Skip to main content

Biotransformation of Heavy Crude Oil and Biodegradation of Oil Pollution by Arid Zone Bacterial Strains

  • Chapter
  • First Online:
Book cover Microbial Metabolism of Xenobiotic Compounds

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 10))

Abstract

The present century has seen tremendous progress in various types of renewable fuels and its possible applications. Fossil fuel, such as crude oil remained as prime source of energy, and it still fuels industries and households. In fact the demand for fossil fuels has increased in the last decade or so, because of increased population and demand due to industrial revolutions. It also leads to increased incidences of crude oil-related pollutions, oil spills, pipeline damages, accidental or intentional spillage, release from tankers, etc., which are quite persistent and very difficult to remediate. Heavy crude oil spillage is even more difficult to remediate, due to its hydrophobic, toxic constituents, and its partial or incomplete degradation leads to even more toxic intermediates in the affected environment. Harmful effects of crude oil spills are often observed in marine mammals, birds, and land-based animals, including humans. Commonly used remediation practices are often not quite effective and lead to only partial removal. Microbial biodegradation is reported to be an effective and environment-friendly alternative, which could be applied under both aerobic and anaerobic conditions onshore or offshore. Bacteria from marine and arid region are reported to be better biodegrader as compared to fungi. Several types of enzymes are reported to be quite effective for catalytic conversion of heavy crude oil and its derivative constituents. Recent progress in genetic engineering and omics techniques will be quite useful for further identifying the metabolomic routes and devising an efficient biodegradation to completely harmless end products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, R., Castillo-Acosta, O., Escalante-Espinosa, E., & Zavala-Cruz, J. (2011). Natural attenuation and phytoremediation of petroleum hydrocarbon impacted soil in tropical wetland environments. In Remediation of soils and aquifers (pp. 1–24). New York: Nova Publishers.

    Google Scholar 

  • Ajagbe, W. O., Agbede, O. A., & Dahunsi, B. I. O. (2012). Effect of crude oil impacted sand on the properties of concrete. In S. Laryea, S. A. Agyepong, R. Leiringer, & W. Hughes (Eds.), Proceedings of the 4th West Africa Built Environment Research (WABER ‘12) (pp. 177–189). Abuja, Nigeria.

    Google Scholar 

  • Akmaz, S., Iscan, O., Gurkaynak, M. A., & Yasar, M. (2011). The structural characterization of saturate, aromatic, resin, and asphaltene fractions of Batiraman crude oil. Petroleum Science and Technology, 29(2), 160–171.

    CAS  Google Scholar 

  • Al-Bahry, S. N., Elshafie, A. E., Al-Wahaibi, Y. M., Al-Bemani, A. S., Joshi, S. J., Al-Maaini, R. A., Al-Alawi, W. J., Sugai, Y., & Al-Mandhari, M. (2013). Microbial consortia in Oman oil fields: A possible use in enhanced oil recovery. Journal of Microbiology and Biotechnology, 23(1), 106–117.

    CAS  Google Scholar 

  • Alboudwarej, H., Felix, J. J., Taylor, S., Badry, R., Bremner, C., Brough, B., Skeates, C., Baker, A., Palmer, D., Pattison, K., Beshry, M., Krawchuk, P., Brown, G., Calvo, R., Triana, J. A. C., Hathcock, R., Koerner, K., Hughes, T., Kundu, D., Cárdenas, J. L. d., & West, C. (2006). Highlighting heavy oil. Oilfield Review, 18(2), 34–53.

    Google Scholar 

  • Al-Mujaini, M., Joshi, S. J., Sivakumar, N., & Al-Bahry, S. N. (2018). Potential application of crude oil degrading bacteria in oil spill and waste management. In SPE international conference and exhibition on health, safety, security, environment, and social responsibility, Abu Dhabi, UAE. Society of Petroleum Engineers, SPE-190564-MS.

    Google Scholar 

  • Al-Sayegh, A. (2017). Enhanced heavy oil recovery through biotransformation by spore-forming bacteria isolated from contaminated soil samples. PhD thesis, Sultan Qaboos University, Oman.

    Google Scholar 

  • Al-Sayegh, A., Al-Wahaibi, Y., Al-Bahry, S., Elshafie, A., Al Bemani, A., & Joshi, S. (2015). Microbial enhanced heavy crude oil recovery through biodegradation using bacterial isolates from an Omani oil field. Microbial Cell Factories, 14(1), 141.

    Google Scholar 

  • Al-Sayegh, A., Al-Wahaibi, Y., Joshi, S., Al-Bahry, S., Elshafie, A., & Al-Bemani, A. (2016). Bioremediation of heavy crude oil contamination. The Open Biotechnology Journal, 10(1), 301–311.

    CAS  Google Scholar 

  • Al-Sayegh, A., Al-Wahaibi, Y., Joshi, S., Al-Bahry, S., Elshafie, A., & Al-Bemani, A. (2017). Draft genome sequence of Bacillus subtilis AS2, a heavy crude oil-degrading and biosurfactant-producing bacterium isolated from a soil sample. Genome Announcements, 5(39), e00969–e00917.

    Google Scholar 

  • Atlas, R. M. (1981). Microbial degradation of petroleum hydrocarbons: An environmental perspective. Microbiological Reviews, 45(1), 180.

    CAS  Google Scholar 

  • Atlas, R. M., & Bartha, R. (1992). Hydrocarbon biodegradation and oil spill bioremediation. Advances in Microbial Ecology, 12, 287–338.

    CAS  Google Scholar 

  • Bachmann, R. T., Johnson, A. C., & Edyvean, R. G. J. (2014). Biotechnology in the petroleum industry: An overview. International Biodeterioration and Biodegradation, 86(Part C(0)), 225–237.

    CAS  Google Scholar 

  • Balseiro, A., Espi, A., Marquez, I., Perez, V., Ferreras, M., Marín, J. G., & Prieto, J. M. (2005). Pathological features in marine birds affected by the Prestige’s oil spill in the north of Spain. Journal of Wildlife Diseases, 41(2), 371–378.

    CAS  Google Scholar 

  • Beller, H. R., Kane, S. R., Legler, T. C., & Alvarez, P. J. (2002). A real-time polymerase chain reaction method for monitoring anaerobic, hydrocarbon-degrading bacteria based on a catabolic gene. Environmental Science & Technology, 36(18), 3977–3984.

    CAS  Google Scholar 

  • Bezza, F. A., & Chirwa, E. M. N. (2015). Biosurfactant from Paenibacillus dendritiformis and its application in assisting polycyclic aromatic hydrocarbon (PAH) and motor oil sludge removal from contaminated soil and sand media. Process Safety and Environmental Protection, 98, 354–364.

    CAS  Google Scholar 

  • Binazadeh, M., Karimi, I. A., & Li, Z. (2009). Fast biodegradation of long chain n-alkanes and crude oil at high concentration with Rhodococcus sp. Moj-3449. Enzyme and Microbial Technology, 45(3), 195–202.

    CAS  Google Scholar 

  • Bissada, K. A., Tan, J., Szymczyk, E., Darnell, M., & Mei, M. (2016). Group-type characterization of crude oil and bitumen. Part I: Enhanced separation and quantification of saturates, aromatics, resins and asphaltenes (SARA). Organic Geochemistry, 95, 21–28.

    CAS  Google Scholar 

  • Blum, W., Ramstein, P., & Eglinton, G. (1990). Coupling of high temperature glass capillary columns to a mass spectrometer. GC/MS analysis of metalloporphyrins from Julia Creek oil shale samples. Journal of High Resolution Chromatography, 13(2), 85–93.

    CAS  Google Scholar 

  • Boll, M., Fuchs, G., & Heider, J. (2002). Anaerobic oxidation of aromatic compounds and hydrocarbons. Current Opinion in Chemical Biology, 6(5), 604–611.

    CAS  Google Scholar 

  • Brassington, K. J. (2008). New insights into the biotransformation of weathered hydrocarbons in soil. PhD thesis, Cranfield University, UK.

    Google Scholar 

  • Brennerova, M. V., Josefiova, J., Brenner, V., Pieper, D. H., & Junca, H. (2009). Metagenomics reveals diversity and abundance of meta-cleavage pathways in microbial communities from soil highly contaminated with jet fuel under air-sparging bioremediation. Environmental Microbiology, 11(9), 2216–2227.

    CAS  Google Scholar 

  • Britton, L. N. (1984). Microbial degradation of aliphatic hydrocarbons. In Microbial degradation of organic compounds (pp. 89–129). New York: Marcel Dekker.

    Google Scholar 

  • Brooijmans, R. J., Pastink, M. I., & Siezen, R. J. (2009). Hydrocarbon-degrading bacteria: The oil-spill clean-up crew. Microbial Biotechnology, 2(6), 587–594.

    CAS  Google Scholar 

  • Callaghan, A. V., Wawrik, B., Chadhain, S. M. N., Young, L. Y., & Zylstra, G. J. (2008). Anaerobic alkane-degrading strain AK-01 contains two alkylsuccinate synthase genes. Biochemical and Biophysical Research Communications, 366(1), 142–148.

    CAS  Google Scholar 

  • Callaghan, A. V., Tierney, M., Phelps, C. D., & Young, L. (2009). Anaerobic biodegradation of n-hexadecane by a nitrate-reducing consortium. Applied and Environmental Microbiology, 75(5), 1339–1344.

    CAS  Google Scholar 

  • Callaghan, A. V., Davidova, I. A., Savage-Ashlock, K., Parisi, V. A., Gieg, L. M., Suflita, J. M., Kukor, J. J., & Wawrik, B. (2010). Diversity of benzyl-and alkylsuccinate synthase genes in hydrocarbon-impacted environments and enrichment cultures. Environmental Science & Technology, 44(19), 7287–7294.

    CAS  Google Scholar 

  • Campbell, R., & Krauss, C. (2010). Gulf spill is the largest of its kind, scientists say. The New York Times, 7, 2010.

    Google Scholar 

  • Carmona, M., Zamarro, M. T., Blázquez, B., Durante-Rodríguez, G., Juárez, J. F., Valderrama, J. A., Barragán, M. J., García, J. L., & Díaz, E. (2009). Anaerobic catabolism of aromatic compounds: A genetic and genomic view. Microbiology and Molecular Biology Reviews, 73(1), 71–133.

    CAS  Google Scholar 

  • Chaudhuri, U. R. (2010). Chapter 1: Crude petroleum oil. In Fundamentals of petroleum and petrochemical engineering (pp. 1–23). Boca Raton: CRC Press.

    Google Scholar 

  • Chikere, C., Okpokwasili, G., & Chikere, B. (2011). Monitoring of microbial hydrocarbon remediation in the soil. 3 Biotech, 1(3), 117–138.

    Google Scholar 

  • Ciric, L., Philp, J. C., & Whiteley, A. S. (2010). Hydrocarbon utilization within a diesel-degrading bacterial consortium. FEMS Microbiology Letters, 303(2), 116–122.

    CAS  Google Scholar 

  • Darvishi, P., Mowla, D., Ayatollahi, S., & Niazi, A. (2011). Biodegradation of heavy crude oil in wastewater by an efficient strain, ERCPPI-1. Desalination and Water Treatment, 28(1–3), 46–54.

    CAS  Google Scholar 

  • Das, N., & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnology Research International, 2011, 13.

    Google Scholar 

  • Dasgupta, D., Ghosh, R., & Sengupta, T. K. (2013). Biofilm-mediated enhanced crude oil degradation by newly isolated Pseudomonas species. ISRN biotechnology, 2013, 250749.

    Google Scholar 

  • Dunnet, G., Crisp, D., Conan, G., & Bourne, W. (1982). Oil pollution and seabird populations [and discussion]. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 297(1087), 413–427.

    Google Scholar 

  • Durand, B. (1988). Understanding of HC migration in sedimentary basins (present state of knowledge). Organic Geochemistry, 13(1), 445–459.

    CAS  Google Scholar 

  • Etoumi, A., Musrati, I. E., Gammoudi, B. E., & Behlil, M. E. (2008). The reduction of wax precipitation in waxy crude oils by Pseudomonas species. Journal of Industrial Microbiology & Biotechnology, 35(11), 1241–1245.

    CAS  Google Scholar 

  • Fan, T., & Buckley, J. S. (2002). Rapid and accurate SARA analysis of medium gravity crude oils. Energy & Fuels, 16, 1571–1575.

    CAS  Google Scholar 

  • Feitkenhauer, H., Muller, R., & Markl, H. (2003). Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 60-70 degrees C by Thermus and Bacillus spp [corrected]. Biodegradation, 14(6), 367–372.

    CAS  Google Scholar 

  • Feng, L., Wang, W., Cheng, J., Ren, Y., Zhao, G., Gao, C., Tang, Y., Liu, X., Han, W., Peng, X., & Peng, X. (2007). Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proceedings of the National Academy of Sciences, 104(13), 5602–5607.

    CAS  Google Scholar 

  • Fuchs, G., Boll, M., & Heider, J. (2011). Microbial degradation of aromatic compounds – From one strategy to four. Nature Reviews Microbiology, 9(11), 803–816.

    CAS  Google Scholar 

  • Geetha, S. J., Joshi, S. J., & Kathrotiya, S. (2013). Isolation and characterization of hydrocarbon degrading bacterial isolate from oil contaminated sites. APCBEE Procedia, 5, 237–241.

    CAS  Google Scholar 

  • Ghollami, M., Roayaei, M., Ghavipanjeh, F., & Rasekh, B. (2013). Bioconversion of heavy hydrocarbon cuts containing high amounts of resins by microbial consortia. Journal of Petroleum & Environmental Biotechnology, 04(02), 139.

    Google Scholar 

  • Gieg, L. M., Davidova, I. A., Duncan, K. E., & Suflita, J. M. (2010). Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields. Environmental Microbiology, 12(11), 3074–3086.

    CAS  Google Scholar 

  • Goual, L. (2012). Petroleum asphaltenes. In M. E.-S. Abdel-Raouf (Ed.), Crude oil emulsions- composition stability and characterization. Rijeka: InTech.

    Google Scholar 

  • Grishchenkov, V., Townsend, R., McDonald, T., Autenrieth, R., Bonner, J., & Boronin, A. (2000). Degradation of petroleum hydrocarbons by facultative anaerobic bacteria under aerobic and anaerobic conditions. Process Biochemistry, 35(9), 889–896.

    CAS  Google Scholar 

  • Grossi, V., Cravo-Laureau, C., Guyoneaud, R., Ranchou-Peyruse, A., & Hirschler-Réa, A. (2008). Metabolism of n-alkanes and n-alkenes by anaerobic bacteria: A summary. Organic Geochemistry, 39(8), 1197–1203.

    CAS  Google Scholar 

  • Grundmann, O., Behrends, A., Rabus, R., Amann, J., Halder, T., Heider, J., & Widdel, F. (2008). Genes encoding the candidate enzyme for anaerobic activation of n-alkanes in the denitrifying bacterium, strain HxN1. Environmental Microbiology, 10(2), 376–385.

    CAS  Google Scholar 

  • Halket, J. M., Waterman, D., Przyborowska, A. M., Patel, R. K., Fraser, P. D., & Bramley, P. M. (2005). Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. Journal of Experimental Botany, 56(410), 219–243.

    CAS  Google Scholar 

  • Hamamura, N., Fukui, M., Ward, D. M., & Inskeep, W. P. (2008). Assessing soil microbial populations responding to crude-oil amendment at different temperatures using phylogenetic, functional gene (alkB) and physiological analyses. Environmental Science & Technology, 42(20), 7580–7586.

    CAS  Google Scholar 

  • Hao, D. H., Lin, J. Q., Song, X., Su, Y. J., & Qu, Y. B. (2008). Isolation, identification, and performance studies of a novel paraffin-degrading bacterium of Gordonia amicalis LH3. Biotechnology and Bioprocess Engineering, 13(1), 61–68.

    CAS  Google Scholar 

  • Hawumba, J., Sseruwagi, P., Hung, Y.-T., & Wang, L. (2010). Bioremediation. In L. K. Wang, J.-H. Tay, S. T. L. Tay&, & Y.-T. Hung (Eds.), Environmental bioengineering (Vol. 11, pp. 277–316). New York: Humana Press.

    Google Scholar 

  • Head, I. M., Jones, D. M., & Roling, W. F. M. (2006). Marine microorganisms make a meal of oil. Nature Reviews Microbiology, 4(3), 173–182.

    CAS  Google Scholar 

  • Head, I., Gray, N., Aitken, C., Sherry, A., Jones, M., & Larter, S. (2010). Hydrocarbon activation under sulfate-reducing and methanogenic conditions proceeds by different mechanisms. Paper presented at the EGU General Assembly Conference Abstracts.

    Google Scholar 

  • Heider, J. (2007). Adding handles to unhandy substrates: Anaerobic hydrocarbon activation mechanisms. Current Opinion in Chemical Biology, 11(2), 188–194.

    CAS  Google Scholar 

  • Higashioka, Y., Kojima, H., Sato, S., & Fukui, M. (2009). Microbial community analysis at crude oil-contaminated soils targeting the 16S ribosomal RNA, xylM, C23O, and bcr genes. Journal of Applied Microbiology, 107(1), 126–135.

    CAS  Google Scholar 

  • Joshi, S. J. (2016). Microbial biotechnology and environmental bioremediation: Challenges and prospects. Open Biotechnology Journal, 10, 287–288.

    Google Scholar 

  • Joshi, S. J., & Desai, A. J. (2010). Biosurfactant’s role in bioremediation of NAPL and fermentative production. In Biosurfactants (pp. 222–235). New York: Springer.

    Google Scholar 

  • Jouanneau, Y. (2010). Oxidative inactivation of ring-cleavage extradiol dioxygenases: Mechanism and ferredoxin-mediated reactivation. In Handbook of hydrocarbon and lipid microbiology (pp. 1071–1079). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Kato, T., Haruki, M., Imanaka, T., Morikawa, M., & Kanaya, S. (2001). Isolation and characterization of psychrotrophic bacteria from oil-reservoir water and oil sands. Applied Microbiology and Biotechnology, 55(6), 794–800.

    CAS  Google Scholar 

  • Kim, J. G., Kim, J. H., Song, B. J., Lee, C. W., Lee, Y. S., & Im, J. S. (2016). Empirical approach to determine molecular weight distribution using MALDI-TOF analysis of petroleum-based heavy oil. Fuel, 186, 20–23.

    CAS  Google Scholar 

  • Kopytov, M. A., Filatov, D. A., & Altunina, L. K. (2014). Biodegradation of high-molecular-mass heteroatomic components of heavy oil. Petroleum Chemistry, 54(1), 58–64.

    CAS  Google Scholar 

  • Kube, M., Heider, J., Amann, J., Hufnagel, P., Kühner, S., Beck, A., Reinhardt, R., & Rabus, R. (2004). Genes involved in the anaerobic degradation of toluene in a denitrifying bacterium, strain EbN1. Archives of Microbiology, 181(3), 182–194.

    CAS  Google Scholar 

  • Kuhn, E., Bellicanta, G. S., & Pellizari, V. H. (2009). New alk genes detected in Antarctic marine sediments. Environmental Microbiology, 11(3), 669–673.

    CAS  Google Scholar 

  • Kuntze, K., Vogt, C., Richnow, H.-H., & Boll, M. (2011). Combined application of PCR-based functional assays for the detection of aromatic-compound-degrading anaerobes. Applied and Environmental Microbiology, 77(14), 5056–5061.

    CAS  Google Scholar 

  • Lavania, M., Cheema, S., Sarma, P. M., Mandal, A. K., & Lal, B. (2012). Biodegradation of asphalt by Garciaella petrolearia TERIG02 for viscosity reduction of heavy oil. Biodegradation, 23(1), 15–24.

    CAS  Google Scholar 

  • Leahy, J. G., & Colwell, R. R. (1990). Microbial degradation of hydrocarbons in the environment. Microbiological Reviews, 54(3), 305–315.

    CAS  Google Scholar 

  • Leon, V., & Kumar, M. (2005). Biological upgrading of heavy crude oil. Biotechnology and Bioprocess Engineering, 10(6), 471–481.

    CAS  Google Scholar 

  • Magot, M. (2005). Indigenous microbial communities in oil fields. In Petroleum microbiology. Washington, DC: American Society of Microbiology.

    Google Scholar 

  • Malik, A. (2000). Studies on biodesulfurization of coal. PhD thesis, Indian Institute of Technology Delhi, India.

    Google Scholar 

  • Mansoori, G. A. (2009). A unified perspective on the phase behaviour of petroleum fluids. International Journal of Oil, Gas and Coal Technology, 2(2), 141.

    CAS  Google Scholar 

  • Margesin, R., Labbe, D., Schinner, F., Greer, C., & Whyte, L. (2003). Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Applied and Environmental Microbiology, 69(6), 3085–3092.

    CAS  Google Scholar 

  • McGenity, T. J., & Gramain, A. (2010). Cultivation of halophilic hydrocarbon degraders. In K. Timmis (Ed.), Handbook of hydrocarbon and lipid microbiology (pp. 3847–3854). Berlin/Heidelberg: Springer.

    Google Scholar 

  • McGenity, T. J., Benjamin, D. F., Boyd, A. M., & Gbemisola, O. S. (2012). Marine crude-oil biodegradation: A central role for interspecies interactions. Aquatic Biosystems, 8(10), 10–1186.

    Google Scholar 

  • McKenna, A. M. (2009). Detailed characterization of heavy crude oils and asphaltenes by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry. PhD thesis, Florida State University, USA.

    Google Scholar 

  • Mehboob, F., Junca, H., Schraa, G., & Stams, A. J. (2009). Growth of Pseudomonas chloritidismutans AW-1T on n-alkanes with chlorate as electron acceptor. Applied Microbiology and Biotechnology, 83(4), 739–747.

    CAS  Google Scholar 

  • Merdrignac, I., & Espinat, D. (2007). Physicochemical characterization of petroleum fractions: The state of the art. Oil & Gas Science and Technology-Revue de l’IFP, 62, 7–32.

    CAS  Google Scholar 

  • Moustafa, Y. M., & Morsi, R. E. (2012). Biomarkers. In D. S. Dhanarasu (Ed.), Chromatography and its applications. InTech, Rijeka, Croatia.

    Google Scholar 

  • Mukred, A. M., Hamid, A. A., Hamzah, A., & Yusoff, W. M. W. (2008). Development of three bacteria consortium for the bioremediation of crude petroleum-oil in contaminated water. Journal of Biological Sciences, 8(4), 73–79.

    Google Scholar 

  • Nazina, T. N., Sokolova, D. S., Grigoryan, A. A., Shestakova, N. M., Mikhailova, E. M., Poltaraus, A. B., Tourova, T. P., Lysenko, A. M., Osipov, G. A., & Belyaev, S. S. (2005). Geobacillus jurassicus sp. nov., a new thermophilic bacterium isolated from a high-temperature petroleum reservoir, and the validation of the Geobacillus species. Systematic and Applied Microbiology, 28(1), 43–53.

    CAS  Google Scholar 

  • Nikolopoulou, M., & Kalogerakis, N. (2010). Biostimulation strategies for enhanced bioremediation of marine oil spills including chronic pollution. In K. N. Timmis (Ed.), Handbook of hydrocarbon and lipid microbiology (pp. 2521–2529). Berlin: Springer.

    Google Scholar 

  • Olesik, S. V. (1991). Recent advances in supercritical fluid chromatography/mass spectrometry. Journal of High Resolution Chromatography, 14(1), 5–9.

    CAS  Google Scholar 

  • Piemonte, V., De Falco, M., & Basile, A. (2013). Sustainable development in chemical engineering: Innovative technologies. Chichester: Wiley.

    Google Scholar 

  • Portet-Koltalo, F., Ammami, M. T., Benamar, A., Wang, H., Le Derf, F., & Duclairoir-Poc, C. (2013). Investigation of the release of PAHs from artificially contaminated sediments using cyclolipopeptidic biosurfactants. Journal of Hazardous Materials, 261, 593–601.

    CAS  Google Scholar 

  • Prince, R. C., Gramain, A., & McGenity, T. J. (2010). Prokaryotic hydrocarbon degraders. In K. N. Timmis, T. J. McGenity, J. R. van der Meer, & V. de Lorenzo (Eds.), Handbook of hydrocarbon and lipid microbiology (pp. 1671–1692). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Rahman, K., Rahman, T. J., Kourkoutas, Y., Petsas, I., Marchant, R., & Banat, I. (2003). Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresource Technology, 90, 159–168.

    CAS  Google Scholar 

  • Rajaei, S., Seyedi, S. M., Raiesi, F., Shiran, B., & Raheb, J. (2013). Characterization and potentials of indigenous oil-degrading bacteria inhabiting the rhizosphere of wild oat (Avena Fatua L.) in South West of Iran. Iranian Journal of Biotechnology, 11, 32–40.

    CAS  Google Scholar 

  • Riazi, M. R., & Eser, S. (2013). Properties, specifications, and quality of crude oil and petroleum products. ASTM Manual Series MNL, 58, 79–100.

    Google Scholar 

  • Robertson, C., & Krauss, C. (2010). Gulf spill is the largest of its kind, scientists say. The New York Times, p. 2.

    Google Scholar 

  • Rodgers, R. P., Hughey, C. A., Hendrickson, C. L., & Marshall, A. G. (2002). Advanced characterization of petroleum crude and products by high field Fourier transform ion cyclotron resonance mass spectrometry. Preprints of Symposia – American Chemical Society, Division of Petroleum Chemistry, 47, 636–637.

    CAS  Google Scholar 

  • Rojo, F. (2010). Enzymes for aerobic degradation of alkanes. In Handbook of hydrocarbon and lipid microbiology (pp. 781–797). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Röling, W. F., Milner, M. G., Jones, D. M., Lee, K., Daniel, F., Swannell, R. J., & Head, I. M. (2002). Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Applied and Environmental Microbiology, 68, 5537–5548.

    Google Scholar 

  • Rosenberg, E., & Gutnick, D. (1981). The hydrocarbon-oxidizing bacteria. In M. Starr, H. Stolp, H. Trüper, A. Balows&, & H. Schlegel (Eds.), The prokaryotes (pp. 903–912). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Rudyk, S., Spirov, P., Samuel, P., & Joshi, S. J. (2017). Vaporization of crude oil by supercritical CO2 at different temperatures and pressures: Example from Gorm field in the Danish North Sea. Energy & Fuels, 31, 6274–6283.

    CAS  Google Scholar 

  • Sabirova, J. S., Ferrer, M., Regenhardt, D., Timmis, K. N., & Golyshin, P. N. (2006). Proteomic insights into metabolic adaptations in Alcanivorax borkumensis induced by alkane utilization. Journal of Bacteriology, 188(11), 3763–3773.

    CAS  Google Scholar 

  • Salanitro, J. P. (2001). Bioremediation of petroleum hydrocarbons in soil. In Advances in agronomy (Vol. 72, pp. 53–105). Cambridge: Academic.

    Google Scholar 

  • Salminen, J. M., Tuomi, P. M., & Jørgensen, K. S. (2008). Functional gene abundances (nahAc, alkB, xylE) in the assessment of the efficacy of bioremediation. Applied Biochemistry and Biotechnology, 151(2–3), 638–652.

    CAS  Google Scholar 

  • Sanchez-Minero, F., Ancheyta, J., Silva-Oliver, G., & Flores-Valle, S. (2013). Predicting SARA composition of crude oil by means of NMR. Fuel, 110, 318–321.

    CAS  Google Scholar 

  • Santisi, S., Cappello, S., Catalfamo, M., Mancini, G., Hassanshahian, M., Genovese, L., Giuliano, L., & Yakimov, M. M. (2015). Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium. Brazilian Journal of Microbiology, 46(2), 377–387.

    Google Scholar 

  • Santos, R. G., Loh, W., Bannwart, A. C., & Trevisan, O. V. (2014). An overview of heavy oil properties and its recovery and transportation methods. Brazilian Journal of Chemical Engineering, 31, 571–590.

    Google Scholar 

  • Sei, A., & Fathepure, B. (2009). Biodegradation of BTEX at high salinity by an enrichment culture from hypersaline sediments of Rozel point at Great Salt Lake. Journal of Applied Microbiology, 107(6), 2001–2008.

    CAS  Google Scholar 

  • She, Y. H., Shu, F. C., Zhang, F., Wang, Z. L., Kong, S. Q., & Yu, L. J. (2011). The enhancement of heavy crude oil recovery using bacteria degrading polycyclic aromatic hydrocarbons. Advanced Materials Research, 365, 320–325.

    Google Scholar 

  • Shi, Q., Hou, D., Chung, K. H., Xu, C., Zhao, S., & Zhang, Y. (2010). Characterization of heteroatom compounds in a crude oil and its saturates, aromatics, resins, and asphaltenes (SARA) and non-basic nitrogen fractions analyzed by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy & Fuels, 24(4), 2545–2553.

    CAS  Google Scholar 

  • Shibulal, B. (2017). The potential of autochthonous spore-forming bacteria in oil spill clean-up and enhanced oil recovery. PhD thesis, Sultan Qaboos University, Oman.

    Google Scholar 

  • Shibulal, B., Al-Bahry, S. N., Al-Wahaibi, Y. M., Elshafie, A. E., Al-Bemani, A. S., & Joshi, S. J. (2017). The potential of indigenous Paenibacillus ehimensis BS1 for recovering heavy crude oil by biotransformation to light fractions. PLoS One, 12(2), e0171432.

    Google Scholar 

  • Sierra-Garcia, I. N., & Oliveira, V. M. d. (2013). Microbial hydrocarbon degradation: Efforts to understand biodegradation in petroleum reservoirs. In Biodegradation-engineering and technology. InTech. https://doi.org/10.5772/55920.

    Google Scholar 

  • So, C. M., Phelps, C. D., & Young, L. (2003). Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3. Applied and Environmental Microbiology, 69(7), 3892–3900.

    CAS  Google Scholar 

  • Sorkoh, N. A., Ibrahim, A. S., Ghannoum, M. A., & Radwan, S. S. (1993). High-temperature hydrocarbon degradation by Bacillus stearothermophilus from oil-polluted Kuwaiti desert. Applied Microbiology and Biotechnology, 39, 123–126.

    Google Scholar 

  • Speight, J. G. (2006). Chapter 1: History and terminology. In The chemistry and technology of petroleum (4th ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Ternes, T. A., Andersen, H., Gilberg, D., & Bonerz, M. (2002). Determination of estrogens in sludge and sediments by liquid extraction and GC/MS/MS. Analytical Chemistry, 74(14), 3498–3504.

    CAS  Google Scholar 

  • Tissot, B., & Welte, D. (2012). Petroleum formation and occurrence: A new approach to oil and gas exploration. Berlin: Springer.

    Google Scholar 

  • Tourova, T., Nazina, T., Mikhailova, E., Rodionova, T., Ekimov, A., Mashukova, A., & Poltaraus, A. (2008). alkB homologs in thermophilic bacteria of the genus Geobacillus. Molecular Biology, 42(2), 217–226.

    CAS  Google Scholar 

  • Tyagi, M., da Fonseca, M. M., & de Carvalho, C. C. (2010). Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation, 22(2), 231–241.

    Google Scholar 

  • Urum, K., Grigson, S., Pekdemir, T., & McMenamy, S. (2006). A comparison of the efficiency of different surfactants for removal of crude oil from contaminate soils. Chemosphere, 62, 1403–1410.

    CAS  Google Scholar 

  • Van Beilen, J. B., Wubbolts, M. G., & Witholt, B. (1994). Genetics of alkane oxidation by Pseudomonas oleovorans. Biodegradation, 5(3–4), 161–174.

    Google Scholar 

  • Van Beilen, J. B., Duetz, W. A., Schmid, A., & Witholt, B. (2003). Practical issues in the application of oxygenases. Trends in Biotechnology, 21(4), 170–177.

    Google Scholar 

  • Van Hamme, J. D., Singh, A., & Ward, O. P. (2003). Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews, 67(4), 503–549.

    Google Scholar 

  • Vilchez-Vargas, R., Junca, H., & Pieper, D. H. (2010). Metabolic networks, microbial ecology and ‘omics’ technologies: Towards understanding in situ biodegradation processes. Environmental Microbiology, 12(12), 3089–3104.

    CAS  Google Scholar 

  • Wentzel, A., Ellingsen, T. E., Kotlar, H.-K., Zotchev, S. B., & Throne-Holst, M. (2007). Bacterial metabolism of long-chain n-alkanes. Applied Microbiology and Biotechnology, 76(6), 1209–1221.

    CAS  Google Scholar 

  • Widdel, F., & Grundmann, O. (2010). Biochemistry of the anaerobic degradation of non-methane alkanes. In Handbook of hydrocarbon and lipid microbiology (pp. 909–924). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Winderl, C., Schaefer, S., & Lueders, T. (2007). Detection of anaerobic toluene and hydrocarbon degraders in contaminated aquifers using benzylsuccinate synthase (bssA) genes as a functional marker. Environmental Microbiology, 9(4), 1035–1046.

    CAS  Google Scholar 

  • Xu, T., Chen, C., Liu, C., Zhang, S., Wu, Y., & Zhang, P. (2009). A novel way to enhance the oil recovery ratio by Streptococcus sp. BT-003. Journal of Basic Microbiology, 49(5), 477–481.

    CAS  Google Scholar 

  • Xu, N., Bao, M., Sun, P., & Li, Y. (2013). Study on bioadsorption and biodegradation of petroleum hydrocarbons by a microbial consortium. Bioresource Technology, 149(0), 22–30.

    CAS  Google Scholar 

  • Zhang, W., Andersson, J. T., Räder, H. J., & Müllen, K. (2015). Molecular characterization of large polycyclic aromatic hydrocarbons in solid petroleum pitch and coal tar pitch by high resolution MALDI ToF MS and insights from ion mobility separation. Carbon, 95, 672–680.

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge facilities and support provided by Sultan Qaboos University to prepare this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saif Al-Bahry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joshi, S.J., Al-Wahaibi, Y., Al-Bahry, S. (2019). Biotransformation of Heavy Crude Oil and Biodegradation of Oil Pollution by Arid Zone Bacterial Strains. In: Arora, P. (eds) Microbial Metabolism of Xenobiotic Compounds. Microorganisms for Sustainability, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-13-7462-3_5

Download citation

Publish with us

Policies and ethics