Skip to main content

Enzymatic Bioremediation: Current Status, Challenges of Obtaining Process, and Applications

  • Chapter
  • First Online:
Book cover Microbial Metabolism of Xenobiotic Compounds

Abstract

Enzymes play an important role for degradation of various xenobiotic compounds. In this chapter, we summarize the role of various enzymes including oxidoreductases, monooxygenases, dioxygenases, peroxidases, and laccases for bioremediation of various xenobiotic compounds. Microbial oxidoreductases are able to degrade natural and artificial pollutants, reverse toxicity caused by xenobiotics, and reduce heavy metals, through their oxi-reduction capacity. Monooxygenases and dioxygenases are able to play a central role in the degradation and detoxification of aromatic compounds through hydroxylation and ring cleavage. Peroxidases act in bioremediation processes due to their thermostability and capacity to oxidize a wide range of substrates. Laccases can act on a variety of pollutants including petroleum derivatives (PHAs), paints, plastics, dyes, estrogenic substances, and paper via oxidative reactions, decarboxylation, and demethylation and can oxidize phenols, polyphenols, metals, polyamines, and aryl diamines groups and also act on lignin degradation and on azo dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Hamid, A. M., Solbiati, J. O., & Cann, I. K. O. (2013). Insights into lignin degradation and its potential industrial applications. Advances in Applied Microbiology, 82, 1–28. https://doi.org/10.1016/B978-0-12-407679-2.00001-6.

    Article  CAS  Google Scholar 

  • Abidi, M., Iram, A., Furkan, M., & Naeem, A. (2017). Secondary structural alterations in glucoamylase as an influence of protein aggregation. International Journal of Biological Macromolecules, 98, 459–468.

    Article  CAS  Google Scholar 

  • Abu-Omar, M. M., Loaiza, A., & Hontzeas, N. (2005). Reaction mechanisms of mononuclear non-heme iron oxygenases. Chemical Reviews, 105, 2227–2252. https://doi.org/10.1021/cr040653o.

    Article  CAS  Google Scholar 

  • Ahuja, S. K., Ferreira, G. M., & Moreira, A. R. (2004). Utilization of enzymes for environmental applications. Critical Reviews in Biotechnology, 24, 125–154. https://doi.org/10.1080/07388550490493726.

    Article  CAS  Google Scholar 

  • Alcalde, M., Ferrer, M., Plou, F. J., & Ballesteros, A. (2006). Environmental biocatalysis: From remediation with enzymes to novel green processes. Trends in Biotechnology, 24, 281–287. https://doi.org/10.1016/j.tibtech.2006.04.002.

    Article  CAS  Google Scholar 

  • Arora, P. K., Kumar, M., Chauhan, A., Raghava, G. P. S., & Jain, R. K. (2009). OxDBase: A database of oxygenases involved in biodegradation. BMC Research Notes, 2, 67. https://doi.org/10.1186/1756-0500-2-67.

    Article  CAS  Google Scholar 

  • Arora, N. K., Khare, E., Singh, S., & Maheshwari, D. K. (2010). Effect of Al and heavy metals on enzymes of nitrogen metabolism of fast and slow growing rhizobia under ex planta conditions. World Journal of Microbiology and Biotechnology, 26, 811–816. https://doi.org/10.1007/s11274-009-0237-6.

    Article  CAS  Google Scholar 

  • Ashe, B., Nguyen, L. N., Hai, F. I., Lee, D.-J., van de Merwe, J. P., Leusch, F. D. L., Price, W. E., & Nghiem, L. D. (2016). Impacts of redox-mediator type on trace organic contaminants degradation by laccase: Degradation efficiency, laccase stability and effluent toxicity. International Biodeterioration and Biodegradation, Challenges in Environmental Science and Engineering – 2015, 113, 169–176. https://doi.org/10.1016/j.ibiod.2016.04.027.

    Article  CAS  Google Scholar 

  • ATSDR. (2016). Minimal risk level. Agency for Toxic Substances and Disease Registry.

    Google Scholar 

  • Baciocchi, E., Gerini, M. F., Harvey, P. J., Lanzalunga, O., & Prosperi, A. (2001). Kinetic deuterium isotope effect in the oxidation of veratryl alcohol promoted by lignin peroxidase and chemical oxidants. Journal of the Chemical Society, Perkin Transactions, 20, 1512–1515. https://doi.org/10.1039/B104467M.

    Article  Google Scholar 

  • Bajaj, A., Pathak, A., Mudiam, M. R., Mayilraj, S., & Manickam, N. (2010). Isolation and characterization of a Pseudomonas sp. strain IITR01 capable of degrading α-endosulfan and endosulfan sulfate. Journal of Applied Microbiology, 109, 2135–2143. https://doi.org/10.1111/j.1365-2672.2010.04845.x.

    Article  CAS  Google Scholar 

  • Balali-Mood, M., & Abdollahi, M. (2014) Basic and clinical toxicology of organophosphorus compounds. London: Springer International Publishing, ISBN 978-1-4471-5625-3.

    Google Scholar 

  • Bansal, N., & Kanwar, S. S. (2013). Peroxidase(s) in environment protection. Scientific World Journal, 2013, 714639. https://doi.org/10.1155/2013/714639.

    Article  CAS  Google Scholar 

  • Baptista, N. M., de, Q., dos Santos, A. C., Arruda, F. V. F., & de Gusmão, N. B. (2012). Produção das Enzimas Lignina Peroxidase e Lacase por Fungos Filamentosos. Scientia Plena, 8, 019904.

    Google Scholar 

  • Bensaude-Vincent, B., & Stengers, I. (1992). História da Química (pp. 176–177). Lisboa: Piaget.

    Google Scholar 

  • Bilal, M., Asgher, M., Parra-Saldivar, R., Hu, H., Wang, W., Zhang, X., & Iqbal, H. M. N. (2017). Immobilized ligninolytic enzymes: An innovative and environmental responsive technology to tackle dye-based industrial pollutants – A review. Science Total Environment, 576, 646–659. https://doi.org/10.1016/j.scitotenv.2016.10.137.

    Article  CAS  Google Scholar 

  • Bollag, J.-M. (1998). Use of plant material for the removal of pollutants by polymerization and binding to humic substances (p. 135). University Park: Center for Bioremediation and Detoxification, Environmental Resources Research Institute,

    Google Scholar 

  • Borsonelo, E. C., & Galduróz, J. C. (2008). The role of polyunsaturated fatty acids (PUFAs) in development, aging and substance abuse disorders: Review and propositions. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 78, 237–245. https://doi.org/10.1016/j.plefa.2008.03.005.

    Article  CAS  Google Scholar 

  • Brown, L. D., Cologgi, D. L., Gee, K. F., & Ulrich, A. C. (2017). Bioremediation of oil spills on land. Chapter 12. Oil Spill Science and Technology. 2nd ed. Gulf Professional Publishing, Boston, 699–729.

    Google Scholar 

  • Bugg, T. D. H. (2003). Dioxygenase enzymes: Catalytic mechanisms and chemical models. Tetrahedron, 59, 7075–7101.

    Article  CAS  Google Scholar 

  • Bugg, T. D., & Ramaswamy, S. (2008). Non-heme iron-dependent dioxygenases: Unravelling catalytic mechanisms for complex enzymatic oxidations. Current Opinion in Chemical Biology, Biocatalysis and Biotransformation/Bioinorganic Chemistry, 12, 134–140. https://doi.org/10.1016/j.cbpa.2007.12.007.

    Article  CAS  Google Scholar 

  • Cabana, H., Jiwan, J.-L. H., Rozenberg, R., Elisashvili, V., Penninckx, M., Agathos, S. N., & Jones, J. P. (2007). Elimination of endocrine disrupting chemicals nonylphenol and bisphenol A and personal care product ingredient triclosan using enzyme preparation from the white rot fungus Coriolopsis polyzona. Chemosphere, 67, 770–778. https://doi.org/10.1016/j.chemosphere.2006.10.037.

    Article  CAS  Google Scholar 

  • Cameron, M. D., Timofeevski, S., & Aust, S. D. (2000). Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Applied Microbiology and Biotechnology, 54(6), 751–758.

    Article  CAS  Google Scholar 

  • Canfora, L., Iamarino, G., Rao, M. A., & Gianfreda, L. (2008). Oxidative transformation of natural and synthetic phenolic mixtures by trametes versicolor laccase. Journal of Agricultural and Food Chemistry, 56, 1398–1407. https://doi.org/10.1021/jf0728350.

    Article  CAS  Google Scholar 

  • Chakraborty, J., Jana, T., Saha, S., & Dutta, T. K. (2014). Ring-hydroxylating oxygenase database: A database of bacterial aromatic ring-hydroxylating oxygenases in the management of bioremediation and biocatalysis of aromatic compounds. Environmental Microbiology Reports, 6, 519–523. Accessed 6 May 2018.

    Article  CAS  Google Scholar 

  • Chakroun, H., Mechichi, T., Martinez, M. J., Dhouib, A., & Sayadi, S. (2010). Purification and characterization of a novel laccase from the ascomycete Trichoderma atroviride: Application on bioremediation of phenolic compounds. Process Biochemistry, 45, 507–513. https://doi.org/10.1016/j.procbio.2009.11.009.

    Article  CAS  Google Scholar 

  • Chang, Y. C., Choi, D., Takamizawa, K., & Kikuchi, S. (2014). Isolation of Bacillus sp. strains capable of decomposing alkali lignin and their application in combination with lactic acid bacteria for enhancing cellulase performance. Bioresource Technology, 152, 429–436. https://doi.org/10.1016/j.biortech.2013.11.032.

    Article  CAS  Google Scholar 

  • Cirino, P. C., & Arnold, F. H. (2002). Protein engineering of oxygenases for biocatalysis. Current Opinion in Chemical Biology, 6, 130–135. https://doi.org/10.1016/S1367-5931(02)00305-8.

    Article  CAS  Google Scholar 

  • Cochrane, R. V. K., & Vederas, J. C. (2014). Highly selective but multifunctional oxygenases in secondary metabolism. Accounts of Chemical Research, 47, 3148–3161. https://doi.org/10.1021/ar500242c.

    Article  CAS  Google Scholar 

  • Cotârlet, M., Negoita, T. G., Bahrim, G. E., & Stougaard, P. (2011). Partial characterization of cold active amylases and proteases of Streptomyces sp. from Antarctica. Brazilian Journal of Microbiology, 42, 868–877. ISSN 1517-8382.

    Article  Google Scholar 

  • D’Annibale, A., Ricci, M., Quaratino, D., Federici, F., & Fenice, M. (2004). Panus tigrinus efficiently removes phenols, color and organic load from olive-mill wastewater. Research in Microbiology, 155, 596–603. https://doi.org/10.1016/j.resmic.2004.04.009.

    Article  CAS  Google Scholar 

  • Dai Prá, M. A., Corrêa, E. K., Corrêa, L. B., Lobo, M. S., Sperotto, L., & Mores, E. (2009). Compostagem como alternativa para gestão ambiental na produção de suínos (pp. 144–148). Porto Alegre: Editora Evangraf Ltda.

    Google Scholar 

  • Das, N., & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnology Research International, 2011, 941810. https://doi.org/10.4061/2011/941810.

    Article  CAS  Google Scholar 

  • Dec, J., & Bollag, J. M. (1994). Use of plant material for the decontamination of water polluted with phenols. Biotechnology and Bioengineering, 44, 1132–1139. https://doi.org/10.1002/bit.260440915.

    Article  CAS  Google Scholar 

  • Drewes, J. E., Li, D., Regnery, J., Alidina, M., Wing, A., & Hoppe-Jones, C. (2014). Tuning the performance of a natural treatment process using metagenomics for improved trace organic chemical attenuation. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 69, 628–633. https://doi.org/10.2166/wst.2013.750.

    Article  CAS  Google Scholar 

  • Durán, N., & Esposito, E. (2000). Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: A review. Applied Catalysis B: Environmental, 28, 83–99. https://doi.org/10.1016/S0926-3373(00)00168-5.

    Article  Google Scholar 

  • Efimov, I., Basran, J., Thackray, S. J., Handa, S., Mowat, C. G., & Raven, E. L. (2011). Structure and reaction mechanism in the heme dioxygenases. Biochemistry (Mosc), 50, 2717–2724. https://doi.org/10.1021/bi101732n.

    Article  CAS  Google Scholar 

  • Ely, C., Kempka, A. P., & Skoronski, E. (2016). Aplicação de Peroxidases no Tratamento de Efluentes. Revista Virtual de Química, 8, 1537.

    Article  Google Scholar 

  • Empresa Brasileira de Pesquisa. Embrapa. (2004). Production of ligninolytic enzymes by fungi isolated from soils under irrigated rice cultivation. Boletim de pesquisa e desenvolvimento. Available in https://www.infoteca.cnptia.embrapa.br/bitstream/doc/14511/1/boletim18.pdf.

  • Falade, A. O., Nwodo, U. U., Iweriebor, B. C., Green, E., Mabinya, L. V., & Okoh, A. I. (2016). Lignin peroxidase functionalities and prospective applications. Microbiology Open, 6. https://doi.org/10.1002/mbo3.394.

    Article  Google Scholar 

  • Farnet, A. M., Gil, G., Ruaudel, F., Chevremont, A. C., & Ferre, E. (2009). Polycyclic aromatic hydrocarbon transformation with laccases of a white-rot fungus isolated from a Mediterranean sclerophyllous litter. Geoderma, 149, 267–271. https://doi.org/10.1016/j.geoderma.2008.12.011.

    Article  CAS  Google Scholar 

  • Farnet, A. M., Chevremont, A. C., Gil, G., Gastaldi, S., & Ferre, E. (2011). Alkylphenol oxidation with a laccase from a white-rot fungus: Effects of culture induction and of ABTS used as a mediator. Chemosphere, 82, 284–289. https://doi.org/10.1016/j.chemosphere.2010.10.001.

    Article  CAS  Google Scholar 

  • Fetzner, S. (2012). Ring-cleaving dioxygenases with a cupin fold. Applied and Environmental Microbiology, 78, 2505–2514. https://doi.org/10.1128/AEM.07651-11.

    Article  CAS  Google Scholar 

  • Fetzner, S., & Lingens, F. (1994). Bacterial dehalogenases: Biochemistry, genetics, and biotechnological applications. Microbiological Reviews, 58, 641–685.

    CAS  Google Scholar 

  • Fischer, K., & Majewsky, M. (2014). Cometabolic degradation of organic wastewater micropollutants by activated sludge and sludge-inherent microorganisms. Applied Microbiology and Biotechnology, 98, 6583–6597. https://doi.org/10.1007/s00253-014-5826-0.

    Article  CAS  Google Scholar 

  • Galán, B., Díaz, E., Prieto, M. A., & García, J. L. (2000). Functional analysis of the small component of the 4-hydroxyphenylacetate 3-monooxygenase of Escherichia coli W: A prototype of a new Flavin:NAD(P)H reductase subfamily. Journal of Bacteriology, 182, 627–636.

    Article  Google Scholar 

  • Gao, Y., Chen, S., Hu, M., Hu, Q., Luo, J., & Li, Y. (2012). Purification and characterization of a novel Chlorpyrifos hydrolase from Cladosporium cladosporioides Hu-01. PLoS One, 7, 38137. https://doi.org/10.1371/journal.pone.0038137.

    Article  CAS  Google Scholar 

  • García-Galán, M. J., Rodríguez-Rodríguez, C. E., Vicent, T., Caminal, G., Díaz-Cruz, M. S., & Barceló, D. (2011). Biodegradation of sulfamethazine by Trametes versicolor: Removal from sewage sludge and identification of intermediate products by UPLC-QqTOF-MS. Science Total Environment, 409, 5505–5512. https://doi.org/10.1016/j.scitotenv.2011.08.022.

    Article  CAS  Google Scholar 

  • Gasser, C. A., Yu, L., Svojitka, J., Wintgens, T., Ammann, E. M., Shahgaldian, P., Corvini, P. F.-X., & Hommes, G. (2014). Advanced enzymatic elimination of phenolic contaminants in wastewater: A nano approach at field scale. Applied Microbiology and Biotechnology, 98, 3305–3316. https://doi.org/10.1007/s00253-013-5414-8.

    Article  CAS  Google Scholar 

  • Gavrilescu, M., Demnerová, K., Aamand, J., Agathos, S., & Fava, F. (2015). Emerging pollutants in the environment: Present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnology, 32, 147–156. https://doi.org/10.1016/j.nbt.2014.01.001.

    Article  CAS  Google Scholar 

  • Ghafil, J. A., Hassan, S. S., & Zgair, A. K. (2016). Use of immobilized lipase in cleaning up soil contaminated with oil. World Journal of Experimental Medicine, 4, 53–57. ISSN: 2313-3937.

    Google Scholar 

  • Ghashghavi, M., Jetten, M. S. M., & Lüke, C. (2017). Survey of methanotrophic diversity in various ecosystems by degenerate methane monooxygenase gene primers. AMB Express, 7. https://doi.org/10.1186/s13568-017-0466-2.

  • Giandreda, L., & Rao, M. A. (2011). Stabilized enzymes as synthetic complexes. In R. P. Dick (Ed.), Methods in soil enzymology (pp. 319–370). Madison: Soil Science Society of America.

    Google Scholar 

  • Gianfreda, L., & Bollag, J.-M. (2002). Isolated enzymes for the transformation and detoxification of organic pollutants. New York: Marcel Dekker.

    Book  Google Scholar 

  • Gianfreda, L., Xu, F., & Bollag, J.-M. (1999). Laccases: A useful group of oxidoreductive enzymes. Bioremediation Journal, 3, 1–26. https://doi.org/10.1080/10889869991219163.

    Article  CAS  Google Scholar 

  • Gianfreda, P. L., Iamarino, G., Scelza, R., & Rao, M. A. (2006). Oxidative catalysts for the transformation of phenolic pollutants: A brief review. Biocatalysis and Biotransformation, 24, 177–187. https://doi.org/10.1080/10242420500491938.

    Article  CAS  Google Scholar 

  • Gibson, D. T., & Parales, R. E. (2000). Aromatic hydrocarbon dioxygenases in environmental biotechnology. Current Opinion in Biotechnology, 11, 236–243.

    Article  CAS  Google Scholar 

  • Grosse, S., Laramee, L., Wendlandt, K. D., McDonald, I. R., Miguez, C. B., & Kleber, H. P. (1999). Purification and characterization of the soluble methane monooxygenase of the type II methanotrophic bacterium Methylocystis sp. strain WI 14. Applied and Environmental Microbiology, 65, 3929–3935.

    CAS  Google Scholar 

  • Guzik, U., Hupert-Kocurek, K., Sitnik, M., & Wojcieszyńska, D. (2013). High activity catechol 1,2-dioxygenase from Stenotrophomonas maltophilia strain KB2 as a useful tool in cis,cis-muconic acid production. Antonie Van Leeuwenhoek, 103, 1297–1307. https://doi.org/10.1007/s10482-013-9910-8.

    Article  CAS  Google Scholar 

  • Halmi, M. I. E., Khayat, M. E., Gunasekaran, B., Masdor, N. A., & Rahman, M. F. A. (2016). Near real-time biomonitoring of copper from an industrial complex effluent discharge site using a plant protease inhibitive assay. Bioremediation Science Technology Research, 4, 10–13. ISSN: 2289-5892.

    Google Scholar 

  • Hocevar, L., Soares, V. R. B., Oliveira, F. S., Korn, M. G. A., & Teixeira, L. S. G. (2012). Application of multivariate analysis in mid-infrared spectroscopy as a tool for the evaluation of waste frying oil blends. Journal of the American Oil Chemists’ Society, 89(5), 781–786.

    Google Scholar 

  • Hofrichter, M. (2002). Review: Lignin conversion by manganese peroxidase (MnP). Enzyme and Microbial Technology, Recent Advances in Lignin Biodegradation, 30, 454–466. https://doi.org/10.1016/S0141-0229(01)00528-2.

    Article  CAS  Google Scholar 

  • Husain, Q. (2006). Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: A review. Critical Reviews in Biotechnology, 26, 201–221. https://doi.org/10.1080/07388550600969936.

    Article  CAS  Google Scholar 

  • Husain, Q. (2010). Peroxidase mediated decolorization and remediation of wastewater containing industrial dyes: A review. Reviews in Environmental Science and Biotechnology, 9, 117–140. https://doi.org/10.1007/s11157-009-9184-9.

    Article  CAS  Google Scholar 

  • Iyer, R., Iken, B., & Damania, A. (2013). A comparison of organophosphate degradation genes and bioremediation applications – Minireview. Environmental Microbiology Reports, 5, 787–798. https://doi.org/10.1111/1758-2229.12095.

    Article  CAS  Google Scholar 

  • Iyer, R., Iken, B., & Leon, A. (2016). Characterization and comparison of putative Stenotrophomonas maltophilia methyl parathion hydrolases. Bioremediation Journal, 20, 71–79. https://doi.org/10.1080/10889868.2015.1114462.

    Article  CAS  Google Scholar 

  • Jakovljević, V. D., & Vrvić, M. M. (2016). Potential of pure and mixed cultures of Cladosporium cladosporioides and Geotrichum candidum for application in bioremediation and detergent industry. Saudi Journal of Biological Science, 25, 529. https://doi.org/10.1016/j.sjbs.2016.01.020.

    Article  CAS  Google Scholar 

  • Jakovljević, V. D., & Vrvić, M. M. (2017). Penicillium verrucosum as promising candidate for bioremediation of environment contaminated with synthetic detergent at high concentration. Applied Biochemistry and Microbiology, 53, 368–373. https://doi.org/10.1134/S0003683817030164.

    Article  Google Scholar 

  • Janarthanan, R., Prabhakaran, P., & Ayyasamy, P. M. (2014). Bioremediation of vegetable wastes through biomanuring and enzyme production. International Journal of Current Microbiology and Applied Sciences, 3, 89–100. ISSN: 2319-7706.

    CAS  Google Scholar 

  • Jaouadi, B., Ellouz-Chaabouni, S., Rhimi, M., & Bejar, S. (2008). Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency. Biochimie, 90, 1291–1305. https://doi.org/10.1016/j.biochi.2008.03.004.

    Article  CAS  Google Scholar 

  • Jardine, J. L., Stoychev, S., Mavumengwana, V., & Ubomba-Jaswa, E. (2018). Screening of potential bioremediation enzymes from hot spring bacteria using conventional plate assays and liquid chromatography – Tandem mass spectrometry (Lc-Ms/Ms). Journal of Environmental Management, 223, 787–796. https://doi.org/10.1016/j.jenvman.2018.06.089.

    Article  CAS  Google Scholar 

  • Ju, K.-S., & Parales, R. E. (2011). Evolution of a new bacterial pathway for 4-nitrotoluene degradation. Molecular Microbiology, 82, 355–364. https://doi.org/10.1111/j.1365-2958.2011.07817.x.

    Article  CAS  Google Scholar 

  • Kapoor, M., & Rajagopal, R. (2011). Enzymatic bioremediation of organophosphorus insecticides by recombinant organophosphorus hydrolase. International Biodeterioration and Biodegradation, 65, 896–901. https://doi.org/10.1016/j.ibiod.2010.12.017.

    Article  CAS  Google Scholar 

  • Karam, J., & Nicell, J. A. (1997). Potential applications of enzymes in waste treatment. Journal of Chemical Technology and Biotechnology, 69, 141–153. https://doi.org/10.1002/(SICI)1097-4660(199706)69:2<141::AID-JCTB694>3.0.CO;2-U.

    Article  CAS  Google Scholar 

  • Karigar, C. S., & Rao, S. S. (2011). Role of microbial enzymes in the bioremediation of pollutants: A review. Enzyme Research, 2011. https://doi.org/10.4061/2011/805187.

    Article  Google Scholar 

  • Karimi, M., & Biria, D. (2016). The synergetic effect of starch and alpha amylase on the biodegradation of n-alkanes. Chemosphere, 152, 166–172. https://doi.org/10.1016/j.chemosphere.2016.02.120.

    Article  CAS  Google Scholar 

  • Khatoon, N., Jamal, A., & Ali, M. I. (2017). Polymeric pollutant biodegradation through microbial oxidoreductase: A better strategy to safe environment. International Journal of Biological Macromolecules, 105, 9–16. https://doi.org/10.1016/j.ijbiomac.2017.06.047.

    Article  CAS  Google Scholar 

  • Kim, G.-Y., Lee, K.-B., Cho, S.-H., Shim, J., & Moon, S.-H. (2005). Electroenzymatic degradation of azo dye using an immobilized peroxidase enzyme. Journal of Hazardous Materials, 126, 183–188. https://doi.org/10.1016/j.jhazmat.2005.06.023.

    Article  CAS  Google Scholar 

  • Kobakhidze, A., Elisashvili, V., Corvini, P. F.-X., & Čvančarová, M. (2018). Biotransformation of ritalinic acid by laccase in the presence of mediator TEMPO. New Biotechnology, 43, 44–52. https://doi.org/10.1016/j.nbt.2017.08.008.

    Article  CAS  Google Scholar 

  • Koua, D., Cerutti, L., Falquet, L., Sigrist, C. J. A., Theiler, G., Hulo, N., & Dunand, C. (2009). PeroxiBase: A database with new tools for peroxidase family classification. Nucleic Acids Research, 37, D261–D266. https://doi.org/10.1093/nar/gkn680.

    Article  CAS  Google Scholar 

  • Kovalchuk, I. (2010). Multiple roles of radicals in plants. In: GUPTA, S.D. reactive oxygen species and antioxidants in higher plants (pp. 31–44). Enfield: Science Publishers.

    Book  Google Scholar 

  • Kuddus, M., & Ramteke, P. W. (2012). Recent developments in production and biotechnological applications of cold-active microbial proteases. Critical Reviews in Microbiology, 38, 330–338. https://doi.org/10.3109/1040841X.2012.678477.

    Article  CAS  Google Scholar 

  • Kuhad, R. C., Gupta, R., & Singh, A. (2011). Microbial cellulases and their industrial applications. Enzyme Research, 10, 1. https://doi.org/10.4061/2011/280696.

    Article  CAS  Google Scholar 

  • Kumar, S., Mathur, A., Singh, V., Nandy, S., Khare, S. K., & Negi, S. (2012). Bioremediation of waste cooking oil using a novel lipase produced by Penicillium chrysogenum SNP5 grown in solid medium containing waste grease. Bioresource Technology, 120, 300–304. https://doi.org/10.1016/j.biortech.2012.06.018.

    Article  CAS  Google Scholar 

  • Kumar, V., Singh, S., Manhas, A., Negi, P., Singla, S., Kaur, P., Bhadrecha, P., Datta, S., Kalia, A., Joshi, R., Singh, J., Sharma, S., & Upadhyay, N. (2014). Bioremediation of petroleum hydrocarbon by using Pseudomonas species isolated from petroleum-contaminated soil. Oriental Journal of Chemistry, 30, 1771–1776. https://doi.org/10.13005/ojc/300436.

    Article  CAS  Google Scholar 

  • Lee, J. H., Okuno, Y., & Cavagnero, S. (2014). Sensitivity enhancement in solution NMR: Emerging ideas and new frontiers. Journal of Magnetic Resonance San Diego California 1997, 241, 18–31. https://doi.org/10.1016/j.jmr.2014.01.005.

    Article  CAS  Google Scholar 

  • Legerská, B., Chmelová, D., & Ondrejovič, M. (2016). Degradation of synthetic dyes by laccases – A mini-review. Nova Biotechnology Chimica, 15, 90–106. https://doi.org/10.1515/nbec-2016-0010.

    Article  CAS  Google Scholar 

  • Leicester, H. M. (1971). The historical background of chemistry. Chelmsford: Courier Corporation.

    Google Scholar 

  • Leitgeb, S., & Nidetzky, B. (2008). Structural and functional comparison of 2-His-1-carboxylate and 3-His metallocentres in non-haem iron(II)-dependent enzymes. Biochemical Society Transactions, 36, 1180–1186. https://doi.org/10.1042/BST0361180.

    Article  CAS  Google Scholar 

  • Li, Y., Xu, J., Zhang, L., Ding, Z., Gu, Z., & Shi, G. (2017). Investigation of debranching pattern of a thermostable isoamylase and its application for the production of resistant starch. Carbohydrate Research, 446–447, 93–100. https://doi.org/10.1016/j.carres.2017.05.016.

    Article  CAS  Google Scholar 

  • Liu, L., Lin, Z., Zheng, T., Lin, L., Zheng, C., Lin, Z., Wang, S., & Wang, Z. (2009). Fermentation optimization and characterization of the laccase from Pleurotus ostreatus strain 10969. Enzyme and Microbial Technology, 44, 426–433. https://doi.org/10.1016/j.enzmictec.2009.02.008.

    Article  CAS  Google Scholar 

  • Maciel, H. P. F., Gouvêa, C. M. C. P., & Pastore, G. M. (2007). Extração e caracterização parcial de peroxidase de folhas de Copaifera langsdorffii Desf. Food Science and Technology, 27, 221–225. https://doi.org/10.1590/S0101-20612007000200002.

    Article  CAS  Google Scholar 

  • Madigan, M. T., et al. (2016). Brock biology of microbiology (14th ed.). Porto Alegre: Artmed.

    Google Scholar 

  • Mahmood, M. H., Yang, Z., Thanoon, R. D., Makky, E. A., & Rahim, M. H. A. (2017). Lipase production and optimization from bioremediation of disposed engine oil. Journal of Chemical and Pharmaceutical Research, 9, 26–36. ISSN:0975-7384.

    CAS  Google Scholar 

  • Mai, C., Schormann, W., Milstein, O., & Hüttermann, A. (2000). Enhanced stability of laccase in the presence of phenolic compounds. Applied Microbiology and Biotechnology, 54, 510–514.

    Article  CAS  Google Scholar 

  • Majumder, R., Banik, S. P., Ramrakhiani, L., & Khowala, S. (2014). Bioremediation by alkaline protease (AkP) from edible mushroom Termitomyces clypeatus: Optimization approach based on statistical design and characterization for diverse applications. Journal of Chemical Technology & Biotechnology, 90, 1886. https://doi.org/10.1002/jctb.4500.

    Article  CAS  Google Scholar 

  • Marco-Urrea, E., Pérez-Trujillo, M., Cruz-Morató, C., Caminal, G., & Vicent, T. (2010). Degradation of the drug sodium diclofenac by Trametes versicolor pellets and identification of some intermediates by NMR. Journal of Hazardous Materials, 176, 836–842. https://doi.org/10.1016/j.jhazmat.2009.11.112.

    Article  CAS  Google Scholar 

  • Martínez, A. T., Speranza, M., Ruiz-Dueñas, F. J., Ferreira, P., Camarero, S., Guillén, F., Martínez, M. J., Gutiérrez, A., & del Río, J. C. (2005). Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology, 8, 195–204.

    Google Scholar 

  • Mewis, K., Armstrong, Z., Song, Y. C., Baldwin, S. A., Withers, S. G., & Hallam, S. J. (2013). Biomining active cellulases from a mining bioremediation system. Journal of Biotechnology, 167, 462. https://doi.org/10.1016/j.jbiotec.2013.07.015.

    Article  CAS  Google Scholar 

  • Mierzecki, R. (1991). The historical development of chemical concepts. Varsóvia/Dordrecht: Polish Scientific Publishers/Kluwer Academic Publishers.

    Google Scholar 

  • Ministério do Meio Ambiente do Brasil – MMA. (1981). Política nacional do meio ambiente, lei número 6.938/81.

    Google Scholar 

  • Miranda, A. S., Miranda, L. S. M., & Souza, R. O. M. A. (2015). Lipases: Valuable catalysts for dynamic kinetic resolutions. Biotechnology Advances. https://doi.org/10.1016/j.biotechadv.2015.02.015.

    Article  CAS  Google Scholar 

  • Mita, L., Sica, V., Guida, M., Nicolucci, C., Grimaldi, T., Caputo, L., Bianco, M., Rossi, S., Bencivenga, U., Eldin, M. S. M., Tufano, M. A., Mita, D. G., & Diano, N. (2010). Employment of immobilised lipase from Candida rugosa for the bioremediation of waters polluted by dimethylphthalate, as a model of endocrine disruptors. Journal of Molecular Catalysis B: Enzymatic, 62(2), 133–141.

    Article  CAS  Google Scholar 

  • Mohan, S. V., Prasad, K. K., Rao, N. C., & Sarma, P. N. (2005). Acid azo dye degradation by free and immobilized horseradish peroxidase (HRP) catalyzed process. Chemosphere, 58, 1097–1105. https://doi.org/10.1016/j.chemosphere.2004.09.070.

    Article  CAS  Google Scholar 

  • Mukherjee, P., & Roy, P. (2013). Copper enhanced monooxygenase activity and FT-IR spectroscopic characterisation of biotransformation products in trichloroethylene degrading bacterium: Stenotrophomonas maltophilia PM102. BioMed Research International, 2013. https://doi.org/10.1155/2013/723680.

    Google Scholar 

  • Mulo, P., & Medina, M. (2017). Interaction and electron transfer between ferredoxin-NADP+ oxidoreductase and its partners: Structural, functional, and physiological implications. Photosynthesis Research, 134, 265–280. https://doi.org/10.1007/s11120-017-0372-0.

    Article  CAS  Google Scholar 

  • Murthy, P. S., & Madhava Naidu, M. (2012). Sustainable management of coffee industry by-products and value addition—A review. Resources, Conservation and Recycling, 66, 45–58. https://doi.org/10.1016/j.resconrec.2012.06.005.

    Article  Google Scholar 

  • Muthukamalam, S., Sivagangavathi, S., Dhrishya, D., & Sudha Rani, S. (2017). Characterization of dioxygenases and biosurfactants produced by crude oil degrading soil bacteria. Brazilian Journal of Microbiology, 48, 637–647. https://doi.org/10.1016/j.bjm.2017.02.007.

    Article  CAS  Google Scholar 

  • Naghdi, M., Taheran, M., Brar, S. K., Kermanshahi-Pour, A., Verma, M., & Surampalli, R. Y. (2018). Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes. Environmental Pollution Barking Essex 1987, 234, 190–213. https://doi.org/10.1016/j.envpol.2017.11.060.

    Article  CAS  Google Scholar 

  • Nelson, D. L., & Cox, M. M. (1970). Lehninger principles of biochemistry (6th ed.). New York: W.H. Freeman. ISBN 9781429234146.

    Google Scholar 

  • Newman, L. A., Doty, S. L., Gery, K. L., Heilman, P. E., Muiznieks, I., Shang, T. Q., Siemieniec, S. T., Strand, S. E., Wang, X., Wilson, A. M., & Gordon, M. P. (1998). Phytoremediation of organic contaminants: A review of phytoremediation research at the University of Washington. Journal of Soil Contamination, 7, 531–542. https://doi.org/10.1080/10588339891334366.

    Article  CAS  Google Scholar 

  • Nguyen, L. N., Hai, F. I., Price, W. E., Leusch, F. D. L., Roddick, F., McAdam, E. J., Magram, S. F., & Nghiem, L. D. (2014). Continuous biotransformation of bisphenol A and diclofenac by laccase in an enzymatic membrane reactor. International of Biodeterioration and Biodegradation, Challenges in Environmental Science and Engineering, CESE 2013, 95, 25–32. https://doi.org/10.1016/j.ibiod.2014.05.017.

    Article  CAS  Google Scholar 

  • Okino-Delgado, C. H., Prado, D. Z., Facanali, R., Marques, M. M. O., Nascimento, A. S., Fernandes, C. J. C., Zambuzzi, W. F., & Fleuri, L. F. (2017). Bioremediation of cooking oil waste using lipases from wastes. PLoS One, 12, 1–17. https://doi.org/10.1371/journal.pone.0186246.

    Article  CAS  Google Scholar 

  • Pandey, A., Benjamin, S., Soccol, C. R., Nigam, P., Krieger, N., & Soccol, V. T. (1999). The realm of microbial lipases in biotechnology. Biotechnology and Applied Biochemistry, 29, 119–131.

    CAS  Google Scholar 

  • Park, J.-W., Park, B.-K., & Kim, J.-E. (2006). Remediation of soil contaminated with 2,4-dichlorophenol by treatment of minced shepherd’s purse roots. Archives of Environmental Contamination and Toxicology, 50, 191–195. https://doi.org/10.1007/s00244-004-0119-8.

    Article  CAS  Google Scholar 

  • Peixoto, R. S., Vermelho, A. B., & Rosado, A. S. (2011). Petroleum-degrading enzymes: Bioremediation and new prospects. Enzyme Research, 2011, 1. https://doi.org/10.4061/2011/475193.

    Article  CAS  Google Scholar 

  • Peng, D., Lan, Z., Guo, C., Yang, C., & Dang, Z. (2013). Application of cellulase for the modification of corn stalk: Leading to oil sorption. Bioresource Technology, 137, 414–418. https://doi.org/10.1016/j.biortech.2013.03.178.

    Article  CAS  Google Scholar 

  • Pereira, A. R. B., & Freitas, D. A. F. (2012). Uso de microorganismos para a biorremediação de ambientes impactados. 6, 975–1006.

    Google Scholar 

  • Pillai, P., & Archana, G. (2008). Hide depilation and feather disintegration studies with keratinolytic serine protease from a novel Bacillus subtilis isolate. Applied Microbiology Biotechnology, 78, 643–650. https://doi.org/10.1007/s00253-008-1355-z.

    Article  CAS  Google Scholar 

  • Prieto, A., Möder, M., Rodil, R., Adrian, L., & Marco-Urrea, E. (2011). Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products. Bioresource Technology, 102, 10987–10995. https://doi.org/10.1016/j.biortech.2011.08.055.

    Article  CAS  Google Scholar 

  • Rao, M. A., Scelza, R., Acevedo, F., Diez, M. C., & Gianfreda, L. (2014). Enzymes as useful tools for environmental purposes. Chemosphere, 107, 145–162. https://doi.org/10.1016/j.chemosphere.2013.12.059.

    Article  CAS  Google Scholar 

  • Regalado, C., García-Almendárez, B. E., & Duarte-Vázquez, M. A. (2004). Biotechnological applications of peroxidases. Phytochemistry Reviews, 3(1–2), 243–256.

    Article  CAS  Google Scholar 

  • Riffaldi, R., Levi-Minzi, R., Cardelli, R., & Palumbo, S. (2006). Soil biological activities in monitoring the bioremediation of diesel oil-contaminated soil. Water, Air, and Soil Pollution, 170, 3–15. https://doi.org/10.1007/s11270-006-6328-1.

    Article  CAS  Google Scholar 

  • Rigo, E., Rigoni, R. E., Lodea, P., de Oliveira, D., Freire, D. M. G., & Di Luccio, M. (2008). Application of different lipases as Pretreatment in anaerobic treatment of wastewater. Environmental Engineering Science, 25(9), 1243–1248.

    Article  CAS  Google Scholar 

  • Roccatano, D. (2015). Structure, dynamics, and function of the monooxygenase P450 BM-3: Insights from computer simulations studies. Journal of Physics. Condensed Matter, 27, 273102. https://doi.org/10.1088/0953-8984/27/27/273102.

    Article  CAS  Google Scholar 

  • Rodrigues, T. A. [UNESP, (2003)]. Estudo da interação biosortiva entre o corante reativo procion blue MXG e as linhagens CCB 004, CCB 010 e CCB 650 de Pleurotus ostreatus paramorfogênico. Aleph xv, 101 f.: il.

    Google Scholar 

  • Rodríguez-Rodríguez, C. E., García-Galán, M. A. J., Blánquez, P., Díaz-Cruz, M. S., Barceló, D., Caminal, G., & Vicent, T. (2012). Continuous degradation of a mixture of sulfonamides by Trametes versicolor and identification of metabolites from sulfapyridine and sulfathiazole. Journal of Hazardous Materials, 213–214, 347–354. https://doi.org/10.1016/j.jhazmat.2012.02.008.

    Article  CAS  Google Scholar 

  • Rubilar, O., Diez, M. C., & Gianfreda, L. (2008). Transformation of chlorinated phenolic compounds by white rot fungi. Critical Reviews in Environmental Science and Technology, 38, 227–268. https://doi.org/10.1080/10643380701413351.

    Article  CAS  Google Scholar 

  • Ruiz-Dueñas, F. J., Morales, M., Pérez-Boada, M., Choinowski, T., Martínez, M. J., Piontek, K., & Martínez, A. T. (2007). Manganese oxidation site in Pleurotus eryngii versatile peroxidase: A site-directed mutagenesis, kinetic, and crystallographic study. Biochemistry (Mosc), 46, 66–77. https://doi.org/10.1021/bi061542h.

    Article  CAS  Google Scholar 

  • Sakurai, T., & Kataoka, K. (2007). Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. Chemical Record New York, 7, 220–229. https://doi.org/10.1002/tcr.20125.

    Article  CAS  Google Scholar 

  • Sánchez-Porro, C., Martın, S., Mellado, E., & Ventosa, A. (2003). Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. Journal of Applied Microbiology, 94, 295–300. PMID:12534822.

    Article  Google Scholar 

  • Sharma, A., Tewari, R., Rana, S. S., Soni, R., & Soni, S. K. (2016). Cellulases: Classification, methods of determination and industrial applications. Applied Biochemistry and Biotechnology, 179, 1346. https://doi.org/10.1007/s12010-016-2070-3.

    Article  CAS  Google Scholar 

  • Sharma, B., Dangi, A. K., & Shukla, P. (2018). Contemporary enzyme based technologies for bioremediation: A review. Journal of Environmental Management, 210, 10–22. https://doi.org/10.1016/j.jenvman.2017.12.075.

    Article  CAS  Google Scholar 

  • Shen, B., & Hutchinson, C. R. (1993). Enzymatic synthesis of a bacterial polyketide from acetyl and malonyl coenzyme A. Science, 262, 1535–1540.

    Article  CAS  Google Scholar 

  • Shraddha, Shekher, R., Sehgal, S., Kamthania, M., & Kumar, A. (2011). Laccase: Microbial sources, production, purification, and potential biotechnological applications. Enzyme Research, 2011, 1. https://doi.org/10.4061/2011/217861.

    Article  CAS  Google Scholar 

  • Shukor, Y., Baharom, N. A., Rahman, F. A., Abdullah, M. P., Shamaan, N. A., & Syed, M. A. (2006). Development of a heavy metals enzymatic-based assay using papain. Analytica Chimica Acta, 566, 283–289. https://doi.org/10.1016/j.aca.2006.03.001.

    Article  CAS  Google Scholar 

  • Silva, M. C., Torres, J. A., Castro, A. A., da Cunha, E. F. F., Alves de Oliveira, L. C., Corrêa, A. D., & Ramalho, T. C. (2016). Combined experimental and theoretical study on the removal of pollutant compounds by peroxidases: Affinity and reactivity toward a bioremediation catalyst. Journal of Biomolecular Structure & Dynamics, 34, 1839–1848. https://doi.org/10.1080/07391102.2015.1063456.

    Article  CAS  Google Scholar 

  • Sivaperumal, P., Kamala, K., & Rajaram, R. (2017). Bioremediation of industrial waste through enzyme producing marine microorganisms. Advances in Food and Nutrition Research, 80, 165–179. https://doi.org/10.1016/bs.afnr.2016.10.006.

    Article  CAS  Google Scholar 

  • Souza, A. F., & Rosado, F. R. (2009). Utilização de Fungos Basidiomicetes em Biodegradação de Efluentes Têxteis. Revista Em Agronegócio E Meio Ambiente, 2, 121–139.

    Google Scholar 

  • Stadlmair, L. F., Letzel, T., Drewes, J. E., & Graßmann, J. (2017). Mass spectrometry based in vitro assay investigations on the transformation of pharmaceutical compounds by oxidative enzymes. Chemosphere, 174, 466–477. https://doi.org/10.1016/j.chemosphere.2017.01.140.

    Article  CAS  Google Scholar 

  • Stadlmair, L. F., Letzel, T., & Graßmann, J. (2018). Monitoring enzymatic degradation of emerging contaminants using a chip-based robotic nano-ESI-MS tool. Analytical and Bioanalytical Chemistry, 410, 27–32. https://doi.org/10.1007/s00216-017-0729-4.

    Article  CAS  Google Scholar 

  • Tang, L., Zeng, G.-M., Shen, G.-L., Zhang, Y., Huang, G.-H., & Li, J.-B. (2006). Simultaneous amperometric determination of lignin peroxidase and manganese peroxidase activities in compost bioremediation using artificial neural networks. Analytica Chimica Acta, 579, 109–116. https://doi.org/10.1016/j.aca.2006.07.021.

    Article  CAS  Google Scholar 

  • ten Have, R., & Teunissen, P. J. M. (2001). Oxidative mechanisms involved in lignin degradation by white-rot Fungi. Chemical Reviews, 101, 3397–3414. https://doi.org/10.1021/cr000115l.

    Article  CAS  Google Scholar 

  • Thackray, S. J., Mowat, C. G., & Chapman, S. K. (2008). Exploring the mechanism of tryptophan 2,3-dioxygenase. Biochemical Society Transactions, 36, 1120–1123. https://doi.org/10.1042/BST0361120.

    Article  CAS  Google Scholar 

  • Touahar, I. E., Haroune, L., Ba, S., Bellenger, J.-P., & Cabana, H. (2014). Characterization of combined cross-linked enzyme aggregates from laccase, versatile peroxidase and glucose oxidase, and their utilization for the elimination of pharmaceuticals. Science of Total Environment, 481, 90–99. https://doi.org/10.1016/j.scitotenv.2014.01.132.

    Article  CAS  Google Scholar 

  • Tran, N. H., Urase, T., & Kusakabe, O. (2010). Biodegradation characteristics of pharmaceutical substances by whole fungal culture Trametes versicolor and its laccase. Journal of Water Environment Technology, 8, 125–140. https://doi.org/10.2965/jwet.2010.125.

    Article  Google Scholar 

  • Tuomela, M., & Hatakka, A. (2011). Oxidative fungal enzymes for bioremediation. In Comprehensive biotechnology (Vol. 6, 2nd ed., pp. 183–196). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Upadhyay, P., Shrivastava, R., & Agrawal, P. K. (2016). Bioprospecting and biotechnological applications of fungal laccase. 3 Biotech, 6, 15. https://doi.org/10.1007/s13205-015-0316-3.

    Article  Google Scholar 

  • Vaidya, S., Srivastava, P. K., Rathore, P., & Pandey, A. K. (2015). Amylases: A prospective enzyme in the field of biotechnology. Journal of Applied Bioscience, 41, 1–18. ISSN (Print) 0975-685X.

    Google Scholar 

  • Vajravijayan, S., Pletnev, S., Mani, N., Pletneva, N., Nandhagopal, N., & Gunasekaran, K. (2018). Structural insights on starch hydrolysis by plant β-amylase and its evolutionary relationship with bacterial enzymes. International Journal of Biological Macromolecules, 113, 329–337. https://doi.org/10.1016/j.ijbiomac.2018.02.138.

    Article  CAS  Google Scholar 

  • Van Hamme, J. D., Singh, A., & Ward, O. P. (2003). Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews MMBR, 67, 503–549.

    Article  Google Scholar 

  • Verma, S., Saxena, J., Prasanna, R., Sharma, V., & Nain, L. (2012). Medium optimization for a novel crude-oil degrading lipase from Pseudomonas aeruginosa SL-72 using statistical approaches for bioremediation of crude-oil. Biocatalysis and Agricultural Biotechnology, 1, 321–329. https://doi.org/10.1016/j.bcab.2012.07.002.

    Article  CAS  Google Scholar 

  • Vidali, M. (2001). Bioremediation. An overview. Pure and Applied Chemistry, 73(7), 1163–1172.

    Article  CAS  Google Scholar 

  • Visser, S. P. D. (2011). Chapter 1: Experimental and computational studies on the catalytic mechanism of non-heme Iron dioxygenases. In Iron-containing enzymes (pp. 1–41). https://doi.org/10.1039/9781849732987-00001.

    Chapter  Google Scholar 

  • Viswanath, B., Chandra, M. S., Pallavi, H., & Reddy, B. R. (2008). Screening and assessment of laccase producing fungi isolated from different environmental samples. African Journal of Biotechnology, 7, 1129–1133.

    CAS  Google Scholar 

  • Viswanath, B., Rajesh, B., Janardhan, A., Kumar, A. P., & Narasimha, G. (2014). Fungal laccases and their applications in bioremediation. Enzyme Research. https://doi.org/10.1155/2014/163242.

    Article  Google Scholar 

  • Wake, H. (2005). Oil refineries: A review of their ecological impacts on the aquatic environment. Estuarine, Coastal and Shelf Science, 62, 131–140. https://doi.org/10.1016/j.ecss.2004.08.013.

    Article  CAS  Google Scholar 

  • Wang, Z., Yang, T., Zhai, Z., Zhang, B., & Zhang, J. (2015). Reaction mechanism of dicofol removal by cellulase. Journal of Environmental Sciences, 36, 22–28. https://doi.org/10.1016/j.jes.2015.03.015.

    Article  CAS  Google Scholar 

  • Whiteley, C. G., & Lee, D.-J. (2006). Enzyme technology and biological remediation. Enzyme and Microbial Technology, 38, 291–316. https://doi.org/10.1016/j.enzmictec.2005.10.010.

    Article  CAS  Google Scholar 

  • Xu, R., Si, Y., Li, F., & Zhang, B. (2015). Enzymatic removal of paracetamol from aqueous phase: Horseradish peroxidase immobilized on nanofibrous membranes. Environmental Science and Pollution Research International, 22, 3838–3846. https://doi.org/10.1007/s11356-014-3658-1.

    Article  CAS  Google Scholar 

  • Yamada, K., Inoue, T., Akiba, Y., Kashiwada, A., Matsuda, K., & Hirata, M. (2006). Removal of p-Alkylphenols from aqueous solutions by combined use of mushroom tyrosinase and chitosan beads. Bioscience, Biotechnology, and Biochemistry, 70, 2467–2475. https://doi.org/10.1271/bbb.60205.

    Article  CAS  Google Scholar 

  • Yoshida, H. (1883). LXIII.—Chemistry of lacquer (Urushi). Part I. Communication from the Chemical Society of Tokio. Journal of the Chemical Society, Transactions, 43, 472–486. https://doi.org/10.1039/CT8834300472.

    Article  CAS  Google Scholar 

  • Yu, K., & Zhang, T. (2012). Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge. PLoS One, 7, e38183. https://doi.org/10.1371/journal.pone.0038183.

    Article  CAS  Google Scholar 

  • Zancan, L. R., Barreto, A. R., & Meneze, C. R. (2015). Study of the fungal enzyme production by cultured in basidiomycetes lignocellulosic residues. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental Santa Maria, 19, 850–860.

    Google Scholar 

  • Zhang, H., Zhang, S., He, F., Qin, X., Zhang, X., & Yang, Y. (2016). Characterization of a manganese peroxidase from white-rot fungus Trametes sp. 48424 with strong ability of degrading different types of dyes and polycyclic aromatic hydrocarbons. Journal of Hazardous Materials, 320, 265–277. https://doi.org/10.1016/j.jhazmat.2016.07.065.

    Article  CAS  Google Scholar 

  • Zheng, K., Xu, J., Jiang, Q., Laroche, A., Wei, Y., Zheng, Y., & Lu, Z. (2013). Isolation and characterization of an isoamylase gene from rye. The Crop Journal, 1, 127–133. https://doi.org/10.1016/j.cj.2013.08.001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okino-Delgado, C.H., Zanutto-Elgui, M.R., do Prado, D.Z., Pereira, M.S., Fleuri, L.F. (2019). Enzymatic Bioremediation: Current Status, Challenges of Obtaining Process, and Applications. In: Arora, P. (eds) Microbial Metabolism of Xenobiotic Compounds. Microorganisms for Sustainability, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-13-7462-3_4

Download citation

Publish with us

Policies and ethics