Skip to main content

Microbial Degradation of Polyethylene: Recent Progress and Challenges

  • Chapter
  • First Online:

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 10))

Abstract

Polythene or polyethylene is the most commonly used polymer for the manufacturing of geomembranes, plastic bags, containers, bottles, and plastic films. The main properties of the plastics suited for its application include durability, inertness, light weight, flexibility, and low cost. Over the last three decades, the indiscriminate use of the polyethylene in transportation, packaging operations, agriculture, and industry has increased the problem of its accumulation in soil sediments and aqueous streams. Accumulation of polyethylene has emerged as a significant environmental issue nowadays. The improper disposal of solid waste containing plastic has increased the extent of the problem manifold. Used plastic packing materials and improperly disposed plastic bags prevent the entry of water and air into the earth, thereby causing depletion of groundwater and negative impacts on soil fauna. Adverse biochemical effects are caused to soil and water fauna upon ingestion of these toxic compounds. Upon unintentional ingestion, polythene causes intestinal blockage in aquatic biota like fishes, sea turtles, and seabirds. Existing conventional physical and chemical methods for the disposal of polyethylene are costly and result in formation of toxic compounds. Biodegradation of plastic is proposed as a more environmentally sound technology for disposal of plastic waste as compared to its recycling, incineration, and landfilling. In the light of the aforesaid context, the present chapter is an attempt to highlight various issues of microbial degradation of plastic, viz., general chemistry of polyethylene, its classification, role of microbes and their enzyme systems in degradation of polyethylene, and stages and obstacles in microbial degradation of the polyethylene.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmed, N., Zeeshan, M., Iqbal, N., Farooq, M. Z., & Shah, S. A. (2018). Investigation on bio-oil yield and quality with scrap tire addition in sugarcane bagasse pyrolysis. Journal of Cleaner Production, 196, 927–934.

    Article  CAS  Google Scholar 

  • Alshehrei, F. (2017). Biodegradation of low density polyethylene by fungi isolated from red sea water. International Journal of Current Microbiology and Applied Sciences, 6, 1703–1709.

    Article  Google Scholar 

  • Amaral-Zettler, L. (2019). Plastics: Colonization and degradation. Reference Module in Life Sciences. https://doi.org/10.1016/b978-0-12-809633-8.90685-x.

    Google Scholar 

  • Arkatkar, A., Juwarkar, A. A., Bhaduri, S., et al. (2010). Growth of pseudomonas and bacillus biofilms on pretreated polypropylene surface. International Biodeterioration and Biodegradation, 64(6), 530–536.

    Article  CAS  Google Scholar 

  • Awasthi, S., Srivastava, P., Singh, P., et al. (2017). Biodegradation of thermally treated high-density polyethylene (HDPE) by Klebsiella pneumoniae CH001. 3 Biotech, 7(5), 332.

    Article  Google Scholar 

  • Bhatia, M., Girdhar, A., Tiwari, et al. (2014). Implications of a novel pseudomonas species on low density polyethylene biodegradation: An in vitro to in silico approach. Springer Plus, 3, 497.

    Article  Google Scholar 

  • da Luz, J. M. R., Paes, S. A., Ribeiro, K. V. G., Mendes, I. R., & Kasuya, M. C. M. (2015). Degradation of green polyethylene by Pleurotus ostreatus. PLoS One, 10, 626–647.

    Google Scholar 

  • Das, M. P., & Kumar, S. (2014). An approach to low density polyethylene biodegradation by Bacillus amyloliquefaciens. 3 Biotech, 5, 81–86.

    Article  Google Scholar 

  • Das, M. P., & Kumar, S. (2015). An approach to low-density polyethylene biodegradation by bacillus amyloliquefaciens. 3 Biotech, 5, 81–86.

    Article  Google Scholar 

  • De Bomfim, A. S. C., Maciel, M. M. Á. D., Voorwald, H. J. C., et al. (2019). Effect of different degradation types on properties of plastic waste obtained from espresso coffee capsules. Waste Management, 83, 123–130.

    Article  Google Scholar 

  • Denuncio, P., Bastida, R., Dassis, M., et al. (2011). Plastic ingestion in Franciscana dolphins, Pontoporia blainvillei (Gervais and d’Orbigny, 1844), Argentina. Marine Pollution Bulletin, 62(8), 1836–1841.

    Article  CAS  Google Scholar 

  • Farzi, A., Dehnad, A., & Fotouhi, A. F. (2019). Biodegradation of polyethylene terephthalate waste using Streptomyces species and kinetic modeling of the process. Biocatalysis and Agricultural Biotechnology, 17, 25–31.

    Article  Google Scholar 

  • Fontanella, S., Bonhomme, S., Kounty, M., Husarova, L., Brusson, J. M., et al. (2010). Comparison of biodegradability of various polyethylene films containing pro-oxidant additives. Polymer Degradation and Stability, 95, 1011–1021.

    Article  CAS  Google Scholar 

  • Fujisawa, H., Hirai, H., & Nishida, T. (2001). Degradation of polyethylene and nylon-66 by laccase mediator system. Journal of Polymers and the Environment, 9, 103–108.

    Article  CAS  Google Scholar 

  • Gajendiran, A., Krishnamoorthy, S., & Abraham, J. (2016). Microbial degradation of low-density polyethylene (LDPE) by Aspergillus clavatus strain JASK1 isolated from landfill soil. 3 Biotech, 6(1), 52.

    Article  Google Scholar 

  • Gamerith, C., Zartl, B., Pellis, A., et al. (2017). Enzymatic recovery of polyester building blocks from polymer blends. Process Biochemistry, 59, 58–64.

    Article  CAS  Google Scholar 

  • Ganesh, P., Dineshraj, D., & Yoganathan, K. (2016). Production and screening of depolymerising enzymes by potential bacteria and fungi isolated from plastic waste dump yard sites. International Journal of Applied Research, 3(3), 693–695.

    Google Scholar 

  • Gómez-Méndez, L. D., Moreno-Bayona, D. A., Poutou-Piñales, R. A., Salcedo-Reyes, J. C., Pedroza-Rodríguez, A. M., Vargas, A., & Bogoya, J. M. (2018). Biodeterioration of plasma pretreated LDPE sheets by Pleurotus ostreatus. PLoS One, 13(9), 770–786.

    Article  Google Scholar 

  • Gyung Yoon, M., Jeong Jeon, H., & Nam Kim, M. (2012). Biodegradation of polyethylene by a soil bacterium and Alk B cloned recombinant cell. Journal of Bioremediation & Biodegradation, 3, 145.

    Article  Google Scholar 

  • Harrison, J. P., Sapp, M., Schratzberger, M., et al. (2011). Interactions between microorganisms and marine microplastics: A call for research. Marine Technology Society Journal, 45(2), 12–20.

    Article  Google Scholar 

  • Harshvardhan, K., & Jha, B. (2013). Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Marine Pollution Bulletin, 77, 100–106.

    Article  CAS  Google Scholar 

  • Huerta Lwanga, E., Thapa, B., & Yang, X. (2018). Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: A potential for soil restoration. Science of the Total Environment, 624, 753–757.

    Article  CAS  Google Scholar 

  • Jeon, H. J., & Kim, M. N. (2013). Isolation of a thermophilic bacterium capable of low-molecular-weight polyethylene degradation. Biodegradation, 24, 89–98.

    Article  CAS  Google Scholar 

  • Kaseem, M., Hamad, K., & Deri, F. (2012). Thermoplastic starch blends: A review of recent works. Polymer Science Series A, 54, 165–176.

    Article  CAS  Google Scholar 

  • Khabbaz, F., Albertsson, A. C., & Karlsson, S. (1999). Chemical and morphological changes of environmentally degradable polyethylene films exposed to thermo-oxidation. Polymer Degradation and Stability, 63, 127–138.

    Article  CAS  Google Scholar 

  • Krueger, M. C., Harms, H., & Schlosser, D. (2015). Prospects for microbiological solutions to environmental pollution with plastics. Applied Microbiology and Biotechnology, 99, 8857–8874.

    Article  CAS  Google Scholar 

  • Kumar, S., Das, M., Rebecca, L. J., et al. (2013). Isolation and identification of LDPE degrading fungi from municipal solid waste. Journal of Chemical and Pharmaceutical Research, 5(3), 78–81.

    CAS  Google Scholar 

  • Kyaw, B. M., Champakalakshmi, R., Sakharkar, M. K., Lim, C. S., & Sakharkar, K. R. (2012). Biodegradation of Low Density Polythene (LDPE) by pseudomonas species. Indian Journal of Microbiology, 52, 411–419.

    Article  CAS  Google Scholar 

  • Montazer, Z., Habibi-Najafi, M. B., & Mohebbi, M. (2018). Microbial degradation of UV-pretreated low-density polyethylene films by novel polyethylene-degrading bacteria isolated from plastic-dump soil. Journal of Polymers and the Environment, 26, 3613–3625.

    Article  CAS  Google Scholar 

  • Munir, E., Harefa, R. S. M., & Priyani, N. (2018). Plastic degrading fungi Trichoderma viride and Aspergillus nomius isolated from local landfill soil in Medan. IOP Conference Series: Earth and Environmental Science, 126, 012145.

    Article  Google Scholar 

  • Nowak, B., Paja, k J., Drozd-Bratkowicz, M., et al. (2011). Microorganisms participating in the biodegradation of modified polyethylene films in different soils under laboratory conditions. International Biodeterioration and Biodegradation, 65, 757–767.

    Article  CAS  Google Scholar 

  • Oberbeckmann, S., Loeder, M. G. J., Gerdts, G., & Osborn, A. M. (2014). Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in northern European waters. FEMS Microbiology Ecology, 90, 478–492.

    Article  CAS  Google Scholar 

  • Oberbeckmann, S., Osborn, A. M., & Duhaime, M. B. (2016). Microbes on a bottle: Substrate, season and geography influence community composition of microbes colonizing marine plastic debris. PLoS One, 11(8), e0159289.

    Article  Google Scholar 

  • Ojha, N., Pradhan, N., Singh, S., et al. (2017). Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization. Scientific Reports, 7, 39515.

    Article  CAS  Google Scholar 

  • Paço, A., Duarte, K., da Costa, J. P., et al. (2017). Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Science of the Total Environment, 586, 10–15.

    Article  Google Scholar 

  • Pathak, V. M., & Kumar, N. (2017a). Implications of SiO2 nanoparticles for in vitro biodegradation of low-density polyethylene with potential isolates of bacillus, pseudomonas, and their synergistic effect on Vigna mungo growth. Energy, Ecology and Environment, 2, 418–427.

    Article  Google Scholar 

  • Pathak, V. M., & Kumar, N. (2017b). Dataset on the impact of UV, nitric acid and surfactant treatments on low-density polyethylene biodegradation. Data in Brief, 14, 393–411.

    Article  Google Scholar 

  • Pramila, R., & Vijaya Ramesh, K. (2011). Biodegradation of low density polyethylene (LDPE) by fungi isolated from municipal landfill area. Journal of Microbiology and Biotechnology Research, 1(4), 131–136.

    CAS  Google Scholar 

  • Raghul, S. S., Bhat, S. G., Chandrasekaran, M., Francis, V., & Thachil, E. T. (2014). Biodegradation of polyvinyl alcohol-low linear density polyethylene-blended plastic film by consortium of marine benthic vibrios. International Journal of Environmental Science and Technology, 11(7), 1827–1834.

    Article  CAS  Google Scholar 

  • Restrepo-Flórez, J. M., Bassi, A., & Thompson, M. R. (2014). Microbial degradation and deterioration of polyethylene-a review. International Biodeterioration and Biodegradation, 88, 83–90.

    Article  Google Scholar 

  • Ronkvist, Ã. S. M., Xie, W., Lu, W., et al. (2009). Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromolecules, 42, 5128–5138.

    Article  CAS  Google Scholar 

  • Roy, P. K., Titus, S., Surekha, P., Tulsi, E., Deshmukh, C., & Rajagopal, C. (2008). Degradation of abiotically aged LDPE films containing prooxidant by bacterial consortium. Polymer Degradation and Stability, 93, 1917–1922.

    Article  CAS  Google Scholar 

  • Sammond, D. W., Yarbrough, J. M., Mansfield, E., et al. (2014). Predicting enzyme adsorption to lignin films by calculating enzyme surface hydrophobicity. The Journal of Biological Chemistry, 289, 20960–20969.

    Article  CAS  Google Scholar 

  • Sangeetha, D. R., Kannan, R., Nivas, D., Kannan, K., Chandru, S., & Robert, A. A. (2015). Biodegradation of HDPE by Aspergillus spp. from marine ecosystem of Gulf of Mannar, India. Marine Pollution Bulletin, 96(1–2), 32–40.

    Article  Google Scholar 

  • Sangeetha Devi, R., Ramya, R., & Kannan, K. (2019). Investigation of biodegradation potentials of high-density polyethylene degrading marine bacteria isolated from the coastal regions of Tamil Nadu, India. Marine Pollution Bulletin, 138, 549–560.

    Article  CAS  Google Scholar 

  • Santo, M., Weitsman, R., & Sivan, A. (2013). The role of the copper-binding enzyme laccase in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. International Biodeterioration and Biodegradation, 84, 204–210.

    Google Scholar 

  • Sekiguchi, T., Sato, T., & Enoki, M. (2011). Isolation and characterization of biodegradable plastic degrading bacteria from deep-sea environments. JAMSTEC Report of Research and Development, 11, 33–41.

    Article  Google Scholar 

  • Shahnawaz, M., Sangale, M. K., & Ade, A. B. (2016). Bacteria-based polythene degradation products: GC-MS analysis and toxicity testing. Environmental Science and Pollution Research, 23, 10733–10741.

    Article  CAS  Google Scholar 

  • Shankar, S., & Shikha. (2012). Laccase production and enzymatic modification of lignin by a novel Peniophora sp. Applied Biochemistry and Biotechnology, 166, 1082–1094.

    Article  CAS  Google Scholar 

  • Sheik, S., Chandrashekar, K. R., & Swaroop, K. (2015). Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi. International Biodeterioration and Biodegradation, 105, 21–29.

    Article  CAS  Google Scholar 

  • Sivan, A., Szanto, M., & Pavlov, V. (2006). Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Applied Microbiology and Biotechnology, 72, 346–352.

    Article  CAS  Google Scholar 

  • Skariyachan, S., Patil, A. A., & Shankar, A. (2018). Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. And Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polymer Degradation and Stability, 149, 52–68.

    Article  CAS  Google Scholar 

  • Sowmya, H. V., Ramalingappa, K., & Thippeswamy, B. (2014). Low density polyethylene degrading fungi isolated from Shivamogga district. International Journal of Biological Research, 2(2), 39–43.

    Google Scholar 

  • Sudhakar, M., Doble, M., Murthy, P. S., & Venkatesan, R. (2008). Marine microbemediated biodegradation of low-and high density polyethylenes. International Biodeterioration and Biodegradation, 61, 203–213.

    Article  CAS  Google Scholar 

  • Sumathi, T., Viswanath, B., Sri Lakshmi, A., & Sai Gopal, D. V. R. (2016). Production of laccase by Cochliobolus sp. isolated from plastic dumped soils and their ability to degrade low molecular weight PVC. Biochemistry Research International. https://doi.org/10.1155/2016/9519527.

    Article  Google Scholar 

  • Thompson, R. C., Moore, C., vom Saal, F. S., et al. (2009). Plastics, the environment and human health: Current consensus and future trends. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 2153–2166.

    Article  CAS  Google Scholar 

  • Tribedi, P., & Sil, A. K. (2013). Low-density polyethylene degradation by pseudomonas sp. AKS2 biofilm. Environmental Science and Pollution Research International, 20, 4146–4153.

    Article  CAS  Google Scholar 

  • Tribedi, P., Gupta, A. D., & Sil, A. K. (2015). Adaptation of pseudomonas sp. AKS2 in biofilm on low-density polyethylene surface: An effective strategy for efficient survival and polymer degradation. Bioresour Bioprocess, 2, 14.

    Article  Google Scholar 

  • Vimala, P. P., & Mathew, L. (2016). Biodegradation of polyethylene using bacillus Subtilis. Procedia Technology, 24, 232–239.

    Article  Google Scholar 

  • Wei, R., Oeser, T., & Zimmermann, W. (2014). Synthetic polyester-hydrolyzing enzymes from thermophilic actinomycetes. Advances in Applied Microbiology, 89, 267–305.

    Article  Google Scholar 

  • Yang, J., Yang, Y., Wu, W. M., et al. (2014). Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environmental Science & Technology, 48, 13776–13784.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shankar, S., Singh, S., Mishra, A., Sharma, M., Shikha (2019). Microbial Degradation of Polyethylene: Recent Progress and Challenges. In: Arora, P. (eds) Microbial Metabolism of Xenobiotic Compounds. Microorganisms for Sustainability, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-13-7462-3_12

Download citation

Publish with us

Policies and ethics