Skip to main content

Anaerobic Biodegradation of Pesticides

  • Chapter
  • First Online:
Microbial Metabolism of Xenobiotic Compounds

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 10))

Abstract

With the exception of those used in paddy rice, pesticides are typically applied to oxic environments but may be transported to anoxic environments through leaching, surface runoff, or eroded sediments. Pesticides are often applied to sites subject to transient flooding, eventually causing soil to become anoxic as oxygen consumptions rates exceed supply rates. This is largely due to decreased gas diffusion as pore space becomes saturated. Pesticide degradation occurs in each of the major anaerobic redox regimes, including aerobic, nitrate-reducing, iron-reducing, sulfate-reducing, and methanogenic environments. The ecology of microorganisms involved in anaerobic degradation of pesticides was poorly described until recently. Pesticide degraders (especially anaerobes) can be difficult to isolate; however, molecular biology tools allow examination of microorganisms involved in pesticide degradation without the need for isolation. In some cases, pesticide biodegradation has proved more rapid in aerobic environments, while certain substances are more labile under anaerobic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aislabie, J., Richards, N., & Boul, H. (1997). Microbial degradation of DDT and its residues – A review. New Zealand Journal of Agricultural Research, 40(2), 269–282.

    Article  CAS  Google Scholar 

  • Baarschers, W. H., Bharath, A. I., Elvish, J., & Davies, M. (1982). The biodegradation of methoxychlor by Klebsiella pneumoniae. Canadian Journal of Microbiology, 28(2), 176–179.

    Article  CAS  Google Scholar 

  • Barton, L. L., & Fauque, G. D. (2009). Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. Advances in Applied Microbiology, 68, 41–98.

    Article  CAS  Google Scholar 

  • Becking, L. B., Kaplan, I. R., & Moore, D. (1960). Limits of the natural environment in terms of pH and oxidation-reduction potentials. The Journal of Geology, 68(3), 243–284.

    Article  Google Scholar 

  • Bertelkamp, C., Verliefde, A. R. D., Schoutteten, K., Vanhaecke, L., Vanden Bussche, J., Singhal, N., & van der Hoek, J. P. (2016). The effect of redox conditions and adaptation time on organic micropollutant removal during river bank filtration: A laboratory-scale column study. Science of the Total Environment, 544, 309–318. https://doi.org/10.1016/j.scitotenv.2015.11.035.

    Article  CAS  Google Scholar 

  • Boopathy, R. (2017). Anaerobic degradation of atrazine. International Biodeterioration & Biodegradation, 119, 626–630.

    Article  CAS  Google Scholar 

  • Brockman, F. J., Kieft, T. L., Fredrickson, J. K., Bjornstad, B. N., Shu-mei, W. L., Spangenburg, W., & Long, P. E. (1992). Microbiology of vadose zone paleosols in south-central Washington state. Microbial Ecology, 23(3), 279–301.

    Article  CAS  Google Scholar 

  • Cai, Z., Wang, J., Ma, J., Zhu, X., Cai, J., & Yang, G. (2015). Anaerobic degradation pathway of the novel chiral insecticide paichongding and its impact on bacterial communities in soils. Journal of Agricultural and Food Chemistry, 63(32), 7151–7160. https://doi.org/10.1021/acs.jafc.5b02645.

    Article  CAS  Google Scholar 

  • Calamari, D., & Barg, U. (1992). Hazard assessment of agricultural chemicals by simple simulation models. In: Proceedings of the FAO Expert Consultation, Santiago, Chile, 20–23 October 1992 (pp. 207–222). Rome: FAO.

    Google Scholar 

  • Camilo, B. K. (2016). Bioreactor reduces atrazine and nitrate in tile drain waters. Ecological Engineering, 86, 269–278.

    Article  Google Scholar 

  • Chapelle, F. H., & Lovley, D. R. (1992). Competitive exclusion of sulfate reduction by Fe (lll)-reducing bacteria: A mechanism for producing discrete zones of high-iron ground water. Groundwater, 30(1), 29–36.

    Article  CAS  Google Scholar 

  • Chouhan, D., Bello-Mendoza, R., & Wareham, D. (2017). MCPA biodegradation in an anoxic sequencing batch reactor (SBR). International journal of Environmental Science and Technology, 14(2), 365–374.

    Article  CAS  Google Scholar 

  • Christensen, T. H., Bjerg, P. L., Banwart, S. A., Jakobsen, R., Heron, G., & Albrechtsen, H.-J. (2000). Characterization of redox conditions in groundwater contaminant plumes. Journal of Contaminant Hydrology, 45(3–4), 165–241.

    Article  CAS  Google Scholar 

  • Crawford, J., Sims, G., Mulvaney, R., & Radosevich, M. (1998). Biodegradation of atrazine under denitrifying conditions. Applied Microbiology and Biotechnology, 49(5), 618–623.

    Article  CAS  Google Scholar 

  • Crawford, J. J., Sims, G. K., Simmons, F. W., Wax, L. M., & Freedman, D. L. (2002). Dissipation of the herbicide [14C] dimethenamid under anaerobic conditions in flooded soil microcosms. Journal of Agricultural and Food Chemistry, 50(6), 1483–1491.

    Article  CAS  Google Scholar 

  • Cupples, A. M., & Sims, G. K. (2007). Identification of in situ 2, 4-dichlorophenoxyacetic acid-degrading soil microorganisms using DNA-stable isotope probing. Soil Biology and Biochemistry, 39(1), 232–238.

    Article  CAS  Google Scholar 

  • Cupples, A. M., Sanford, R. A., & Sims, G. K. (2005). Dehalogenation of the herbicides bromoxynil (3, 5-dibromo-4-hydroxybenzonitrile) and ioxynil (3, 5-diiodino-4-hydroxybenzonitrile) by Desulfitobacterium chlororespirans. Applied and Environmental Microbiology, 71(7), 3741–3746.

    Article  CAS  Google Scholar 

  • Das, S., & Adhya, T. K. (2015). Degradation of chlorpyrifos in tropical rice soils. Journal of Environmental Management, 152, 36–42. https://doi.org/10.1016/j.jenvman.2015.01.025.

    Article  CAS  Google Scholar 

  • Derakhshan, Z., Mahvi, A. H., Ghaneian, M. T., Mazloomi, S. M., Faramarzian, M., Dehghani, M., Fallahzadeh, H., Yousefinejad, S., Berizi, E., & Ehrampoush, M. H. (2018). Simultaneous removal of atrazine and organic matter from wastewater using anaerobic moving bed biofilm reactor: A performance analysis. Journal of Environmental Management, 209, 515–524.

    Article  CAS  Google Scholar 

  • Domínguez-Garay, A., Boltes, K., & Esteve-Núñez, A. (2016). Cleaning-up atrazine-polluted soil by using microbial electroremediating cells. Chemosphere, 161, 365–371. https://doi.org/10.1016/j.chemosphere.2016.07.023.

    Article  CAS  Google Scholar 

  • Esteve-Núñez, A., & Ramos, J. L. (1998). Metabolism of 2, 4, 6-trinitrotoluene by pseudomonas sp. JLR11. Environmental Science & Technology, 32(23), 3802–3808.

    Article  Google Scholar 

  • Frková, Z., Johansen, A., de Jonge, L. W., Olsen, P., Gosewinkel, U., & Bester, K. (2016). Degradation and enantiomeric fractionation of mecoprop in soil previously exposed to phenoxy acid herbicides – New insights for bioremediation. Science of the Total Environment, 569–570, 1457–1465. https://doi.org/10.1016/j.scitotenv.2016.06.236.

    Article  CAS  Google Scholar 

  • Gu, J.-D., Berry, D., Taraban, R. H., Martens, D. C., Walker, H. L., & Edmonds, W. (1992). Biodegradability of atrazine, cyanazine, and dicamba in wetland soils. Blacksburg: Virginia Water Resources Research Center, Virginia Polytechnic Institute and State University.

    Google Scholar 

  • Heijman, C. G., Holliger, C., Glaus, M. A., Schwarzenbach, R. P., & Zeyer, J. (1993). Abiotic reduction of 4-chloronitrobenzene to 4-chloroaniline in a dissimilatory iron-reducing enrichment culture. Applied and Environmental Microbiology, 59(12), 4350–4353.

    CAS  Google Scholar 

  • Ivanov, V., Lim, J. J.-W., Stabnikova, O., & Gin, K. Y.-H. (2010). Biodegradation of estrogens by facultative anaerobic iron-reducing bacteria. Process Biochemistry, 45(2), 284–287.

    Article  CAS  Google Scholar 

  • Jahn, M. K., Haderlein, S. B., & Meckenstock, R. U. (2005). Anaerobic degradation of benzene, toluene, ethylbenzene, and o-xylene in sediment-free iron-reducing enrichment cultures. Applied and Environmental Microbiology, 71(6), 3355–3358.

    Article  CAS  Google Scholar 

  • Jenkinson, B., & Franzmeier, D. (2006). Development and evaluation of iron-coated tubes that indicate reduction in soils. Soil Science Society of America Journal, 70(1), 183–191.

    Article  CAS  Google Scholar 

  • Jensen, C., Stolzy, L., & Letey, J. (1967). Tracer studies of oxygen diffusion through roots of barley, corn, and rice. Soil Science, 103(1), 23–29.

    Article  CAS  Google Scholar 

  • Johnson, T. A., Ellsworth, T. R., Hudson, R. J., & Sims, G. K. (2013). Diffusion limitation for atrazine biodegradation in soil. Advances in Microbiology, 3(05), 412.

    Article  CAS  Google Scholar 

  • Jose, R. Q., Ulrike, D., Reiner, S., & Abraham, E.-N. (2016). Stimulating soil microorganisms for mineralizing the herbicide isoproturon by means of microbial electroremediating cells. Microbial Biotechnology, 9(3), 369–380. https://doi.org/10.1111/1751-7915.12351.

    Article  CAS  Google Scholar 

  • Jugder, B.-E., Ertan, H., Lee, M., Manefield, M., & Marquis, C. P. (2015). Reductive dehalogenases come of age in biological destruction of organohalides. Trends in Biotechnology, 33(10), 595–610.

    Article  CAS  Google Scholar 

  • Kanissery, R. G., Welsh, A., & Sims, G. K. (2015). Effect of soil aeration and phosphate addition on the microbial bioavailability of carbon-14-glyphosate. Journal of Environmental Quality, 44(1), 137–144.

    Article  CAS  Google Scholar 

  • Kanissery, R. G., Welsh, A., Gomez, A., Connor, L., & Sims, G. K. (2018). Identification of metolachlor mineralizing bacteria in aerobic and anaerobic soils using DNA-stable isotope probing. Biodegradation, 29(2), 117–128.

    Article  CAS  Google Scholar 

  • Karas, P., Metsoviti, A., Zisis, V., Ehaliotis, C., Omirou, M., Papadopoulou, E. S., Menkissoglou-Spiroudi, U., Manta, S., Komiotis, D., & Karpouzas, D. G. (2015). Dissipation, metabolism and sorption of pesticides used in fruit-packaging plants: towards an optimized depuration of their pesticide-contaminated agro-industrial effluents. Science of the Total Environment, 530, 129–139.

    Article  CAS  Google Scholar 

  • Kaufman, D. (1974). Degradation of pesticides by soil microorganisms. Pesticides in Soil and Water (Pesticides in soil): 133–202.

    Google Scholar 

  • Kuhlmann, B., & Kaczmarzcyk, B. (1995). Biodegradation of the herbicides 2, 4-dichlorophenoxyacetic acid, 2, 4, 5-trichlorophenoxyacetic acid, and 2-methyl-4-chlorophenoxyacetic acid in a sulfate-reducing aquifer. Environmental Toxicology and Water Quality, 10(2), 119–125.

    Article  CAS  Google Scholar 

  • Larsen, L., & Aamand, J. (2001). Degradation of herbicides in two sandy aquifers under different redox conditions. Chemosphere, 44(2), 231–236.

    Article  CAS  Google Scholar 

  • Lehmann, R., Fontaine, D., & Olberding, E. (1993). Soil degradation of flumetsulam at different temperatures in the laboratory and field. Weed Research, 33(2), 187–195.

    Article  CAS  Google Scholar 

  • Lin, C., Gu, J.-G., Qiao, C., Duan, S., & Gu, J.-D. (2006). Degradability of atrazine, cyanazine, and dicamba in methanogenic enrichment culture microcosms using sediment from the Pearl River of Southern China. Biology and Fertility of Soils, 42(5), 395–401.

    Article  CAS  Google Scholar 

  • Liu, Y. J., Liu, S. J., Drake, H. L., & Horn, M. A. (2011). Alphaproteobacteria dominate active 2-methyl-4-chlorophenoxyacetic acid herbicide degraders in agricultural soil and drilosphere. Environmental Microbiology, 13(4), 991–1009.

    Article  CAS  Google Scholar 

  • Liu, X., Xu, X., Li, C., Zhang, H., Fu, Q., Shao, X., Ye, Q., & Li, Z. (2015). Degradation of chiral neonicotinoid insecticide cycloxaprid in flooded and anoxic soil. Chemosphere, 119, 334–341.

    Article  CAS  Google Scholar 

  • Loch, A., Lippa, K., Carlson, D., Chin, Y., Traina, S., & Roberts, A. (2002). Nucleophilic aliphatic substitution reactions of propachlor, alachlor, and metolachlor with Bisulfide (HS-) and Polysulfides (S n 2-). Environmental Science & Technology, 36(19), 4065–4073.

    Article  CAS  Google Scholar 

  • Loor-Vela, S. X., Crawford Simmons, J. J., Simmons, F. W., & Raskin, L. (2003). Dissipation of [14C] acetochlor herbicide under anaerobic aquatic conditions in flooded soil microcosms. Journal of Agricultural and Food Chemistry, 51(23), 6767–6773.

    Article  CAS  Google Scholar 

  • Lovley, D. R. (1997). Microbial Fe (III) reduction in subsurface environments. FEMS Microbiology Reviews, 20(3–4), 305–313.

    Article  CAS  Google Scholar 

  • Lovley, D. R., Dwyer, D. F., & Klug, M. J. (1982). Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments. Applied and Environmental Microbiology, 43(6), 1373–1379.

    CAS  Google Scholar 

  • Lueders, T., & Friedrich, M. (2000). Archaeal population dynamics during sequential reduction processes in rice field soil. Applied and Environmental Microbiology, 66(7), 2732–2742.

    Article  CAS  Google Scholar 

  • Macherey, A.-C., & Dansette, P. M. (2008). Biotransformations leading to toxic metabolites: chemical aspect. In The practice of medicinal chemistry (3rd ed., pp. 674–696). Amsterdam/Boston: Elsevier.

    Chapter  Google Scholar 

  • Mauffret, A., Baran, N., & Joulian, C. (2017). Effect of pesticides and metabolites on groundwater bacterial community. Science of the Total Environment, 576, 879–887. https://doi.org/10.1016/j.scitotenv.2016.10.108.

    Article  CAS  Google Scholar 

  • Mervosh, T. L., Sims, G. K., & Stoller, E. W. (1995a). Clomazone fate in soil as affected by microbial activity, temperature, and soil moisture. Journal of Agricultural and Food Chemistry, 43(2), 537–543.

    Article  CAS  Google Scholar 

  • Mervosh, T. L., Sims, G. K., Stoller, E. W., & Ellsworth, T. R. (1995b). Clomazone sorption in soil: Incubation time, temperature, and soil moisture effects. Journal of Agricultural and Food Chemistry, 43(8), 2295–2300.

    Article  CAS  Google Scholar 

  • Mikesell, M. D., & Boyd, S. A. (1985). Reductive dechlorination of the pesticides 2, 4-D, 2, 4, 5-T, and pentachlorophenol in anaerobic sludges 1. Journal of Environmental Quality, 14(3), 337–340.

    Article  CAS  Google Scholar 

  • Mulligan, C. N., & Yong, R. N. (2004). Natural attenuation of contaminated soils. Environment International, 30(4), 587–601.

    Article  CAS  Google Scholar 

  • North, N. N., Dollhopf, S. L., Petrie, L., Istok, J. D., Balkwill, D. L., & Kostka, J. E. (2004). Change in bacterial community structure during in situ biostimulation of subsurface sediment cocontaminated with uranium and nitrate. Applied and Environmental Microbiology, 70(8), 4911–4920.

    Article  CAS  Google Scholar 

  • O’loughlin, E. J., Sims, G. K., & Traina, S. J. (1999). Biodegradation of 2-methyl, 2-ethyl, and 2-hydroxypyridine by an Arthrobacter sp. isolated from subsurface sediment. Biodegradation, 10(2), 93–104.

    Article  Google Scholar 

  • O’Loughlin, E. J., Traina, S. J., & Sims, G. K. (2000). Effects of sorption on the biodegradation of 2-methylpyridine in aqueous suspensions of reference clay minerals. Environmental Toxicology and Chemistry, 19(9), 2168–2174.

    Article  Google Scholar 

  • Patrick, W., & Delaune, R. (1972). Characterization of the oxidized and reduced zones in flooded soil 1. Soil Science Society of America Journal, 36(4), 573–576.

    Article  CAS  Google Scholar 

  • Patrick, W., Gambrell, R., & Faulkner, S. (1996). Redox measurements of soils. Methods of Soil Analysis Part 3 – Chemical Methods (methodsofsoilan3): 1255–1273.

    Google Scholar 

  • Peters, V., & Conrad, R. (1996). Sequential reduction processes and initiation of CH4 production upon flooding of oxic upland soils. Soil Biology and Biochemistry, 28(3), 371–382.

    Article  CAS  Google Scholar 

  • Pett-Ridge, J., & Firestone, M. (2005). Redox fluctuation structures microbial communities in a wet tropical soil. Applied and Environmental Microbiology, 71(11), 6998–7007.

    Article  CAS  Google Scholar 

  • Preuβt, G., Zullei-Seibert, N., Heimlich, F., & Nolte, J. (1995). Degradation of the herbicide bromoxynil in batch cultures under groundwater conditions. International Journal of Environmental Analytical Chemistry, 58(1–4), 207–213.

    Article  Google Scholar 

  • Rabenhorst, M. C., & Burch, S. (2006). Synthetic iron oxides as an indicator of reduction in soils (IRIS). Soil Science Society of America Journal, 70(4), 1227–1236.

    Article  CAS  Google Scholar 

  • Ramanand, K., Nagarajan, A., & Suflita, J. M. (1993). Reductive dechlorination of the nitrogen heterocyclic herbicide picloram. Applied and Environmental Microbiology, 59(7), 2251–2256.

    CAS  Google Scholar 

  • Sexstone, A. J., Revsbech, N. P., Parkin, T. B., & Tiedje, J. M. (1985). Direct measurement of oxygen profiles and denitrification rates in soil aggregates 1. Soil Science Society of America Journal, 49(3), 645–651.

    Article  CAS  Google Scholar 

  • Shaffer, E., Sims, G., Cupples, A., Smyth, C., Chee-Sanford, J., & Skinner, A. (2010). Atrazine biodegradation in a Cisne soil exposed to a major spill. International Journal of Soil, Sediment and Water, 3(2), 5.

    Google Scholar 

  • Shapir, N., Mandelbaum, R. T., & Jacobsen, C. S. (1998). Rapid atrazine mineralization under denitrifying conditions by Pseudomonas sp. strain ADP in aquifer sediments. Environmental Science & Technology, 32(23), 3789–3792.

    Article  CAS  Google Scholar 

  • Sims, G. K. (2008). Stable isotope probing to investigate microbial function in soil. Recent Research and Development in Soil Science, 2, 64–85.

    Google Scholar 

  • Sims, G. K., & Cupples, A. M. (1999). Factors controlling degradation of pesticides in soil. Pesticide Science, 55(5), 598–601. https://doi.org/10.1002/(SICI)1096-9063(199905)55:5<598::AID-PS962>3.0.CO;2-N.

    Article  CAS  Google Scholar 

  • Sims, G. K., & Kanissery, R. G. (2012). Factors controlling herbicide transformation under anaerobic conditions. Environmental Research Journal, 6, 355–373.

    Google Scholar 

  • Sims, G. K., Taylor-Lovell, S., Tarr, G., & Maskel, S. (2009). Role of sorption and degradation in the herbicidal function of isoxaflutole. Pest Management Science, 65(7), 805–810.

    Article  CAS  Google Scholar 

  • Stamper, D. M., & Tuovinen, O. H. (1998). Biodegradation of the acetanilide herbicides alachlor, metolachlor, and propachlor. Critical Reviews in Microbiology, 24(1), 1–22.

    Article  CAS  Google Scholar 

  • Suflita, J. M., Robinson, J. A., & Tiedje, J. M. (1983). Kinetics of microbial dehalogenation of haloaromatic substrates in methanogenic environments. Applied and Environmental Microbiology, 45(5), 1466–1473.

    CAS  Google Scholar 

  • Tang, T., Yue, Z., Wang, J., Chen, T., & Qing, C. (2018). Goethite promoted biodegradation of 2,4-dinitrophenol under nitrate reduction condition. Journal of Hazardous Materials, 343, 176–180. https://doi.org/10.1016/j.jhazmat.2017.09.011.

    Article  CAS  Google Scholar 

  • Tiedje, J., Sexstone, A., Parkin, T., & Revsbech, N. (1984). Anaerobic processes in soil. Plant and Soil, 76(1–3), 197–212.

    Article  CAS  Google Scholar 

  • Tiedje, J. M., Asuming-Brempong, S., Nüsslein, K., Marsh, T. L., & Flynn, S. J. (1999). Opening the black box of soil microbial diversity. Applied Soil Ecology, 13(2), 109–122.

    Article  Google Scholar 

  • Tong, H., Hu, M., Li, F., Chen, M., & Lv, Y. (2015). Burkholderiales participating in pentachlorophenol biodegradation in iron-reducing paddy soil as identified by stable isotope probing. Environmental Science: Processes & Impacts, 17(7), 1282–1289.

    CAS  Google Scholar 

  • Tor, J. M., Xu, C., Stucki, J. M., Wander, M. M., & Sims, G. K. (2000). Trifluralin degradation under microbiologically induced nitrate and Fe (III) reducing conditions. Environmental Science & Technology, 34(15), 3148–3152.

    Article  CAS  Google Scholar 

  • Unden, G., Becker, S., Bongaerts, J., Schirawski, J., & Six, S. (1994). Oxygen regulated gene expression in facultatively anaerobic bacteria. Antonie Van Leeuwenhoek, 66(1–3), 3–22.

    Article  CAS  Google Scholar 

  • Wang, S., & Arnold, W. A. (2003). Abiotic reduction of dinitroaniline herbicides. Water Research, 37(17), 4191–4201.

    Article  CAS  Google Scholar 

  • Wang, W., Wang, Y., Li, Z., Wang, H., Yu, Z., Lu, L., & Ye, Q. (2014). Studies on the anoxic dissipation and metabolism of pyribambenz propyl (ZJ0273) in soils using position-specific radiolabeling. Science of the Total Environment, 472, 582–589. https://doi.org/10.1016/j.scitotenv.2013.11.068.

    Article  CAS  Google Scholar 

  • Wilber, G. G., & Parkin, G. F. (1995). Kinetics of alachlor and atrazine biotransformation under various electron acceptor conditions. Environmental Toxicology and Chemistry, 14(2), 237–244.

    Article  CAS  Google Scholar 

  • Wu, C.-Y., Zhuang, L., Zhou, S.-G., Li, F.-B., & Li, X.-M. (2009). Fe (III)-enhanced anaerobic transformation of 2, 4-dichlorophenoxyacetic acid by an iron-reducing bacterium Comamonas koreensis CY01. FEMS Microbiology Ecology, 71(1), 106–113.

    Article  CAS  Google Scholar 

  • Xu, J. C., Stucki, J. W., Wu, J., Kostka, J. E., & Sims, G. K. (2001). Fate of atrazine and alachlor in redox-treated ferruginous smectite. Environmental Toxicology and Chemistry, 20(12), 2717–2724.

    Article  CAS  Google Scholar 

  • Zhang, C., & Bennett, G. N. (2005). Biodegradation of xenobiotics by anaerobic bacteria. Applied Microbiology and Biotechnology, 67(5), 600–618.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald K. Sims .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sims, G.K., Kanissery, R.G. (2019). Anaerobic Biodegradation of Pesticides. In: Arora, P. (eds) Microbial Metabolism of Xenobiotic Compounds. Microorganisms for Sustainability, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-13-7462-3_2

Download citation

Publish with us

Policies and ethics