Skip to main content

An Innovative Method Through Fungal Engineering for Recycling of CO2 into Biomass

  • Chapter
  • First Online:
Intellectual Property Issues in Microbiology
  • 494 Accesses

Abstract

The current novel method uses vesicular-arbuscular mycorrhiza (VAM) fungi as green technology for controlling global warming. This method relates the usual dual symbiosis in favor of extracting more biomass via putting back CO2 into its original form, i.e., fuel. A trait is provided where a fungus is applied to the soil of plants to activate the process of reduction reaction of CO2 into starch followed by biomass to biofuel. The trait is comprised of fungi Glomus fasciculatum and plant Conocarpus erectus L. under seasonal variation with excessive pressure of CO2. The process narrates the highest photosynthetic activity, consequently creating biomass, which is assimilated into the plant tissues through polymerization of glucose into starch and cellulose. The present investigation revealed that VAM symbiosis induced modification in plants’ structure which results in deep root growth, high stomatal conductance, and high nutrient uptake including P, rapid C, and N metabolism. It was suggested that these modifications in various environmental conditions provide help in plants’ survival, with efficient recycling of CO2 into biomass production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Razzak HS, Moussa AG, El-Fattah MA et al (2013) Fertilizer and their levels in combination with mycorrhizal inoculation. J Biol Sci 13:112–122

    Article  CAS  Google Scholar 

  • Azcón-Aguilar C, Barea JM, Gianinazzi S et al (eds) (2009) Mycorrhizas-functional processes and ecological impact. Springer, Berlin

    Google Scholar 

  • Azmat R (2013a) An important role of carotenoids in protection of photosynthetic apparatus under VAM inoculation on Momordica charantia. Curr Pharm Biotechnol 14:829–834

    Article  CAS  Google Scholar 

  • Azmat R (2013b) Possible benefits of mycorrhizal symbiosis, in reducing CO2 from environment. In: IOP conference series: materials science and engineering. 51(1): 012011 IOP Publishing

    Article  Google Scholar 

  • Azmat R, Hamid N, Moin S (2015a) The effective role of mycorrhizal symbiosis in sinking CO2 from atmosphere of mega cities. Recent Pat Biotechnol 9:63–74

    Article  CAS  Google Scholar 

  • Azmat R, Hamid N, Moin S et al (2015b) Glomus fasciculatum fungi as a bio-convertor and bio-activator of inorganic and organic P in dual symbiosis. Recent Pat Biotechnol 9:130–138

    Article  CAS  Google Scholar 

  • Azmat R, Hamid N, Moin S, Saleem A (2016) An innovative method for conversion of CO2 into biomass to young bio fuel by VAM plant system. IPO patent applicant no. 285\2016

    Google Scholar 

  • Azmat R, Moin S, Saleem A et al (2017) New prospective for enhancement in bioenergy resources through fungal engineering. Recent Pat Biotechnol 12:65–76

    Article  Google Scholar 

  • Bagayoko M, George E, Römheld V et al (2000) Effects of mycorrhizae and phosphorus on growth and nutrient uptake of millet, cowpea and sorghum on a West African soil. J Agric Sci 135:399–407

    Article  Google Scholar 

  • Bago B, Pfeffer PE, Zipfel W et al (2002a) Tracking metabolism and imaging transport in arbuscular mycorrhizal fungi. In: Diversity and integration in mycorrhizas. Springer, Netherlands, pp 189–197

    Chapter  Google Scholar 

  • Bago B, Zipfel W, Williams RM et al (2002b) Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiol 128:108–124

    Article  CAS  Google Scholar 

  • Bago B, Pfeffer PE, Abubaker J et al (2003) Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiol 131:1496–1507

    Article  CAS  Google Scholar 

  • Barea JM, Richardson AE (2015) Phosphate mobilisation by soil microorganisms. In: Principles of plant-microbe interactions. Springer, Cham, pp 225–234

    Google Scholar 

  • Benedetto A, Magurno F, Bonfante P et al (2005) Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae. Mycorrhiza 15(8):620–627

    Article  CAS  Google Scholar 

  • Caglar S, Akgun A (2006) Effects of vesicular- arbuscular mycorrhizal (VAM) fungi on the seedling growth of three Pistacia species. J Environ Biol 27:485–489

    CAS  PubMed  Google Scholar 

  • Cooper KM, Losel DM (1978) Lipid physiology of vesicular-arbuscular mycorrhiza. New Phytol 80:143–151

    Article  CAS  Google Scholar 

  • Cox G, Moran KJ, Sanders F et al (1980) Translocation and transfer of nutrients in vesicular – arbuscular mycorrhizas. III. Polyphosphate granules and phosphorus translocation. New Phytol 84:649–659

    Article  CAS  Google Scholar 

  • Ferrol N, Pérez-Tienda J (2009) Coordinated nutrient exchange in arbuscular mycorrhiza. In: Mycorrhizas-functional processes and ecological impact. Springer, Berlin, pp 73–87

    Chapter  Google Scholar 

  • Gavito ME, Curtis PS, Mikkelsen TN et al (2000) Atmospheric CO2 and mycorrhiza effects on biomass allocation and nutrient uptake of nodulated pea (Pisum sativum L.) plants. J Exp Bot 51:1931–1938

    Article  CAS  Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin H et al (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823

    Article  CAS  Google Scholar 

  • Gupta ML, Prasad A, Ram M et al (2002) Effect of the vesicular–arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions. Bioresour Technol 81:77–79

    Article  CAS  Google Scholar 

  • Hall IR (1998) Potential for exploting vesicular-arbuscular mycorrhizae in agriculture. Adv Biotechnol Process 2:175–202

    Google Scholar 

  • Harrison MJ, van Buuren ML (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626

    Article  CAS  Google Scholar 

  • Heijden MG, Martin FM, Selosse MA et al (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:406–1423

    Google Scholar 

  • Helber N, Wippel K, Sauer N et al (2011) A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. Plant Cell 23:3812–3823

    Article  CAS  Google Scholar 

  • Jorquera MA, Hernández MT, Rengel Z et al (2008) Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biol Fertil Soils 44:1025–1034

    Article  CAS  Google Scholar 

  • Kadian N, Yadav K, Aggarwal A (2013) Significance of bioinoculants in promoting growth, nutrient uptake and yield of Cyamopsis tetragonoloba (L.) “Taub.”. Eur J Soil Biol 58:66–72

    Article  CAS  Google Scholar 

  • Karandashov V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci 10:22–29

    Article  CAS  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y et al (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    Article  CAS  Google Scholar 

  • Kikuchi Y, Hijikata N, Yokoyama K et al (2014) Polyphosphate accumulation is driven by transcriptome alterations that lead to near-synchronous and near-equivalent uptake of inorganic cations in an arbuscular mycorrhizal fungus. New Phytol 204:638–649

    Article  CAS  Google Scholar 

  • Koçar G, Civaş N (2013) An overview of biofuels from energy crops: current status and future prospects. Renew Sust Energ Rev 28:900–916

    Article  Google Scholar 

  • Kucey RMN, Janzen HH (1987) Effects of VAM and reduced nutrient availability on growth and phosphorus and micronutrient uptake of wheat and field beans under greenhouse conditions. Plant Soil 104:71–78

    Article  CAS  Google Scholar 

  • Maldonado-Mendoza IE, Dewbre GR, Harrison MJ (2001) A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Mol Plant-Microbe Interact 14:1140–1148

    Article  CAS  Google Scholar 

  • Mali BL, Shah R, Bhatnagar MK (2009) Effect of VAM fungi on nutrient uptake and plant growth performance of soybean. Indian Phytopathol 62:171–177

    CAS  Google Scholar 

  • Marschner P (2008) The role of rhizosphere microorganisms in relation to P uptake by plants. In: The ecophysiology of plant-phosphorus interactions. Springer, Netherlands, pp 165–176

    Chapter  Google Scholar 

  • Martins A, Casimiro A, Pais MS (1997) Influence of mycorrhization on physiological parameters of micropropagated Castanea sativa mill. plants. Mycorrhiza 7:161–165

    Article  CAS  Google Scholar 

  • Masuta C, Nishimura M, Morishita H et al (1999) A single amino acid change in viral genome-associated protein of potato virus Y correlates with resistance breaking in ‘Virgin A Mutant’ tobacco. Phytopathology 89:118–123

    Article  CAS  Google Scholar 

  • Newman EI, Ritz K (1986) Evidence on the pathways of phosphorus transfer between vesicular–arbuscular mycorrhizal plants. New Phytol 104:77–87

    Article  CAS  Google Scholar 

  • Olsson PA, Bååth E, Jakobsen I et al (1995) The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycol Res 99:623–629

    Article  CAS  Google Scholar 

  • Peterson RL, Piche Y, Plenchette C (1984) Mycorrhizae and their potential use in the agricultural and forestry industries. Biotechnol Adv 2:101–120

    Article  CAS  Google Scholar 

  • Pfeffer PE, Douds DD, Bécard G et al (1999) Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiol 120:587–598

    Article  CAS  Google Scholar 

  • Ravikumar R, Ananthakrishnan G, Appasamy T et al (1997) Effect of endomycorrhizae (VAM) on bamboo seedling growth and biomass productivity. Ecol Manag 98:205–208

    Article  Google Scholar 

  • Richardson AE (2007) Making microorganisms mobilize soil phosphorus. In: First international meeting on microbial phosphate solubilization. Springer, Netherlands, pp 85–90

    Chapter  Google Scholar 

  • Sancholle M, Dalpé Y, Grandmougin-Ferjani A (2001) Lipids of mycorrhizae. In: Fungal associations. Springer, Berlin, pp 63–93

    Chapter  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    Article  CAS  Google Scholar 

  • Schrama M, Vandecasteele B, Carvalho S et al (2016) Effects of first- and second-generation bioenergy crops on soil processes and legacy effects on a subsequent crop. GCB Bioenergy 8:136–147

    Article  CAS  Google Scholar 

  • Schweiger R, Müller C (2015) Leaf metabolome in arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 26:120–126

    Article  CAS  Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  Google Scholar 

  • Stumpe M, Carsjens JG, Stenzel I et al (2005) Lipid metabolism in arbuscular mycorrhizal roots of Medicago truncatula. Phytochemistry 66:781–791

    Article  CAS  Google Scholar 

  • Subramanian KS, Charest C (1995) Influence of arbuscular mycorrhizae on the metabolism of maize under drought stress. Mycorrhiza 5:273–278

    Article  Google Scholar 

  • Subramanian KS, Santhanakrishnan P, Balasubramanian P (2006) Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Sci Hortic 107:245–253

    Article  Google Scholar 

  • Tauler M, Baraza E (2015) Improving the acclimatization and establishment of Arundo donax L. plantlets, a promising energy crop, using a mycorrhiza-based biofertilizer. Ind Crop Prod 66:299–304

    Article  Google Scholar 

  • Tauschke M, Behrendt A, Monk J et al (2008) Improving the water use efficiency of crop plants by application of mycorrhizal fungi. Moving farm systems to improved nutrient attenuation; Currie, L., Burkitt, KL 1–8

    Google Scholar 

  • Van Aarle IM, Olsson PA (2003) Fungal lipid accumulation and development of mycelial structures by two arbuscular mycorrhizal fungi. Appl Environ Microbiol 69:6762–6767

    Article  Google Scholar 

  • Velázquez E, Rodriguez-Barrueco C (eds) (2007) First international meeting on microbial phosphate solubilization, vol 102. Springer Science & Business Media, Netherlands

    Google Scholar 

  • Wang L, Littlewood J, Murphy RJ (2013) Environmental sustainability of bioethanol production from wheat straw in the UK. Renew Sust Energ Rev 28:715–725

    Article  CAS  Google Scholar 

  • White PJ, Hammond J (eds) (2008) The ecophysiology of plant-phosphorus interactions. Springer, Dordrecht, pp 51–81

    Google Scholar 

  • Willmann M, Gerlach N, Buer B et al (2013) Mycorrhizal phosphate uptake pathway in maize: vital for growth and cob development on nutrient poor agricultural and greenhouse soils. Front Plant Sci 4:533

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafia Azmat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azmat, R., Moin, S. (2019). An Innovative Method Through Fungal Engineering for Recycling of CO2 into Biomass. In: Singh, H., Keswani, C., Singh, S. (eds) Intellectual Property Issues in Microbiology. Springer, Singapore. https://doi.org/10.1007/978-981-13-7466-1_13

Download citation

Publish with us

Policies and ethics