Skip to main content

Polychlorinated Biphenyls (PCBs): Environmental Fate, Challenges and Bioremediation

  • Chapter
  • First Online:
Book cover Microbial Metabolism of Xenobiotic Compounds

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 10))

Abstract

Synthetic chlorinated organic compounds—polychlorinated biphenyls (PCBs)—have been used in several industrial applications for over 50 years and are among the most persistent classes of xenobiotic pollutants. PCBs remain in the environment for a long period due to their low reactivity and stability in harsh environmental conditions. Samples of PCBs can be analysed using chromatographic methods (gas or liquid) coupled with mass spectrometry after various pre-treatment and extraction methods. Hydrophobicity and a chemically stable nature cause them to break down very slowly under natural conditions. Catabolism by microbial enzymes is an efficient route for environmental biodegradation of PCBs, but as chlorination substitution in the biphenyl ring increases, the microbial degradation rate decreases. Different types of microbes are reported to degrade PCBs under anaerobic and/or aerobic conditions by reducing and oxidizing dechlorination mechanisms, respectively. Four main enzymes are reported for the biodegradation pathway of PCBs: biphenyl dioxygenase (bphA), dihydrodiol dehydrogenase (bphB), 2,3-dihydroxybiphenyl dioxygenase (bphC) and 2-hydroxyl-6-oxo-6-phenylhexa-2,4-dienoic acid hydrolase (bphD). Different types of bacteria are reported to successfully degrade PCBs, but only a few fungi are possible degraders in the absence of alternative carbon sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramowicz, D. A. (1990). Aerobic and anaerobic biodegradation of PCBs: A review. Critical Reviews in Biotechnology, 10, 241–251.

    CAS  Google Scholar 

  • Abramowicz, D. A. (1995). Aerobic and anaerobic PCB biodegradation in the environment. Environmental Health Perspectives, 103, 97–99.

    CAS  Google Scholar 

  • Abramowicz, D. A., & Olson, D. R. (1995). Accelerated biodegradation of PCBs. ChemTech, 25, 36–41.

    CAS  Google Scholar 

  • Adrian, L., Dudkova, V., Demnerova, K., & Bedard, D. L. (2009). “Dehalococcoides” sp. strain CBDB1 extensively dechlorinates the commercial polychlorinated biphenyl mixture Aroclor 1260. Applied and Environmental Microbiology, 75, 4516–4524.

    CAS  Google Scholar 

  • Ahmed, F. E. (2003). Analysis of polychlorinated biphenyls in food products. TrAC Trends in Analytical Chemistry, 22, 170–185.

    CAS  Google Scholar 

  • Ahmed, M., & Focht, D. D. (1973). Degradation of polychlorinated biphenyls by two species of Achromobacter. Canadian Journal of Microbiology, 19, 47–52.

    CAS  Google Scholar 

  • Aken, B. V., Correa, P. A., & Schnoor, J. L. (2009). Phytoremediation of polychlorinated biphenyls: New trends and promises. Environmental Science & Technology, 44, 2767–2776.

    Google Scholar 

  • Arnett, C. M., Parales, J. V., & Haddock, J. D. (2000). Influence of chlorine substituents on the rates of oxidation of chlorinated biphenyls by the biphenyl dioxygenase of Burkholderia sp. strain LB400. Applied and Environmental Microbiology, 66, 2928–2933.

    CAS  Google Scholar 

  • Ballschmiter, K., & Zell, M. (1980). Analysis of polychlorinated biphenyls (PCB) by glass capillary gas chromatography. Fresenius Zeitung der Analytische Chemie, 302, 20–31.

    CAS  Google Scholar 

  • Barker, S. A. (2007). Matrix solid phase dispersion (MSPD). Journal of Biochemical and Biophysical Methods, 70, 151–162.

    CAS  Google Scholar 

  • Barska, I., Guz-Ryczyńska, W., Skrzyński, I., Szlinder-Richert, J., Usydus, Z., Bykowski, P., Hove, H., Heggstad, K., & Bjordal, A. (2005). Non-ortho Polychlorinated biphenyls in Baltic fish in the 1999–2003 period. Bulletin of the Sea Fisheries Institute, 1, 164.

    Google Scholar 

  • Bedard, D. L., Unterman, R., Bopp, L. H., Brennan, M. J., Haberl, M. L., & Johnson, C. (1986). Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls. Applied and Environmental Microbiology, 51, 761–768.

    CAS  Google Scholar 

  • Bedard, D. L., Haberl, M. L., May, R. J., & Brennan, J. (1987). Evidence for novel mechanisms of polyclorinated biphenyl metabolism in Alcaligeneseutrophus H850. Applied and Environmental Microbiology, 53, 1103–1112.

    CAS  Google Scholar 

  • Bedard, D. L., Bailey, J. J., Reiss, B. L., & Jerzak, G. V. S. (2006). Development and characterization of stable sediment-free anaerobic bacterial enrichment cultures that dechlorinate Aroclor 1260. Applied and Environmental Microbiology, 72, 2460–2470.

    CAS  Google Scholar 

  • Berkaw, M., Sowers, K. R., & May, H. D. (1996). Anaerobic orthodechlorination of polychlorinated biphenyls by estuarine sediments from Baltimore Harbor. Applied and Environmental Microbiology, 62, 2534–2539.

    CAS  Google Scholar 

  • Beurskens, J. E. M., & Stortelder, P. B. M. (1995). Microbial transformation of PCBs in sediments: What can we learn to solve practical problems? Water Science and Technology, 31, 99–107.

    CAS  Google Scholar 

  • Billingsley, K. A., Backus, S. M., Juneson, C., & Ward, P. (1997). Comparison of the degradation patterns of polychlorinated biphenyl congeners in Aroclors by a Pseudomonas sp. LB400 after growth on various carbon sources. Canadian Journal of Microbiology, 43, 1172–1179.

    CAS  Google Scholar 

  • Bjoërklund, E., Holst, C., & Anklam, E. (2002). Fast extraction, clean-up and detection methods for the rapid analysis and screening of seven indicator PCBs in food matrices. Trends in Analytical Chemistry, 21, 40–53.

    Google Scholar 

  • Borja, J., Marie-Teleon, D., Auresenia, J., & Gallardo, S. (2005). Polychlorinated biphenyls and their biodegradation. Process Biochemistry, 40, 1999–2013.

    CAS  Google Scholar 

  • Boyle, A. W., Silvin, C. J., Hassett, J. P., Nakas, J. P., & Tanenbaum, S. W. (1992). Bacterial PCB biodegradation. Biodegradation, 3, 285–298.

    CAS  Google Scholar 

  • Cao, Y. M., Xu, L., & Jia, L. Y. (2011). Analysis of PCBs degradation abilities of biphenyl dioxygenase derived from Enterobacter sp. LY402 by molecular simulation. New Biotechnology, 29, 90–98.

    CAS  Google Scholar 

  • Chaudhry, G. R., & Chapalamadugu, S. (1991). Biodegradation of halogenated organic compounds. Microbiological Reviews, 55, 59–79.

    CAS  Google Scholar 

  • Chen, R., & Pignatello, J. (1997). Role of quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidations of aromatic compounds. Environmental Science & Technology, 31, 2399–2406.

    CAS  Google Scholar 

  • Clark, R. R., Chian, E. S. K., & Griffin, R. A. (1979). Degradation of polychlorinated biphenyls by mixed microbial cultures. Applied and Environmental Microbiology, 37, 680–685.

    CAS  Google Scholar 

  • Cohen, B. S. (2010). An assessment of historical PCB contamination in Arctic mammals. ENVI Independent Study. Williams College USA. Fall 2009–Winter 2010.

    Google Scholar 

  • Cranor, W. L., Perkins, S. D., Clark, R. C., & Tegerdine, G. A. (2005). Analysis of SPMD samples from the October/November 2004 deployment in Lake Anna, VA for PCBs as bioavailable organic contaminants. The Columbia Environmental Research Center, 27, 43.

    Google Scholar 

  • Criado, M. R., Pereiro, I. R., & Torrijos, R. C. (2003). Optimization of a microwave-assisted extraction method for the analysis of polychlorinated biphenyls in ash samples. Journal of Chromatography A, 985, 137–145.

    Google Scholar 

  • De, J., Ramaiah, N., & Sarkar, A. (2006). Aerobic degradation of highly chlorinated polychlorobiphenyls by a marine bacterium, Pseudomonas CH07. World Journal of Microbiology and Biotechnology, 22, 1321–1327.

    CAS  Google Scholar 

  • Devrukhkar, S., Kothare, A., Kochar, D., & Surti, A. (2017). Aerobic degradation of Aroclor 1242 by Pseudomonas mendocina strain CL-10.4. International Journal of Advanced Research and Development, 2, 128–132.

    Google Scholar 

  • Dietrich, D., Hickey, W. J., & Lamar, R. (1995). Degradation of 4,49-dichlorobiphenyl, 3,39,4,49-tetrachlorobiphenyl, and 2,29,4,49,5,59-hexachlorobiphenyl by the White Rot fungus Phanerochaetechrysosporium. Applied and Environmental Microbiology, 61, 3904–3909.

    CAS  Google Scholar 

  • Dingyi, Y., Quensen, J. F., III, Tiedje, J. M., & Boyd, S. A. (1995). Evidence for para dechlorination of polychlorobiphenyls by methanogenic bacteria. Applied and Environmental Microbiology, 61, 2166–2171.

    Google Scholar 

  • Dobbins, D. C. (1995). Biodegradation of pollutants. In Encyclopaedia of environmental biology (Vol. 1). New Delhi: Academic.

    Google Scholar 

  • Dolfing, J. (1990). Reductive dechlorination of 3-chlorobenzoate is coupled to ATP production and growth in an anaerobic bacterium strain DCB-1. Archives of Microbiology, 153, 264–266.

    CAS  Google Scholar 

  • Dolfing, J., & Tiedje, T. M. (1987). Growth yield increase linked to reductive dechlorination in a defined 3-chlorobenzoate degrading methanogeniccoculture. Archives of Microbiology, 149, 102–105.

    CAS  Google Scholar 

  • Evans, B. S., Dudley, C. A., & Klasson, K. T. (1996). Sequential anaerobic-aerobic biodegradation of PCBs in soil slurry microcosms. Applied Biochemistry and Biotechnology, 57(8), 885–894.

    Google Scholar 

  • Fava, F., Gentilucci, S., & Zanaroli, G. (2003). Anaerobic biodegradation of weathered polychlorinated biphenyls (PCBs) in contaminated sediments of Porto Marghera (Venice Lagoon, Italy). Chemosphere, 53, 101–109.

    CAS  Google Scholar 

  • Fennell, D. E., Nijenhuis, I., Wilson, S. F., Zinder, S. H., & Häggblom, M. M. (2004). Dehalococcoidesethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Environmental Science & Technology, 38, 2075–2081.

    CAS  Google Scholar 

  • Fiedler, H. (2007). National PCDD/PCDF release inventories under the Stockholm convention on persistent organic pollutants. Chemosphere, 67, S96–S108.

    CAS  Google Scholar 

  • Field, J. A., & Sierra-Alvarez, R. (2008). Microbial transformation and degradation of poly-chlorinated biphenyls. Environmental Pollution, 155, 1–12.

    CAS  Google Scholar 

  • Flanagan, W. P., & May, R. J. (1993). Metabolite detection as evidence for naturally occurring aerobic PCB biodegradation in Hudson River sediments. Environmental Science & Technology, 27, 2207–2212.

    CAS  Google Scholar 

  • Fukuda, M. (1993). Diversity of chloroaromaticoxygenases. Current Opinion in Biotechnology, 4, 339–343.

    CAS  Google Scholar 

  • Furukawa, K. (1982). Microbial degradation of polychlorinated biphenyls. In A. M. Chakrabarty (Ed.), Biodegradation and detoxification of environmental pollutants (pp. 33–57). Boca Raton: CRC Press.

    Google Scholar 

  • Furukawa, K., & Chakrabarty, A. M. (1982). Involvement of plasmids in total degradation of chlorinated biphenyls. Applied and Environmental Microbiology, 44, 619–626.

    CAS  Google Scholar 

  • Furukawa, K., & Matsumura, F. (1976). Microbial metabolism of polychlorinated biphenyls. Studies on the relative degradability of polychlorinated biphenyl components by Alcaligenes sp. Journal of Agricultural and Food Chemistry, 42, 543–548.

    Google Scholar 

  • Furukawa, K., & Miyazaki, T. (1986). Cloning of a gene cluster encoding biphenyl and chlorobiphenyl degradation in Pseudomonas pseudoalcaligenes. Journal of Bacteriology, 166, 392–398.

    CAS  Google Scholar 

  • Furukawa, K., Tomizuka, N., & Kamibayashi, A. (1979). Effect of chlorine substitution on the bacterial metabolism of various polychlorinated biphenyls. Applied and Environmental Microbiology, 38, 301–310.

    CAS  Google Scholar 

  • Halfadji, A., Touabet, & Yacine, A. (2003). Comparison of soxhlet extraction, microwave-assisted extraction and ultrasonic extraction for the determination of PCB’s congeners in spiked soils by transformer oil (ASKAREL). International Journal of Advances in Engineering & Technology, 5, 63–75.

    Google Scholar 

  • Hofer, B., Backhaus, S., & Timmis, K. N. (1994). The biphenyl/polychlorinated Pseudomonas sp. LB400 encodes four additional metabolic enzymes. Gene, 144, 9–16.

    CAS  Google Scholar 

  • Hou, L. H., & Dutta, S. K. (2000). Phylogenetic characterization of several para- and meta-PCB dechlorinating Clostridium species: 16S rDNA sequence analyses. Letters in Applied Microbiology, 30, 238–243.

    CAS  Google Scholar 

  • Hülsmeyer, M., Hecht, H.-J., Niefind, K., Schomburg, D., Hofer, B., Timmis, K. N., & Eltis, L. D. (1998). Crystal structure of cis-biphenyl-2,3-dihydrodiol-2,3-dehydrogenase from a PCB degrader at 2.0 Å resolution. Protein Science, 7, 1286–1293.

    Google Scholar 

  • Ju, Q., Zouboulis, C. C., & Xia, L. (2009). Environmental pollution and acne: Chloracne. Dermato-endocrinology, 1, 125–128.

    CAS  Google Scholar 

  • Kamei, I., Kogura, R., & Kondo, R. (2006). Metabolism of 4,4′-dichlorobiphenylby white-rot fungi Phanerochaetechrysosporium and Phanerochaete sp. MZ42. Applied Microbiology and Biotechnology, 72, 566–575.

    CAS  Google Scholar 

  • Kim, J., & Rhee, G. Y. (1997). Population dynamics of polychlorinated biphenyl-dechlorinating microorganisms in contaminated sediments. Applied and Environmental Microbiology, 63, 1771–1776.

    CAS  Google Scholar 

  • Kimbara, K., Hashimoto, T., Fukuda, M., Koana, T., Takagi, M., Oishi, M., & Yano, K. (1988). Isolation and characterization of a mixed culture that degrades polychlorinated biphenyls. Agricultural and Biological Chemistry, 52, 2885–2891.

    CAS  Google Scholar 

  • Krcmár, P., Kubatova, A., Votruba, J., Erbanova, P., Novotny, C., & Sasek, V. (1999). Degradation of polychlorinated biphenyls by extracellular enzymes of Phanerochaetechrysosporium produced in a perforated plate bioreactor. World Journal of Microbiology and Biotechnology, 15, 269–276.

    Google Scholar 

  • Kubatova, A., Erbanova, P., Eichlerova, I., Homolka, L., Nerud, F., & Sasek, V. (2001). PCB congener selective biodegradation by the white rot fungus Pleurotusostreatus in contaminated soil. Chemosphere, 43, 207–215.

    CAS  Google Scholar 

  • Kusch, P. (2018). Headspace solid-phase microextraction coupled with gas chromatography–Mass spectrometry for the characterization of polymeric materials. LCGC North America, 36, 52–61.

    CAS  Google Scholar 

  • Lang, V. (1992). Polychlorinated biphenyls in the environment. Journal of Chromatography, 595, 1–43.

    CAS  Google Scholar 

  • Larsson, P. (1987). Uptake of polychlorinated biphenyls (PCBs) by the macroalga, Cladophoraglomerata. Bulletin of Environmental Contamination and Toxicology, 38, 58–62.

    CAS  Google Scholar 

  • Llompart, M., Li, K., & Fingas, M. (1998). Solid-phase microextraction and headspace solid-phase microextraction for the determination of polychlorinated biphenyls in water samples. Analytical Chemistry, 70, 2510–2515.

    CAS  Google Scholar 

  • Mancera-Lopez, M., Esparza-Garcia, F., Chavez-Gomez, B., Rodriguez-Vazquez, R., Saucedo-Castaneda, G., & Barrera-Cortes, J. (2008). Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation-bioaugmentation with filamentous fungi. International Biodeterioration & Biodegradation, 61, 151–160.

    CAS  Google Scholar 

  • Masai, E., Yamada, A., Healy, J. M., Hatta, T., Kimbara, K., Fukuda, M., & Yano, K. (1995). Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. Applied and Environmental Microbiology, 61, 2079–2085.

    CAS  Google Scholar 

  • Matturro, B., Di Lenola, M., Ubaldi, C., & Rossetti, S. (2016). First evidence on the occurrence and dynamics of Dehalococcoidesmccartyi PCB-dechlorinase genes in marine sediment during Aroclor 1254 reductive dechlorination. Marine Pollution Bulletin, 112, 189–194.

    CAS  Google Scholar 

  • McEldowney, S., Hardman, D. J., & Wait, S. (1993). Pollution: Ecology and biotreatment. New York: Longman Scientific and Technical.

    Google Scholar 

  • McKay, D. B., Seeger, M., Zielinski, M., Hofer, B., & Timmis, K. N. (1997). Heterologous expression of biphenyl dioxygenase-encoding genes from a gram-positive broad-spectrum polychlorinated biphenyl degrader and characterization of chlorobiphenyl oxidation by the gene products. Journal of Bacteriology, 179, 1924–1930.

    CAS  Google Scholar 

  • Mckay, D. B., Prucha, M., Reineke, W., Timmis, K. N., & Pieper, D. H. (2003). Substrate specificity and expression of three 2, 3-dihydroxybiphenyl 1, 2-dioxygenases from Rhodococcusgloberulus Strain P6. Journal of Bacteriology, 185, 2944–2951.

    CAS  Google Scholar 

  • Miyata, H., Kashimoto, T., & Kunita, N. (1977). Detection and determination of polychlorinated dibenzofurans in normal human tissues and Kanemi rice oils caused “KanemiYusho” (in Japanese). Journal of the Food Hygienic Society of Japan, 19, 260.

    Google Scholar 

  • Mohn, W. W., & Tiedje, J. M. (1990). Catabolic thiosulfate disproportionation and carbon dioxide reduction in strain DCB-1, a reductively dechlorinating anaerobe. Journal of Bacteriology, 172, 2065–2070.

    CAS  Google Scholar 

  • Mohn, W. W., & Tiedje, J. M. (1991). Evidence for chemiosmotic coupling of reductive dechlorination and ATP synthesis in Desulfomoniletiedjei. Archives of Microbiology, 1991, 1–8.

    Google Scholar 

  • Muir, D., & Sverko, E. (2006). Analytical methods for PCBs and organochlorine pesticides in environmental monitoring and surveillance: A critical appraisal. Analytical and Bioanalytical Chemistry, 386, 769–789.

    CAS  Google Scholar 

  • Mukerjee-Dhar, G., Hatta, T., Shimura, M., & Kimbara, K. (1998). Analysis of changes in congener selectivity during PCB degradation by Burkholderia sp. strain TSN101 with increasing concentrations of PCB and characterization of the bph BCD genes and gene products. Archives of Microbiology, 169, 61–70.

    CAS  Google Scholar 

  • Murínová, S., Dercová, K., & Sová, H. D. (2014). Degradation of polychlorinated biphenyls (PCBs) by four bacterial isolates obtained from the PCB-contaminated soil and PCB-contaminated sediment. International Biodeterioration & Biodegradation, 91, 52–59.

    Google Scholar 

  • Namiesnik, J., & Szefer, P. (2009). Analytical measurements in aquatic environments. Boca Raton: CRC Press.

    Google Scholar 

  • Natarajan, M. R., Wu, W., Wang, H., Bhatnagar, L., & Jain, M. K. (1999). Dechlorination of spiked PCBs in lake sediment by anaerobic microbial granules. Water Research, 32, 3013–3020.

    Google Scholar 

  • National Research Council. (2001). A risk-management strategy for PCB-contaminated sediments. Washington, DC: National Academic Press.

    Google Scholar 

  • Nies, L., & Vogel, T. M. (1990). Effects of organic substrates on dechlorination of Aroclor 1242 in anaerobic sediments. Applied and Environmental Microbiology, 56, 2612–2617.

    CAS  Google Scholar 

  • Nies, L., & Vogel, T. M. (1991). Identification of the proton source for the microbial reductive dechlorination of 2,3,4,5,6-pentachlorobiphenyl. Applied and Environmental Microbiology, 57, 2771–2774.

    CAS  Google Scholar 

  • Novotny, C., Vyas, B. R. M., Erbanova, P., Kubatova, A., & Sasek, V. (1997). Removal of PCBs by various white rot fungi in liquid cultures. Folia Microbiologica, 42, 136–140.

    CAS  Google Scholar 

  • Pieper, D. H. (2005). Aerobic degradation of polychlorinated biphenyls. Applied Microbiology and Biotechnology, 67, 170–191.

    CAS  Google Scholar 

  • Quensen, J. F., III, Boyd, S. A., & Tiedje, J. M. (1990). Dechlorination of four commercial polychlorinated biphenyl mixtures (Aroclors) by anaerobic microorganisms from sediments. Applied and Environmental Microbiology, 56, 2360–2369.

    CAS  Google Scholar 

  • Rabinovich, M. L., Bolobova, A. V., & Vasil’chenko, L. G. (2004). Fungal decomposition of natural aromatic structures and xenobiotics: A review. Applied Biochemistry and Microbiology, 40, 1–17.

    CAS  Google Scholar 

  • Rejczak, T., & Tuzimski, T. (2015). A review of recent developments and trends in the QuEChERS sample preparation approach. Open Chemistry, 13, 980–1010.

    Google Scholar 

  • Rhee, G.-Y., Sokol, R. C., Bush, B., & Bethoney, C. M. (1993). Long-term study of the anaerobic dechlorination of Aroclor 1254 with and without biphenyl enrichment. Environmental Science & Technology, 27, 714–719.

    CAS  Google Scholar 

  • Riaz, M., & Zamorani, E. (1988). Analytical procedure for SPE of PCBs from water. European Application Research Report EUR 11886 EN, Commission of the European Communities, Luxembourg.

    Google Scholar 

  • Ruiz-Aguilar, G. M. L., Fernandez-Sanchez, J. M., Rodriguez-Vazquez, R., & Poggi-Varaldo, H. (2002). Degradation by white-rot fungi of high concentrations of PCB extracted from a contaminated soil. Advances in Environmental Research, 6, 559–568.

    Google Scholar 

  • Sakai, M., Masai, E., Asami, H., Sugiyama, K., Kimbara, K., & Fukuda, M. (2002). Diversity of 2,3-dihydroxybiphenyl dioxygenase genes in a strong PCB degrader, Rhodococcus sp. strain RHA1. Journal of Bioscience and Bioengineering, 93, 421–427.

    CAS  Google Scholar 

  • Sánchez-Rojas, F., Bosch-Ojeda, C., & Cano-Pavón, J. M. (2009). A review of stir bar sorptive extraction. Chromatographia, 69, 79–94.

    Google Scholar 

  • Schmidt, H., & Schultz, G. (1881). Einwirkung von Fiinffach Chlorphosphor auf das y- diphenol. Annali di Chimica, 207, 338–344.

    Google Scholar 

  • Seeger, M., Timmis, K. N., & Hofer, B. (1995). Conversion of chlorobiphenyls into phenylhexadienoates and benzoates by the enzymes of the upper pathway for polychlorobiphenyl degradation encoded by the bph locus of Pseudomonas sp. strain LB400. Applied and Environmental Microbiology, 61, 2654–2658.

    CAS  Google Scholar 

  • Seeger, M., Timmins, K. N., & Hofer, B. (1997). Bacterial pathways for the degradation of polychlorinated biphenyls. Marine Chemistry, 58, 327–333.

    CAS  Google Scholar 

  • Seto, M., Kimbara, K., Shimura, M., Hatta, T., Fukuda, M., & Yano, K. (1995). A novel transformation of polychlorinated biphenyls by Rhodococcus sp. strain RHA1. Applied and Environmental Microbiology, 61, 3353–3358.

    CAS  Google Scholar 

  • Seto, M., Nishibori, K., Masai, E., Fukuda, M., & Ohdaira, Y. (1999). Degradation of polychlorinated biphenyls by a ‘Maitake’ mushroom, Grifolafrondosa. Biotechnology Letters, 21, 27–31.

    CAS  Google Scholar 

  • Sietmann, R., Gesell, M., Hammer, E., & Schauer, F. (2006). Oxidative ring cleavage of low chlorinated biphenyl derivatives by fungi leads to the formation of chlorinated lactone derivatives. Chemosphere, 64, 672–685.

    CAS  Google Scholar 

  • Silva, D. J., Pietri, F. V., Ermirio, J., Moraes, F., Bazito, R. C., & Pereira, C. G. (2012). Treatment of materials contaminated with Polychlorinated Biphenyls (PCBs): Comparison of traditional method and supercritical fluid extraction. American Journal of Analytical Chemistry, 3, 891–898.

    Google Scholar 

  • Singh, H. (2006). Mycoremediation: Fungal bioremediation. Hoboken: Wiley.

    Google Scholar 

  • Stellaa, T., Covinoa, S., Carová, M. C., Filipová, A., Petruccioli, M., D’Annibale, A., & Cajthamla, T. (2017). Bioremediation of long-term PCB-contaminated soil by white-rot fungi. Journal of Hazardous Materials, 324, 701–710.

    Google Scholar 

  • Taguchi, K., Motoyama, M., & Kudo, T. (2001). PCB/biphenyl degradation gene cluster in Rhodococcusrhodochrous K37, is different from the well-known bph gene clusters in Rhodococcus sp. P6, RHA1, and TA421. Riken Review, 42, 23–26.

    CAS  Google Scholar 

  • Takagi, S., Shirota, C., Sakaguchi, K., Suzukia, J., Suea, T., Nagasakac, H., Hisamatsua, S., & Sonokia, S. (2007). Exoenzymes of Trametesversicolor can metabolize coplanar PCB congeners and hydroxy PCB. Chemosphere, 67, S54–S57.

    CAS  Google Scholar 

  • Tan, G. H., & Chai, M. K. (2011). Sample preparation in the analysis of pesticides residue in food by chromatographic techniques. In M. Stoytcheva (Ed.), Pesticides – strategies for pesticides analysis. Rijeka: InTech.

    Google Scholar 

  • The Stockholm Convention on Persistent Organic Pollutants (POPs). (2010). United Nations Environment Programme (UNEP). http://www.pops.int

  • Tiedje, J. M., Quensen, J. F., III, Chee-Sanford, J., Schimel, J. P., & Boyd, S. A. (1993). Microbial reductive dechlorination of PCBs. Biodegradation, 4, 231–240.

    CAS  Google Scholar 

  • Tu, C., Teng, Y., Luo, Y., Li, X., Sun, X., Li, Z., Liu, W., & Christie, P. (2011). Potential for biodegradation of polychlorinated biphenyls (PCBs) by Sinorhizobiummeliloti. Journal of Hazardous Materials, 186, 1438–1444.

    CAS  Google Scholar 

  • Urbaniak, M. (2013). Chapter 4: Biodegradation of PCDDs/PCDFs and PCBs. In Biodegradation – Engineering and technology (pp. 73–100). Rijeka: InTech.

    Google Scholar 

  • Van Dort, H. M., & Bedard, D. L. (1991). Reductive ortho and meta-dechlorination of a polychlorinated biphenyl congener by anaerobic microorganisms. Applied and Environmental Microbiology, 57, 1576–1578.

    Google Scholar 

  • Vasilyeva, G., & Strijakova, E. (2007). Bioremediation of soils and sediments contaminated by polychlorinated biphenyls. Microbiology, 76, 639–653.

    CAS  Google Scholar 

  • Verdin, A., Sahraoui, A. L. H., & Durand, R. (2004). Degradation of benzo[a]pyrene by mitosporic fungi and extracellular oxidative enzymes. International Biodeterioration & Biodegradation, 53, 65–70.

    CAS  Google Scholar 

  • Williams, W. A. (1994). Microbial reductive dechlorination of trichlorobiphenyls in anaerobic sediment slurries. Environmental Science & Technology, 28, 630–635.

    CAS  Google Scholar 

  • Wu, Q., & Wiegel, J. (1997). Two anaerobic polychlorinated biphenyl-dehalogenating enrichments that exhibit different para-dechlorination specificities. Applied and Environmental Microbiology, 63, 4826–4832.

    CAS  Google Scholar 

  • Wu, Q., Sowers, K. R., & May, H. D. (1998). Microbial reductive dechlorination of aroclor 1260 in anaerobic slurries of estuarine sediments. Applied and Environmental Microbiology, 64, 1052–1058.

    CAS  Google Scholar 

  • Yadav, J. S., Quensen, J. F., III, Tiedje, J. M., & Reddy, C. A. (1995). Degradation of biphenyl mixtures (Aroclors 1242, 1254, and 1260) by the white rot fungus Phanerochaetechrysosporium as evidenced by congener-specific analysis. Applied and Environmental Microbiology, 61, 2560–2565.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to kindly acknowledge Dr. Samuel Premkumar, CAARU, for deducing the chemical structures, and facilities and support provided by Sultan Qaboos University while preparing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanket J. Joshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elangovan, S., Pandian, S.B.S., S. J., G., Joshi, S.J. (2019). Polychlorinated Biphenyls (PCBs): Environmental Fate, Challenges and Bioremediation. In: Arora, P. (eds) Microbial Metabolism of Xenobiotic Compounds. Microorganisms for Sustainability, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-13-7462-3_8

Download citation

Publish with us

Policies and ethics