactants produced by Bacillus licheniformis V9T14 strain. J Mass Spectrom 45:772–778

    Article  CAS  Google Scholar 

  • Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563

    Article  CAS  Google Scholar 

  • Pyoung IK, Ryu J, Kim YH, Chi YT (2010) Production of biosurfactant lipopeptides iturin A, fengycin and surfactin from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Microbiol Biotechnol 20(1):138–145

    Google Scholar 

  • Ramarathnam R, Bo S, Chem Y, Fernando WGD, Xuewen G, de Kievit T (2007) Molecular and biochemical detection of fengycin and bacillomycin D producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Can J Microbiol 53:901–911

    Article  CAS  Google Scholar 

  • Riazuddin S (2000) Novel Bacillus thuringiensis isolates active against sucking insects. EP0983362

    Google Scholar 

  • Romero D, Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers O, Paquot M, Garcia AP (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis towards Podosphaera fusca. Mol Plant-Microbe Interact 118(2):323–327

    Google Scholar 

  • Sanchis V, Bourguet D (2008) Bacillus thuringiensis: applications in agriculture and insect resistance management. A review. Agron Sustain Dev 28:11–20

    Article  Google Scholar 

  • Sansinenea E (2016) Regulatory issues in commercialization of Bacillus thuringiensis- based biopesticides. In: Singh HB et al (eds) Agriculturally important microorganisms. Springer, Singapore, pp 69–80

    Chapter  Google Scholar 

  • Sansinenea E, Ortiz A (2011) Secondary metabolites of soil bacillus spp. Biotechnol Lett 33:1523–1538

    Article  CAS  Google Scholar 

  • Sansinenea E, Ortiz A (2015) Melanin: a photoprotection for Bacillus thuringiensis based biopesticides. Biotechnol Lett 37:483–490

    Article  CAS  Google Scholar 

  • Sansinenea E, Salazar F, Ramirez M, Ortiz A (2015) An ultraviolet tolerant wild-type strain of melanin-producing Bacillus thuringiensis. Jundishapur J Microbiol 8(7):e20910

    PubMed  PubMed Central  Google Scholar 

  • Savich MH, Olson GS, Clark EW (2009) Superabsorbent polymer suspension for use in agriculture. US 20090019905 A1 20090122

    Google Scholar 

  • Schnepf HE (2012) Bacillus thuringiensis recombinant insecticidal protein production. In: Sansinenea E (ed) Bacillus thuringiensis biotechnology. Springer, The Netherlands, pp 19–39

    Google Scholar 

  • Schnepf HE, Stockhoff B, Knuth M (1994) Bacillus thuringiensis toxin enhancer. US 08/340563

    Google Scholar 

  • Shelton AM, Romeis J, Kennedy GG (2008) IPM and insect protected transgenic plants: thoughts for the future. In: Romeis J, Shelton AM, Kennedy GG (eds) Integration of insect-resistant, genetically modified crops within IPM programs. Springer, Dordrecht, pp 419–429

    Chapter  Google Scholar 

  • Silo-Suh LA, Lethbridge BJ, Raffel SJ, He H, Clardy J et al (1994) Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol 60:2023–2030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silo-Suh LA, Stabb EV, Raffel SJ, Handelsman J (1998) Target range of zwittermicin A, an aminopolyol antibiotic from Bacillus cereus. Curr Microbiol 37:6–11

    Article  CAS  Google Scholar 

  • Singh HB, Jha A, Keswani C (eds) (2016a) Intellectual property issues in biotechnology. CABI, Oxfordshire, p 304

    Google Scholar 

  • Singh HB, Sarma BK, Keswani C (eds) (2016b) Agriculturally important microorganisms: commercialization and regulatory requirements in Asia. Springer, Singapore, p 336

    Google Scholar 

  • Singh HB, Sarma BK, Keswani C (eds) (2017) Advances in PGPR research. CABI, Oxfordshire, p 408

    Google Scholar 

  • Smith KP, Havey M, Handelsman (1993) Suppression of cottony leak of cucumber with Bacillus cereus strain UW85. Plant Dis 77:139–142

    Article  Google Scholar 

  • Soberon-Chavez M, Bravo de la Parra A (2007) Novel bacterial proteins with pesticidal activity. WO2007007147

    Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857

    Article  CAS  Google Scholar 

  • Suenaga S, Miyazaki H, Inada M (2001) JP2001010915

    Google Scholar 

  • Sun M, Yu Z, Chen S, Zhang Z, Ruan L, Guo S, Dai J, Li L, Liu Z (2008) Gene Cry7bal encoding an insecticidal crystal protein of Bacillus thuringiensis. EP1937818

    Google Scholar 

  • Tendulkar SR, Saikuman YK, Patel V, Raghotama S, Munshi TK, Balaram P, Chattoo BB (2007) Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. J Appl Microbiol 103:2331–2339

    Article  CAS  Google Scholar 

  • Thompson B, Thompson K, Angle B (2014) Plant growth-promoting bacteria and methods of use. US20140274691 A1

    Google Scholar 

  • Tirado-Montiel ML, Tyagi RD, Valero JR (2001) Wastewater treatment sludge as a raw material for the production of Bacillus thuringiensis based biopesticides. Water Res 35:3807–3816

    Article  Google Scholar 

  • Tudzynski B (2005) Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology. Appl Microbiol Biotechnol 66:597–611

    Article  CAS  Google Scholar 

  • Van RJ, Meulewaeter F, Van EG (2007) Novel genes encoding insecticidal proteins. WO2007107302

    Google Scholar 

  • Wulff EG, Mguni CM, Mansfeld-Giese K, Fels J, Lübeck M, Hockenhull J (2002) Biochemical and molecular characterization of Bacillus amyloliquefaciens, B. subtilis and B. pumilus isolates with distinct antagonistic potential against Xanthomonas campestris pv. campestris. Plant Pathol 51:574–584

    Article  CAS  Google Scholar 

  • Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem 34:955–963

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sansinenea, E. (2019). Applications and Patents of Bacillus spp. in Agriculture. In: Singh, H., Keswani, C., Singh, S. (eds) Intellectual Property Issues in Microbiology. Springer, Singapore. https://doi.org/10.1007/978-981-13-7466-1_8

Download citation

Publish with us

Policies and ethics