Skip to main content

Distillery Effluent: Pollution Profile, Eco-friendly Treatment Strategies, Challenges and Future Prospects

  • Chapter
  • First Online:
Microbial Metabolism of Xenobiotic Compounds

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 10))

Abstract

In India, distilleries are one of the largest industries, generating vast quantities of effluent (known as raw effluent or spent wash), which is potentially a great cause of aquatic and soil pollution. Distillery effluent (DE) is characterized by its high biological oxygen demand (BOD), chemical oxygen demand (COD), total dissolved solids (TDS) and non-biodegradable inorganic and organic pollutants and highly recalcitrant dark brown colour. It also contains a complex mixture of numerous recalcitrant organic pollutants such as butanedioic acid, 2-hydroxyisocaproic acid and vanillyl propionic acid and various heavy metals, which are reported as endocrine-disrupting chemicals (EDCs) by the U.S. Environmental Protection Agency (USEPA). DE disposed even after conventional treatment processes (activated sludge and biomethanation) poses a serious threat to the environment. Thus, various physicochemical processes have been reported for its decolourization and detoxification, but these techniques are not practicable on an industrial scale due to expensive high chemical consumption, high water requirement and resulting production of a vast quantity of toxic sludge and other secondary by-products. Hence, biological approaches that use microorganisms present a highly attractive alternative for decolourization and detoxification of distillery effluent. This chapter provides a comprehensive review of DE pollutants, their ecotoxicological hazards as well as various ecofriendly treatment techniques. In addition, different challenges and future prospects of DE treatment processes are discussed towards establishing sustainable development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arimi, M. M., Zhang, Y., Goetz, G., Kiriamiti, K., & Geissen, S. U. (2014). Antimicrobial colorants in molasses distillery wastewater and their removal technologies. International Biodeterioration and Biodegradation, 87, 34–43.

    CAS  Google Scholar 

  • Arimi, M. M., Zhang, Y., & Geisen, S. (2015). Color removal of melanoidin-rich industrial effluent by natural manganese oxides. Separation and Purification Technology, 150, 286–291.

    CAS  Google Scholar 

  • Arora, M., Sharma, D. K., & Behera, B. K. (1992). Upgrading of distillery effluent by Nitrosococcus oceanus for its use as a low-cost fertilizer. Resources Conservation and Recycling, 6(4), 347–353.

    Google Scholar 

  • Ayyasamy, P. M., Yasodha, R., Rajakumar, S., Lakshmanaperumalsamy, P., Rahman, P. K. S. M., & Lee, S. (2008). Impact of sugar factory effluent on the growth and biochemical characteristics of terrestrial and aquatic plants. Bulletin of Environmental Contamination and Toxicology, 81, 449–454.

    CAS  Google Scholar 

  • Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4, 361–377.

    CAS  Google Scholar 

  • Bernardo, E. C., Egashira, R., & Kawasaki, J. (1997). Decolorization of molasses’ wastewater using activated carbon prepared from cane bagasse. Carbon, 35, 1217–1221.

    CAS  Google Scholar 

  • Bharagava, R. N., & Chandra, R. (2010). Effect of bacteria treated and untreated post-methanated distillery effluent (PMDE) on seed germination, seedling growth and amylase activity in Phaseolus mungo L. Journal of Hazardous Materials, 180, 730–734.

    CAS  Google Scholar 

  • Billore, S. K., Singh, N., Ram, H. K., Sharma, J. K., Singh, V. P., Nelson, R. M., & Dass, P. (2001). Treatment of a molasses based distillery effluent in a constructed wetland in central India. Water Science Technology, 44, 441–448.

    CAS  Google Scholar 

  • Blonskaja, V., Menert, A., & Vilu, R. (2003). Use of two-stage anaerobic treatment for distillery waste. Advances in Environmental Research, 7(3), 671–678.

    CAS  Google Scholar 

  • Cañizares, P., Hernández, M., Rodrigo, M. A., Saez, C., Barrera, C. E., & Roa, G. (2009). Electrooxidation of brown-colored molasses wastewater. Effect of the Electrolyte Salt on the Process Efficiency, Industrial & Engineering Chemistry Research, 48, 1298–1301.

    Google Scholar 

  • Chandra, R., & Kumar, V. (2015a). Biotransformation and biodegradation of organophosphates and organohalides. In R. Chandra (Ed.), Environmental waste management (pp. 475–524). Boca Raton: CRC Press.

    Google Scholar 

  • Chandra, R., & Kumar, V. (2015b). Mechanism of wetland plant rhizosphere bacteria for bioremediation of pollutants in an aquatic ecosystem. In R. Chandra (Ed.), Advances in biodegradation and bioremediation of industrial waste (pp. 329–379). Boca Raton: CRC Press.

    Google Scholar 

  • Chandra, R., & Kumar, V. (2017a). Detection of Bacillus and Stenotrophomonas species growing in an organic acid and endocrine-disrupting chemicals rich environment of distillery spent wash and its phytotoxicity. Environmental Monitoring and Assessment, 189, 26.

    Google Scholar 

  • Chandra, R., & Kumar, V. (2017b). Detection of androgenic-mutagenic compounds and potential autochthonous bacterial communities during in situ bioremediation of post methanated distillery sludge. Frontiers in Microbiology, 8, 887.

    Google Scholar 

  • Chandra, R., & Kumar, V. (2017c). Phytoextraction of heavy metals by potential native plants and their microscopic observation of root growing on stabilized distillery sludge as a prospective tool for in-situ phytoremediation of industrial waste. Environmental Science and Pollution Research, 24, 2605–2619.

    CAS  Google Scholar 

  • Chandra, R., & Kumar, V. (2018). Phytoremediation: A green sustainable technology for industrial waste management. In R. Chandra, N. K. Dubey, & V. Kumar (Eds.), Phytoremediation of environmental pollutants. Boca Raton: CRC Press.

    Google Scholar 

  • Chandra, R., Bharagavaa, R. N., & Rai, V. (2008a). Melanoidins as major colourant in sugarcane molasses based distillery effluent and its degradation. Bioresource Technology, 99(11), 4648–4660.

    CAS  Google Scholar 

  • Chandra, R., Yadav, S., Bharagava, R. N., & Murthy, R. C. (2008b). Bacterial pretreatment enhances removal of heavy metals during treatment of post-methanated distillery effluent by Typha angustata L. Journal of Environmental Managment, 88, 1016–1024.

    CAS  Google Scholar 

  • Chandra, R., Yadav, S., & Mohan, D. (2008c). Effect of distillery sludge on seed germination and growth parameters of green gram (Phaseolus mungo L.). Journal of Hazardous Materials, 152, 431–439.

    Google Scholar 

  • Chandra, R., Bharagava, R. N., Kapley, A., & Purohit, H. J. (2012). Characterization of Phragmites cummunis rhizosphere bacterial communities and metabolic products during the two stage sequential treatment of post methanated distillery effluent by bacteria and wetland plants. Bioresource Technology, 103, 78–86.

    CAS  Google Scholar 

  • Chandra, R., Yadav, S., & Kumar, V. (2015). Microbial degradation of lignocellulosic waste and its metabolic products. In R. Chandra (Ed.), Environmental waste management (pp. 249–298). Boca Raton: CRC Press.

    Google Scholar 

  • Chandra, R., Kumar, V., Tripathi, S., & Sharma, P. (2018a). Heavy metal phytoextraction potential of native weeds and grasses from endocrine-disrupting chemicals rich complex distillery sludge and their histological observations during in situ phytoremediation. Ecological Engineering, 111, 143–156.

    Google Scholar 

  • Chandra, R., Kumar, V., & Tripathi, S. (2018b). Evaluation of molasses-melanoidin decolourisation by potential bacterial consortium discharged in distillery effluent. 3 Biotech, 8, 187.

    Google Scholar 

  • Chandra, R., Kumar, V., & Singh, K. (2018c). Hyperaccumulator versus nonhyperaccumulator plants for environmental waste management. In R. Chandra, N. K. Dubey, & V. Kumar (Eds.), Phytoremediation of environmental pollutants. Boca Raton: CRC Press.

    Google Scholar 

  • Chaturvedi, S., Chandra, R., & Rai, V. (2006). Isolation and characterization of Phragmites australis (L.) rhizosphere bacteria from contaminated site for bioremediation of colored distillery effluent. Ecological Engineering, 27, 202–207.

    Google Scholar 

  • Chauhan, J., & Rai, J. P. N. (2010). Monitoring of impact of ferti-irrigation by postmethanated distillery effluent on groundwater quality. Clean– Soil, Air, Water, 38(7), 630–638.

    CAS  Google Scholar 

  • Chowdhary, P., Raj, A., & Bharagava, R. N. (2018). Environmental pollution and health hazards from distillery wastewater and treatment approaches to combat the environmental threats: A review. Chemosphere, 194, 229. https://doi.org/10.1016/j.chemosphere.2017.11.163.

    Article  CAS  Google Scholar 

  • Dwyer, J., & Lant, P. (2008). Biodegradability of DOC and DON for UV/H2O2 pre-treated melanoidin based wastewater. Biochem Engineering Journal, 42, 47–54.

    CAS  Google Scholar 

  • Fan, L., Nguyen, T., & Roddick, F. A. (2011). Characterisation of the impact of coagulation and anaerobic bio-treatment on the removal of chromophores from molasses wastewater. Water Research, 45(13), 3933–3940.

    CAS  Google Scholar 

  • Gernaey, K. V., van Loosdrecht, M. C. M., Henze, M., Lind, M., & Jørgensen, S. B. (2004). Activated sludge wastewater treatment plant modeling and simulation: State of the art. Environmental Modelling & Software, 19, 763–783.

    Google Scholar 

  • Glick, B. R. (2003). Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnology Advances, 21, 383–393.

    CAS  Google Scholar 

  • Harada, H., Uemura, S., Chen, A., & Jayadevan, J. (1996). Anaerobic treatment of a recalcitrant distillery wastewater by a thermophilic UASB reactor. Bioresource Technology, 55(3), 215–221.

    CAS  Google Scholar 

  • Hatano, K., & Yamatsu, T. (2018). Molasses melanoidin-like products enhance phytoextraction of lead through three Brassica species. International Journal of Phytoremediation, 20, 552. https://doi.org/10.1080/15226514.2017.1393397.

    Article  CAS  Google Scholar 

  • Hatano, K., Kikuchi, S., Miyakawa, T., Tanokura, M., & Kubota, K. (2008). Separation and characterization of the colored material from sugarcane molasses. Chemosphere, 71, 1730–1737.

    CAS  Google Scholar 

  • Hatano, K., Kanazawa, K., Tomura, H., Yamatsu, T., Tsunoda, K., & Kubota, K. (2016). Molasses melanoidin promotes copper uptake for radish sprouts: The potential for an accelerator of phytoextraction. Environmental Science and Pollution Research, 23, 17656–17663.

    CAS  Google Scholar 

  • Jadhav, H. D., & Savant, N. K. (1975). Influence of added spent wash (distillery waste) on chemical and physical properties of soil. Indian Journal of Agricuture and Chemistry, 8, 73–84.

    CAS  Google Scholar 

  • Jagdale, H. N., & Sawant, N. K. (1979). Influence of added spent wash (Distillery waste) on growth and chemical composition of immature sugarcane (Saccharum officinarum L.) cultivar CO-740. Indian Sugar, 29(7), 433–440.

    Google Scholar 

  • Jain, R., & Srivastava, S. (2012a). Nutrient composition of spent wash and its impact on sugarcane growth and biochemical attributes. Physiology and Molecular Biology of Plants, 18(1), 95–99.

    Google Scholar 

  • Jain, R., & Srivastava, S. (2012b). Nutrient composition of spent wash and its impact on sugarcane growth and biochemical attributes. Physiology and Molecular Biology of Plants, 18(1), 95–99.

    Google Scholar 

  • Jain, N., Bhatia, A., Kaushik, R., Kumar, S., Joshi, H. C., & Pathak, H. (2005). Impact of post methanation distillery effluent irrigation on ground water quality. Environmental Monitoring and Assessment, 110, 243–255.

    CAS  Google Scholar 

  • Joshi, H. C., Pathak, H., Chaudhary, A., Joshi, T. P., Phogat, V. K., & Kalra, N. (2000). Changes in soil properties with distillery effluent irrigation. Journal of Environmental Research, 6(4), 153–162.

    Google Scholar 

  • Juwarkar, A., & Dutta, S. A. (1989). Impact of distillery effluent application to land on soil microflora. Environmental Monitoring and Assessment, 15, 201–210.

    Google Scholar 

  • Kadlec, R. H., & Knight, R. L. (1996). Treatment wetlands. New York: Lewis Publishers/CRC Press.

    Google Scholar 

  • Kadlec, R. H., Knight, R. L., Vyamazal, J., Brix, H., Cooper, P., & Haberl, R. (2000). Constructed wetlands for pollution control-processes, performance design and operation (IWA scientific and technical report no. 8). London: IWA, Publishing.

    Google Scholar 

  • Kannan, A., & Upreti, R. K. (2008). Influence of distillery effluent on germination and growth of mung bean (Vigna radiata) seeds. Journal of Hazardous Materials, 153(1–2), 609–615.

    CAS  Google Scholar 

  • Kaushik, G., Gopal, M., & Thakur, I. S. (2010). Evaluation of performance and community dynamics of microorganisms during treatment of distillery spent wash in a three stage bioreactor. Bioresource Technology, 101, 4296–4305.

    CAS  Google Scholar 

  • Kobya, M., & Delipinar, S. (2008). Treatment of the baker’s yeast wastewater by electrocoagulation. Journal of Hazardous Materials, 154, 1133–1140.

    CAS  Google Scholar 

  • Kumar, A. (2004). Optimizing raw water usage in cane-molasses-based distillery industries. In: Proceedings of Indo-EU workshop on promoting efficient water use in agro-based industries.

    Google Scholar 

  • Kumar, P., & Chandra, R. (2004). Detoxification of distillery effluent through Bacillus thuringiensis (MTCC 4714) enhanced phytoremediation potential of Spirodela polyrrhiza (L.) Schliden. Bulletin of Environmental Contamination and Toxicology, 73, 903–910.

    CAS  Google Scholar 

  • Kumar, P., & Chandra, R. (2006). Decolourisation and detoxification of synthetic molasses melanoidins by individual and mixed cultures of Bacillus spp. Bioresource Technology, 97, 2096–2102.

    CAS  Google Scholar 

  • Kumar, V., & Chandra, R. (2018a). Characterisation of MnP and laccase producing bacteria capable for degradation of sucrose glutamic acid-Maillard products at different nutritional and environmental conditions. World Journal of Microbiology & Biotechnology, 34, 32.

    Google Scholar 

  • Kumar, V., & Chandra, R. (2018b). Bioremediation of melanoidins containing distillery waste for environmental safety. In G. Saxena & R. N. Bharagava (Eds.), Bioremediation of industrial waste for environmental safety. Vol II- microbes and methods for industrial waste management. Berlin: Springer.

    Google Scholar 

  • Kumar, V., & Chandra, R. (2018c). Bacterial assisted phytoremediation of industrial waste pollutants and eco-restoration. In R. Chandra, N. K. Dubey, & V. Kumar (Eds.), Phytoremediation of environmental pollutants. Boca Raton: CRC Press.

    Google Scholar 

  • Kumar, S., & Gopal, K. (2001). Impact of distillery effluent on physiological consequences in the fresh water teleost Channa punctatus. Bulleting of Environmental Contamination and Toxicology, 66, 617–622.

    CAS  Google Scholar 

  • Lettinga, G., Hulshoff-Pol, L. W., & Zeeman, G. (1999). Lecture notes: Biological wastewater treatment; part I anaerobic wastewater treatment. Wageningen: Wageningen University and Research.

    Google Scholar 

  • Liakos, T. I., & Lazaridis, N. K. (2014). Melanoidins removal from simulated and real wastewaters by coagulation and electro-flotation. Chemical Engineering Journal, 242, 269–277.

    CAS  Google Scholar 

  • Liang, Z., Wang, Y., Zhou, Y., Liu, H., & Wu, Z. (2009a). Variables affecting melanoidins removal from molasses wastewater by coagulation/flocculation. Separation and Purification Technology, 68, 382–389.

    CAS  Google Scholar 

  • Liang, Z., Wang, Y., Zhou, Y., & Liu, H. (2009b). Coagulation removal of melanoidins from biologically treated molasses wastewater using ferric chloride. Chemical Engineering Journal, 152(1), 88–94.

    CAS  Google Scholar 

  • Liu, J., & Zhang, X. (2014). Comparative toxicity of new halophenolic DBPs in chlorinated saline wastewater effluents against a marine alga: Halophenolic DBPs are generally more toxic than haloaliphatic ones. Water Research, 65, 64–72.

    CAS  Google Scholar 

  • Manyuchi, M. M., Mbohwa, C., & Muzenda, E. (2018). Biological treatment of distillery waste water by application of the vermifiltration technology. South African Journal of Chemical Engineering, 25, 74–78.

    Google Scholar 

  • Matkar, L. S., & Gangotri, M. S. (2003). Acute toxicity tests of sugar industrial effluents on the freshwater crab. Barytelphusa guerini (H. Milne Edwards) (Decapoda, Potamidea). Pollution Research, 22, 269–276.

    CAS  Google Scholar 

  • Metcalf, & Eddy. (2003). Wastewater engineering: Treatment and reuse (4th ed.). New York: McGraw Hill Higher Education.

    Google Scholar 

  • Migo, V. P., Del Rosario, E. J., & Matsumura, M. (1997). Flocculation of melanoidins induced by inorganic ions. Journal of Fermentation and Bioengineering, 83, 287–291.

    CAS  Google Scholar 

  • Mohana, S., Acharya, B. K., & Madamwar, D. (2007). Distillery spent wash: Treatment technologies and potential applications. Journal of Hazardous Materials, 163(1), 12–25.

    Google Scholar 

  • Mohana, S., Acharya, B. K., & Madamwar, D. (2009). Distillery spent wash: Treatment technologies and potential applications. Journal of Hazardous Materials, 163, 12–25.

    CAS  Google Scholar 

  • Musee, N., Trerise, M. A., & Lorenzen, L. (2007). Post-treatment of distillery wastewater after UASB using aerobic techniques. South African Journal of Enology Viticulture, 28(1), 50–55.

    CAS  Google Scholar 

  • Narain, K., Yazdani, T., Bhat, M. M., & Yunus, M. (2012). Effect on physico-chemical and structural properties of soil amended with distillery effluent and ameliorated by cropping two cereal plant spp. Environmental Earth Science, 66, 977–984.

    CAS  Google Scholar 

  • Ojijo, V. O., Onyango, M. S., Ochieng, A., & Otieno, F. A. O. (2010). Decolourization of melanoidin containing wastewater using South African coal fly ash. International Journal of Civil and Environmental Engineering, 2(1), 17–23.

    Google Scholar 

  • Onyango, M. S., Kittinya, J., Hadebe, N., Ojijo, V. O., & Ochieng, A. (2011). Sorption of melanoidin onto surfactant modified zeolite. Chemical Industry and Chemical Engineering Quarterly, 17, 385–395.

    CAS  Google Scholar 

  • Pandey, S. K., Tyagi, P., & Gupta, A. K. (2008). Physico-chemical analysis of treated distillery effluent irrigation response on crop plant pea (Pisum sativum) and wheat (Triticum aestivum). Life Sciences Journal, 6, 84–89.

    Google Scholar 

  • Pant, D., & Adholeya, A. (2007). Biological approaches for treatment of distillery wastewater: A review. Bioresource Technology, 98, 2321–2334.

    CAS  Google Scholar 

  • Prasad, R. K., & Srivastava, S. N. (2009). Electrochemical degradation of distillery spent wash using catalytic anode: Factorial design of experiments. Chemical Engineering Journal, 146, 22–29.

    Google Scholar 

  • Raghukumar, C., Mohandas, C., Shailaja, M. S., & Kamat, S. (2004). Simultaneous detoxification and decolorization of molasses spent wash by the immobilized white-rot fungus Flavodon flavus isolated from a marine habitat. Enzyme and Microbial Technology, 35, 197–202.

    CAS  Google Scholar 

  • Rai, U. K., Muthukrishnan, M., & Guha, B. K. (2008). Tertiary treatment of distillery wastewater by nanofiltration. Desalination, 230, 70–78.

    CAS  Google Scholar 

  • Ramakritinan, C. M., Kumaraguru, A. K., & Balasubramanian, M. P. (2005). Impact of distillery effluent on carbohydrate metabolism of freshwater fish, Cyprinus carpio. Ecotoxicology, 14(7), 693–707.

    CAS  Google Scholar 

  • Rufián-Henaresa, J. A., & Morales, F. J. (2007). Functional properties of melanoidins: In vitro antioxidant, antimicrobial and antihypertensive activities. Food Research International, 40(8), 995–1002.

    Google Scholar 

  • Saha, N. K., Balakrishnan, M., & Batra, V. S. (2005). Improving industrial water use: Case study for an Indian distillery. Resources, Conservation and Recycling, 43, 163–174.

    Google Scholar 

  • Saner, A. B., Mungray, A. K., & Mistry, N. J. (2014). Treatment of distillery wastewater in an upflow anaerobic sludge blanket (UASB) reactor. Desalination and Water Treatment, 1–17.

    Google Scholar 

  • Saxena, K. K., & Chauhan, R. R. S. (2003). Oxygen consumption in fish, Labeo rohita (Ham.) caused by distillery effluent. Ecology. Environment and Conservation, 9, 357–360.

    CAS  Google Scholar 

  • Sharma, J., & Singh, R. (2001). Effect of nutrient supplementation on anaerobic sludge development and activity for treating distillery effluent. Bioresource Technology, 79, 203–206.

    CAS  Google Scholar 

  • Singh, N. K., Pandey, G. C., Rai, U. N., Tripathi, R. D., Singh, H. B., & Gupta, D. K. (2005). Metal accumulation and ecophysiological effects of distillery effluent on Potamogeton pectinatus L. Bulletin of Environmental Contamination and Toxicology, 74, 857–863.

    CAS  Google Scholar 

  • Singh, N., Petrinic, I., Helix-Nielsen, C., Basu, S., & Balakrishnan, M. (2018). Concentrating molasses distillery wastewater using biomimetic forward osmosis (FO) membranes. Water Research, 130, 271–280.

    CAS  Google Scholar 

  • Stottmeister, U., Wiessner, A., Kuschk, P., Kappelmeyer, M. K., Bederski, R. A., Muller, H., & Moormann, H. (2003). Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnology Advances, 22, 93–117.

    CAS  Google Scholar 

  • Srivastava, S., & Jain, R. (2010). Effect of distillery spent wash on cytomorphological behaviour of sugarcane settlings. Journal of Environmental Biology, 31, 809–812.

    CAS  Google Scholar 

  • Tewari, P. K., Batra, V. S., & Balakrishnan, M. (2007). Water management initiatives in sugarcane molasses based distilleries in India. Resources, Conservation and Recycling, 52, 351–367.

    Google Scholar 

  • Tiwari, S., Gaur, R., & Singh, A. (2014). Distillery spentwash decolorization by a noval consortium of Pediococcus acidilactici and Candida tropicalis under static condition. Pakistan Journal of Biological Sciences, 17, 780–791.

    CAS  Google Scholar 

  • Trivedy, R. K., & Nakate, S. S. (2000). Treatment of diluted distillery waste by constructed wetlands. Indian Journal of Environmental Protection, 20, 749–753.

    CAS  Google Scholar 

  • United States Environmental Protection Agency (USEPA). (2012). U.S. Environmental protection agency endocrine disruptor screening program universe of chemicals. Washington, DC: United States Environmental Protection Agency.

    Google Scholar 

  • USEPA. (2000). Phytoremediation of contaminated soil and ground water at hazardous waste sites (Ground Water Forum Issue Paper EPA 540/S-01/500). U.S. EPA Office of Research and Development, Cincinnati.

    Google Scholar 

  • USEPA. (2002). The environment protection rules, 3A, schedule-II, III. U.S. Environmental Protection agency, office of research and development, Cincinnati.

    Google Scholar 

  • Vignoli, J. A., Bassolia, D. G., & Benassib, M. T. (2011). Antioxidant activity, polyphenols, caffeine and melanoidins in soluble coffee: The influence of processing conditions and raw material. Food Chemistry, 124(3), 863–868.

    CAS  Google Scholar 

  • Vlissidis, A., & Zouboulis, A. I. (1993). Thermophilic anaerobic digestion of alcohol distillery wastewaters. Bioresource Technology, 43(2), 131–140.

    CAS  Google Scholar 

  • Vymazal, J. (2014). Constructed wetlands for treatment of industrial wastewaters: A review. Ecological Engineering, 73, 724–751.

    Google Scholar 

  • Vymazal, J., & Kropfelova, L. (2005). Growth of Phragmites australis and Phalaris arundinacea in constructed wetlands for wastewater treatment in the Czech Republic. Ecological Engineering, 25, 606–621.

    Google Scholar 

  • Wolmarans, B., & De Villiers, G. (2002). Start up of a UASB effluent treatment plant on distillery wastewater. Water SA, 28(1), 63–68.

    CAS  Google Scholar 

  • Zhang, M., Wang, Z., Li, P., Zhang, H., & Xie, L. (2017). Bio-refractory dissolved organic matter and colorants in cassava distillery wastewater: Characterization, coagulation treatment and mechanisms. Chemosphere, 178, 259–267.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Chand Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, V., Sharma, D.C. (2019). Distillery Effluent: Pollution Profile, Eco-friendly Treatment Strategies, Challenges and Future Prospects. In: Arora, P. (eds) Microbial Metabolism of Xenobiotic Compounds. Microorganisms for Sustainability, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-13-7462-3_17

Download citation

Publish with us

Policies and ethics