Skip to main content

Biodegradation of Synthetic Pyrethroid Insecticides

  • Chapter
  • First Online:
Microbial Metabolism of Xenobiotic Compounds

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 10))

Abstract

Synthetic pyrethroid insecticides have been used extensively for controlling indoor and outdoor insect pests, posing a great threat to humans and the ecosystem. Pyrethroid residues are often detected in aquatic and terrestrial environments; therefore developing a suitable bioremediation strategy is urgent. Since biodegradation is considered as an economical and safe approach, lots of work have been studied about pyrethroid-degrading microorganisms. This chapter summarizes the toxicity and environmental safety of pyrethroids, microbial degradation of pyrethroids, and biodegradation pathway of pyrethroids, pyrethroid-degrading enzymes, and bioremediation of pyrethroid-contaminated environments. This chapter will provide an instructive direction to apply pyrethroid-degrading microorganisms in the environment for bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbar, S., Sultan, S., & Kertesz, M. (2015a). Bacterial community analysis of cypermethrin enrichment cultures and bioremediation of cypermethrin contaminated soils. Journal of Basic Microbiology, 55(7), 819–829.

    CAS  Google Scholar 

  • Akbar, S., Sultan, S., & Kertesz, M. (2015b). Determination of cypermethrin degradation potential of soil bacteria along with plant growth-promoting characteristics. Current Microbiology, 70(1), 75–84.

    CAS  Google Scholar 

  • Bharagava, R. N., Chowdhary, P., & Saxena, G. (2017). Bioremediation: An ecosustainable green technology: Its applications and limitations. In R. N. Bharagava (Ed.), Environmental pollutants and their bioremediation approaches (1st ed., pp. 1–22). Boca Raton/London/New York: CRC Press, Taylor & Francis Group. https://doi.org/10.1201/9781315173351-2.

    Chapter  Google Scholar 

  • Bharagava, R. N., Purchase, D., Saxena, G., & Mulla, S. I. (2018). Applications of metagenomics in microbial bioremediation of pollutants: From genomics to environmental cleanup. In S. Das & H. Dash (Eds.), Microbial diversity in the genomic era (1st ed.). London: Academic Press/Elsevier. https://doi.org/10.1016/B978-0-12-814849-5.00026-5.

    Chapter  Google Scholar 

  • Boricha, H., & Fulekar, M. H. (2010). Identification of Owenweeksia honkongenesis as a novel organism for the remediation of pesticide-fenvalerate. Romanian Biotechnological Letters, 15, 5104–5110.

    CAS  Google Scholar 

  • Bradbury, S. P., & Coats, J. R. (1989). Toxicokinetics and toxicodynamics of pyrethroid insecticides in fish. Environmental Toxicology and Chemistry, 8(5), 373–380.

    CAS  Google Scholar 

  • Bragança, I., Lemos, P. C., Barros, P., Delerue-Matos, C., & Domingues, V. F. (2018). Phytotoxicity of pyrethroid pesticides and its metabolite towards Cucumis sativus. Science of the Total Environment, 619, 685–691.

    Google Scholar 

  • Brander, S. M., Gabler, M. K., Fowler, N. L., Connon, R. E., & Schlenk, D. (2016). Pyrethroid pesticides as endocrine disruptors: Molecular mechanisms in vertebrates with a focus on fishes. Environmental Science & Technology, 50(17), 8977–8992.

    CAS  Google Scholar 

  • Casida, J. E. (1980). Pyrethrum flowers and pyrethroid insecticides. Environmental Health Perspectives, 34, 189.

    CAS  Google Scholar 

  • Chen, S., Hu, M., Liu, J., Zhong, G., Yang, L., Rizwan-ul-Haq, M., & Han, H. (2011a). Biodegradation of beta-cypermethrin and 3-phenoxybenzoic acid by a novel Ochrobactrum lupini DG-S-01. Journal of Hazardous Materials, 187(1–3), 433–440.

    CAS  Google Scholar 

  • Chen, S., Hu, Q., Hu, M., Luo, J., Weng, Q., & Lai, K. (2011b). Isolation and characterization of a fungus able to degrade pyrethroids and 3-phenoxybenzaldehyde. Bioresource Technology, 102(17), 8110–8116.

    CAS  Google Scholar 

  • Chen, S., Lai, K., Li, Y., Hu, M., Zhang, Y., & Zeng, Y. (2011c). Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01. Applied Microbiology and Biotechnology, 90(4), 1471–1483.

    CAS  Google Scholar 

  • Chen, S., Yang, L., Hu, M., & Liu, J. (2011d). Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrophomonas sp. strain ZS-S-01 and its use in bioremediation of contaminated soils. Applied Microbiology and Biotechnology, 90(2), 755–767.

    CAS  Google Scholar 

  • Chen, S., Zhang, Y., Hu, M., Geng, P., Li, Y., & An, G. (2011e). Bioremediation ofβ-cypermethrin and 3-phenoxybenzoic acid in soils. Proceedings of 2011 International Symposium on Water Resources and Environmental Protection, 3, 1717–1721.

    Google Scholar 

  • Chen, S., Luo, J., Hu, M., Geng, P., & Zhang, Y. (2012a). Microbial detoxification of bifenthrin by a novel yeast and its potential for contaminated soils treatment. PLoS One, 7(2), e30862.

    CAS  Google Scholar 

  • Chen, S., Luo, J., Hu, M., Lai, K., Geng, P., & Huang, H. (2012b). Enhancement of cypermethrin degradation by a coculture of Bacillus cereus ZH-3 and Streptomyces aureus HP-S-01. Bioresource Technology, 110, 97–104.

    CAS  Google Scholar 

  • Chen, S., Geng, P., Xiao, Y., & Hu, M. Y. (2012c). Bioremediation of β-cypermethrin and 3-phenoxybenzaldehyde contaminated soils using Streptomyces aureus HP-S-01. Applied Microbiology and Biotechnology, 94(2), 505–515.

    CAS  Google Scholar 

  • Chen, S., Dong, Y. H., Chang, C., Deng, Y., Zhang, X. F., Zhong, G., Song, H., Hu, M., & Zhang, L. H. (2013a). Characterization of a novel cyfluthrin-degrading bacterial strain Brevibacterium aureum and its biochemical degradation pathway. Bioresource Technology, 132, 16–23.

    CAS  Google Scholar 

  • Chen, S., Lin, Q., Xiao, Y., Deng, Y., Chang, C., Zhong, G., Hu, M., & Zhang, L. H. (2013b). Monooxygenase, a novel beta-cypermethrin degrading enzyme from Streptomyces sp. PLoS One, 8(9), e75450.

    CAS  Google Scholar 

  • Chen, S., Chang, C., Deng, Y., An, S., Dong, Y. H., Zhou, J., Hu, M., Zhong, G., & Zhang, L. H. (2014). Fenpropathrin biodegradation pathway in Bacillus sp. DG-02 and its potential for bioremediation of pyrethroid-contaminated soils. Journal of Agricultural and Food Chemistry, 62(10), 2147–2157.

    CAS  Google Scholar 

  • Chen, S., Deng, Y., Chang, C., Lee, J., Cheng, Y., Cui, Z., Zhou, J., He, F., Hu, M., & Zhang, L. H. (2015). Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19. Scientific Reports, 5, 8784.

    CAS  Google Scholar 

  • Chinen, K., Lau, S. L., Nonezyan, M., McElroy, E., Wolfe, B., Suffet, I. H., & Stenstrom, M. K. (2016). Predicting runoff induced mass loads in urban watersheds: Linking land use and pyrethroid contamination. Water Research, 102, 607–618.

    CAS  Google Scholar 

  • Clark, J. M., & Symington, S. B. (2008). Neurotoxic implications of the agonistic action of CS-syndrome pyrethroids on the N-type Cav2. 2 calcium channel. Pest Management Science, 64(6), 628–638.

    CAS  Google Scholar 

  • Crossland, N. (1982). Aquatic toxicology of cypermethrin. II. Fate and biological effects in pond experiments. Aquatic Toxicology, 2(4), 205–222.

    CAS  Google Scholar 

  • Crossland, N., Shires, S., & Bennett, D. (1982). Aquatic toxicology of cypermethrin. III. Fate and biological effects of spray drift deposits in fresh water adjacent to agricultural land. Aquatic Toxicology, 2(5–6), 253–270.

    CAS  Google Scholar 

  • Crow, J. A., Borazjani, A., Potter, P. M., & Ross, M. K. (2007). Hydrolysis of pyrethroids by human and rat tissues: Examination of intestinal, liver and serum carboxylesterases. Toxicology and Applied Pharmacology, 221(1), 1–12.

    CAS  Google Scholar 

  • CycoÅ„, M., & Piotrowska-Seget, Z. (2016). Pyrethroid-degrading microorganisms and their potential for the bioremediation of contaminated soils: A review. Frontiers in Microbiology, 7, 1463.

    Google Scholar 

  • CycoÅ„, M., Zmijowska, A., & Piotrowska-Seget, Z. (2014). Enhancement of deltamethrin degradation by soil bioaugmentation with two different strains of Serratia marcescens. International Journal of Environmental Science & Technology, 11, 1305–1316.

    Google Scholar 

  • Cygler, M., Schrag, J. D., Sussman, J. L., Harel, M., Silman, I., Gentry, M. K., & Doctor, B. P. (1993). Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins. Protein Science, 2(3), 366–382.

    CAS  Google Scholar 

  • Davies, T., Field, L., Usherwood, P., & Williamson, M. (2007). DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB Life, 59(3), 151–162.

    CAS  Google Scholar 

  • Deziel, N. C., Colt, J. S., Kent, E. E., Gunier, R. B., Reynolds, P., Booth, B., Metayer, C., & Ward, M. H. (2015). Associations between self-reported pest treatments and pesticide concentrations in carpet dust. Environmental Health, 14(1), 27.

    Google Scholar 

  • Fan, X., Liu, X., Huang, R., & Liu, Y. (2012). Identification and characterization of a novel thermostable pyrethroid-hydrolyzing enzyme isolated through metagenomic approach. Microbial Cell Factories, 11(1), 1.

    Google Scholar 

  • Fulekar, M. H. (2009). Bioremediation of fenvalerate by Pseudomonas aeruginosa in a scale up bioreactor. Romanian Biotechnological Letters, 14, 4900–4905.

    CAS  Google Scholar 

  • Gautam, S., Kaithwas, G., Bharagava, R. N., & Saxena, G. (2017). Pollutants in tannery wastewater, pharmacological effects and bioremediation approaches for human health protection and environmental safety. In R. N. Bharagava (Ed.), Environmental pollutants and their bioremediation approaches (1st ed., pp. 369–396). Boca Raton/London/New York: CRC Press, Taylor & Francis Group. https://doi.org/10.1201/9781315173351-14.

    Chapter  Google Scholar 

  • Grant, R., & Betts, W. (2004). Mineral and carbon usage of two synthetic pyrethroid degrading bacterial isolates. Journal of Applied Microbiology, 97(3), 656–662.

    CAS  Google Scholar 

  • Grant, R., Daniell, T., & Betts, W. (2002). Isolation and identification of synthetic pyrethroid-degrading bacteria. Journal of Applied Microbiology, 92(3), 534–540.

    CAS  Google Scholar 

  • Guo, P., Wang, B., Hang, B., Li, L., Ali, S. W., He, J., & Li, S. (2009). Pyrethroid-degrading Sphingobium sp. JZ-2 and the purification and characterization of a novel pyrethroid hydrolase. International Biodeterioration & Biodegradation, 63(8), 1107–1112.

    CAS  Google Scholar 

  • Han, Y., Xia, Y., Han, J., Zhou, J., Wang, S., Zhu, P., Zhao, R., Jin, N., Song, L., & Wang, X. (2008). The relationship of 3-PBA pyrethroids metabolite and male reproductive hormones among non-occupational exposure males. Chemosphere, 72(5), 785–790.

    CAS  Google Scholar 

  • Ji, G., Xia, Y., Gu, A., Shi, X., Long, Y., Song, L., Wang, S., & Wang, X. (2011). Effects of non-occupational environmental exposure to pyrethroids on semen quality and sperm DNA integrity in Chinese men. Reproductive Toxicology, 31(2), 171–176.

    CAS  Google Scholar 

  • Jilani, S., & Khan, M. A. (2006). Biodegradation of cypermethrin by Pseudomonas in a batch activated sludge process. International journal of Environmental Science and Technology, 3(4), 371–380.

    CAS  Google Scholar 

  • Katsuda, Y. (1999). Development of and future prospects for pyrethroid chemistry. Pesticide Science, 55(8), 775–782.

    CAS  Google Scholar 

  • Katsuda, Y. (2011). Progress and future of pyrethroids. In Pyrethroids (pp. 1–30). Berlin: Springer.

    Google Scholar 

  • Kaviraj, A., & Gupta, A. (2014). Biomarkers of type II synthetic pyrethroid pesticides in freshwater fish. BioMed Research International, 1, 928063.

    Google Scholar 

  • Khan, N. Y. (1983). An assessment of the hazard of synthetic pyrethroid insecticides to fish and fish habitat. In Mode of action, metabolism and toxicology (pp. 437–450). Oxford: Elsevier.

    Google Scholar 

  • Khan, S. U., Behki, R. M., & Tapping, R. I. (1988). Deltamethrin residues in an organic under laboratory and its degradation by a bacterial strain. Journal of Agricultural and Food Chemistry, 36(3), 636–638.

    CAS  Google Scholar 

  • Lan, W., Gu, J., Zhang, J., Shen, B., Jiang, H., Mulchandani, A., Chen, W., & Qiao, C. (2006). Coexpression of two detoxifying pesticide-degrading enzymes in a genetically engineered bacterium. International Biodeterioration & Biodegradation, 58(2), 70–76.

    CAS  Google Scholar 

  • Laskowski, D. A. (2002). Physical and chemical properties of pyrethroids. In Reviews of environmental contamination and toxicology (pp. 49–170). Cham: Springer.

    Google Scholar 

  • Lawrence, L. J., & Casida, J. E. (1982). Pyrethroid toxicology: Mouse intracerebral structure-toxicity relationships. Pesticide Biochemistry and Physiology, 18(1), 9–14.

    CAS  Google Scholar 

  • Lee, S., Gan, J., & Kim, J. S. (2004). Microbial transformation of pyrethroid insecticides in aqueous and sediment phases. Environmental Toxicology and Chemistry, 23, 1–6.

    CAS  Google Scholar 

  • Li, G., Wang, K., & Liu, Y. H. (2008). Molecular cloning and characterization of a novel pyrethroid-hydrolyzing esterase originating from the metagenome. Microbial Cell Factories, 7(1), 38.

    Google Scholar 

  • Li, H., Cheng, F., Wei, Y., Lydy, M. J., & You, J. (2017). Global occurrence of pyrethroid insecticides in sediment and the associated toxicological effects on benthic invertebrates: An overview. Journal of Hazardous Materials, 324, 258–271.

    CAS  Google Scholar 

  • Liang, W. Q., Wang, Z. Y., Li, H., Wu, P. C., Hu, J. M., Luo, N., Cao, L. X., & Liu, Y. H. (2005). Purification and characterization of a novel pyrethroid hydrolase from Aspergillus niger ZD11. Journal of Agricultural and Food Chemistry, 53(19), 7415–7420.

    CAS  Google Scholar 

  • Lin, Q., Chen, S., Hu, M., Haq, M. U., Yang, L., & Li, H. (2011). Biodegradation of cypermethrin by a newly isolated actinomycetes HU-S-01 from wastewater sludge. International Journal of Environmental Science & Technology, 8(1), 45–56.

    CAS  Google Scholar 

  • Liu, Y., Li, S., Ni, Z., Qu, M., Zhong, D., Ye, C., & Tang, F. (2016). Pesticides in persimmons, jujubes and soil from China: Residue levels, risk assessment and relationship between fruits and soils. Science of the Total Environment, 542, 620–628.

    CAS  Google Scholar 

  • Liu, X., Wang, P., Liu, C., Liang, Y., Zhou, Z., & Liu, D. (2017). Absorption, distribution, metabolism, and in vitro digestion of beta-cypermethrin in laying hens. Journal of Agricultural and Food Chemistry, 65(35), 7647–7652.

    CAS  Google Scholar 

  • Luo, X., Zhang, D., Zhou, X., Du, J., Zhang, S., & Liu, Y. (2018). Cloning and characterization of a pyrethroid pesticide decomposing esterase gene, Est3385, from Rhodopseudomonas palustris PSB-S. Scientific Reports, 8(1), 7384.

    Google Scholar 

  • Maloney, S., Maule, A., & Smith, A. (1988). Microbial transformation of the pyrethroid insecticides: Permethrin, deltamethrin, fastac, fenvalerate, and fluvalinate. Applied and Environmental Microbiology, 54(11), 2874–2876.

    CAS  Google Scholar 

  • Maloney, S. E., Maule, A., & Smith, A. (1992). Transformation of synthetic pyrethroid insecticides by a thermophilic Bacillus sp. Archives of Microbiology, 158, 282–286.

    CAS  Google Scholar 

  • Maloney, S., Maule, A., & Smith, A. (1993). Purification and preliminary characterization of permethrinase from a pyrethroid-transforming strain of Bacillus cereus. Applied and Environmental Microbiology, 59(7), 2007–2013.

    CAS  Google Scholar 

  • Maloney, S. E., Marks, A. T., & Sharp, R. J. (1997). Detoxification of synthetic pyrethroid insecticides by thermophilic microorganisms. Journal of Chemical Technology and Biotechnology, 68, 357–360.

    CAS  Google Scholar 

  • Mimbs, W. H., IV, Cusaac, J. P. W., Smith, L. M., McMurry, S. T., & Belden, J. B. (2016). Occurrence of current-use fungicides and bifenthrin in Rainwater Basin wetlands. Chemosphere, 159, 275–281.

    CAS  Google Scholar 

  • Mugni, H., Paracampo, A., Marrochi, N., & Bonetto, C. (2013). Acute toxicity of cypermethrin to the non target organism Hyalella curvispina. Environmental Toxicology and Pharmacology, 35(1), 88–92.

    CAS  Google Scholar 

  • Murugesan, A. G., Jeyasanthi, T., & Maheswari, S. (2010). Isolation and characterization of cypermethrin utilizing bacteria from Brinjal cultivated soil. African Journal of Microbiogy Research, 4, 10–13.

    Google Scholar 

  • Paingankar, M., Jain, M., & Deobagkar, D. (2005). Biodegradation of allethrin, a pyrethroid insecticide, by an Acidomonas sp. Biotechnology Letters, 27(23–24), 1909–1913.

    CAS  Google Scholar 

  • Palmquist, K., Salatas, J., & Fairbrother, A. (2011). Pyrethroid insecticides: Use, environmental fate, and ecotoxicology. Rijeka: Intech Europe.

    Google Scholar 

  • Pankaj, A. S., Gangola, S., Khati, P., Kumar, G., & Srivastava, A. (2016). Novel pathway of cypermethrin biodegradation in a Bacillus sp. strain SG2 isolated from cypermethrin-contaminated agriculture field. 3 Biotech, 6(1), 45.

    CAS  Google Scholar 

  • Qin, S., & Gan, J. (2006). Enantiomeric differences in permethrin degradation pathways in soil and sediment. Journal of Agricultural and Food Chemistry, 54(24), 9145–9151.

    CAS  Google Scholar 

  • Qin, S., Budd, R., Bondarenko, S., Liu, W., & Gan, J. (2006). Enantioselective degradation and chiral stability of pyrethroids in soil and sediment. Journal of Agricultural and Food Chemistry, 54(14), 5040–5045.

    CAS  Google Scholar 

  • Ray, D. E., & Fry, J. R. (2006). A reassessment of the neurotoxicity of pyrethroid insecticides. Pharmacology & Therapeutics, 111(1), 174–193.

    CAS  Google Scholar 

  • Ray, D. E., Ray, D., & Forshaw, P. J. (2000). Pyrethroid insecticides: Poisoning syndromes, synergies, and therapy. Journal of Toxicology: Clinical Toxicology, 38(2), 95–101.

    CAS  Google Scholar 

  • Ruan, Z., Zhai, Y., Song, J., Shi, Y., Li, K., Zhao, B., & Yan, Y. (2013). Molecular cloning and characterization of a newly isolated pyrethroid-degrading esterase gene from a genomic library of Ochrobactrum anthropi YZ-1. PLoS One, 8(10), e77329.

    CAS  Google Scholar 

  • Saikia, N., & Gopal, M. (2004). Biodegradation of beta-cyfluthrin by fungi. Journal of Agricultural and Food Chemistry, 52(5), 1220–1223.

    CAS  Google Scholar 

  • Saikia, N., Das, S. K., Patel, B. K., Niwas, R., Singh, A., & Gopal, M. (2005). Biodegradation of beta-cyfluthrin by Pseudomonas stutzeri strain S1. Biodegradation, 16(6), 581–589.

    CAS  Google Scholar 

  • Saxena, G., & Bharagava, R. N. (2015). Persistent organic pollutants and bacterial communities present during the treatment of tannery wastewater. In R. Chandra (Ed.), Environmental waste management (1st ed., pp. 217–247). Boca Raton: CRC Press, Taylor & Francis Group. https://doi.org/10.1201/b19243-10.

    Chapter  Google Scholar 

  • Saxena, G., & Bharagava, R. N. (2017). Organic and inorganic pollutants in industrial wastes, their ecotoxicological effects, health hazards and bioremediation approaches. In R. N. Bharagava (Ed.), Environmental pollutants and their bioremediation approaches (1st ed., pp. 23–56). Boca Raton/London/New York: CRC Press, Taylor & Francis Group. https://doi.org/10.1201/9781315173351-3.

    Chapter  Google Scholar 

  • Saxena, G., Chandra, R., & Bharagava, R. N. (2016). Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. Reviews of Environmental Contamination and Toxicology, 240, 31–69. https://doi.org/10.1007/398_2015_5009.

    Article  CAS  Google Scholar 

  • Soderlund, D. (2005). Sodium channels. In L. I. Gilbert, K. Iatrou, & S. S. Gill (Eds.), Comprehensive insect science. Pharmacology (Vol. 5, pp. 1–24). Amsterdam: Elsevier B.V.

    Google Scholar 

  • Soderlund, D. M. (2010). Toxicology and mode of action of pyrethroid insecticides. In W. J. Hayes (Ed.), Handbook of pesticide toxicology (3rd ed., pp. 1665–1686). San Diego: Elsevier.

    Google Scholar 

  • Soderlund, D. M. (2012). Molecular mechanisms of pyrethroid insecticide neurotoxicity: Recent advances. Archives of Toxicology, 86(2), 165–181.

    CAS  Google Scholar 

  • Sogorb, M. A., & Vilanova, E. (2002). Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicology Letters, 128(1–3), 215–228.

    CAS  Google Scholar 

  • Song, Y., Kai, J., Song, X., Zhang, W., & Li, L. (2015). Long-term toxic effects of deltamethrin and fenvalerante in soil. Journal of Hazardous Materials, 289, 158–164.

    CAS  Google Scholar 

  • Tallur, P. N., Megadi, V. B., & Ninnekar, H. Z. (2008). Biodegradation of cypermethrin by Micrococcus sp. strain CPN 1. Biodegradation, 19(1), 77–82.

    CAS  Google Scholar 

  • Tang, A. X., Liu, H., Liu, Y. Y., Li, Q. Y., & Qing, Y. M. (2017a). Purification and characterization of a novel β-cypermethrin-degrading aminopeptidase from Pseudomonas aeruginosa GF31. Journal of Agricultural and Food Chemistry, 65(43), 9412–9418.

    CAS  Google Scholar 

  • Tang, W., Wang, D., Wang, J., Wu, Z., Li, L., Huang, M., Xu, S., & Yan, D. (2017b). Pyrethroid pesticide residues in the global environment: An overview. Chemosphere, 191, 990.

    Google Scholar 

  • Tiwary, M., & Dubey, A. K. (2016). Cypermethrin bioremediation in presence of heavy metals by a novel heavy metal tolerant strain, Bacillus sp. AKD1. International Biodeterioration & Biodegradation, 108, 42–47.

    CAS  Google Scholar 

  • Ujihara, K., Mori, T., & Matsuo, N. (2011). Recent advances of pyrethroids for household use. In Pyrethroids (pp. 31–48). Heidelberg: Springer.

    Google Scholar 

  • Wang, B. Z., Guo, P., Hang, B. J., Li, L., He, J., & Li, S. P. (2009). Cloning of a novel pyrethroid-hydrolyzing carboxylesterase gene from Sphingobium sp. strain JZ-1 and characterization of the gene product. Applied and Environmental Microbiology, 75(17), 5496–5500.

    CAS  Google Scholar 

  • Wang, B. Z., Ma, Y., Zhou, W. Y., Zheng, J. W., Zhu, J. C., He, J., & Li, S. P. (2011). Biodegradation of synthetic pyrethroids by Ochrobactrum tritici strain pyd-1. World Journal of Microbiology and Biotechnology, 27(10), 2315–2324.

    CAS  Google Scholar 

  • Weston, D. P., & Lydy, M. J. (2010). Urban and agricultural sources of pyrethroid insecticides to the Sacramento-San Joaquin Delta of California. Environmental Science & Technology, 44(5), 1833–1840.

    CAS  Google Scholar 

  • Wu, P. C., Liu, Y. H., Wang, Z. Y., Zhang, X. Y., Li, H., Liang, W. Q., Luo, N., Hu, J. M., Lu, J. Q., & Luan, T. G. (2006). Molecular cloning, purification, and biochemical characterization of a novel pyrethroid-hydrolyzing esterase from Klebsiella sp. strain ZD112. Journal of Agricultural and Food Chemistry, 54(3), 836–842.

    CAS  Google Scholar 

  • Xia, Y., Han, Y., Wu, B., Wang, S., Gu, A., Lu, N., Bo, J., Song, L., Jin, N., & Wang, X. (2008). The relation between urinary metabolite of pyrethroid insecticides and semen quality in humans. Fertility and Sterility, 89(6), 1743–1750.

    CAS  Google Scholar 

  • Xiang, D., Chu, T., Li, M., Wang, Q., & Zhu, G. (2018). Effects of pyrethroid pesticide cis-bifenthrin on lipogenesis in hepatic cell line. Chemosphere, 201, 840–849.

    CAS  Google Scholar 

  • Xiao, Y., Chen, S., Gao, Y., Hu, W., Hu, M., & Zhong, G. (2015). Isolation of a novel beta-cypermethrin degrading strain Bacillus subtilis BSF01 and its biodegradation pathway. Applied Microbiology and Biotechnology, 99(6), 2849–2859.

    CAS  Google Scholar 

  • Yang, J., Feng, Y., Zhan, H., Liu, J., Zhang, K., Zhang, L., & Chen, S. (2018). Characterization of a pyrethroid-degrading Pseudomonas fulva strain P 31 and biochemical degradation pathway of D-phenothrin. Frontiers in Microbiology, 9, 1003.

    Google Scholar 

  • Yu, Y., & Fan, D. (2003). Preliminary study of an enzyme extracted from Alcaligenes sp. strain YF11 capable of degrading pesticides. Bulletin of Environmental Contamination and Toxicology, 70, 367–371.

    CAS  Google Scholar 

  • Zhai, Y., Li, K., Song, J., Shi, Y., & Yan, Y. (2012). Molecular cloning, purification and biochemical characterization of a novel pyrethroid-hydrolyzing carboxylesterase gene from Ochrobactrum anthropi YZ-1. Journal of Hazardous Materials, 221, 206–212.

    Google Scholar 

  • Zhan, H., Feng, Y., Fan, X., & Chen, S. (2018a). Recent advances in glyphosate biodegradation. Applied Microbiology and Biotechnology, 102(12), 5033–5043.

    CAS  Google Scholar 

  • Zhan, H., Wang, H., Liao, L., Feng, Y., Fan, X., Zhang, L., & Chen, S. (2018b). Kinetics and novel degradation pathway of permethrin in Acinetobacter baumannii ZH-14. Frontiers in Microbiology, 9, 98.

    Google Scholar 

  • Zhang, C., Jia, L., Wang, S. H., Qu, J., Xu, L. L., Shi, H. H., & Yan, Y. C. (2010). Biodegradation of beta-cypermethrin by two Serratia spp. with different cell surface hydrophobicity. Bioresource Technology, 101, 3423–3429.

    CAS  Google Scholar 

  • Zhang, C., Wang, S. H., & Yan, Y. C. (2011a). Isomerization and biodegradation of beta-cypermethrin by Pseudomonas aeruginosa CH7 with biosurfactant production. Bioresource Technology, 102, 7139–7146.

    CAS  Google Scholar 

  • Zhang, S., Yin, L., Liu, Y., Zhang, D., Luo, X., Cheng, J., Cheng, F., & Dai, J. (2011b). Cometabolic biotransformation of fenpropathrin by Clostridium species strain ZP3. Biodegradation, 22(5), 869–875.

    CAS  Google Scholar 

  • Zhang, H., Zhang, Y., Hou, Z., Wang, X., Wang, J., Lu, Z., Zhao, X., Sun, F., & Pan, H. (2016). Biodegradation potential of deltamethrin by the Bacillus cereus strain Y1 in both culture and contaminated soil. International Biodeterioration & Biodegradation, 106, 53–59.

    Google Scholar 

  • Zhang, Q., Zhang, Y., Du, J., & Zhao, M. (2017). Environmentally relevant levels of λ-cyhalothrin, fenvalerate, and permethrin cause developmental toxicity and disrupt endocrine system in zebrafish (Danio rerio) embryo. Chemosphere, 185, 1173–1180.

    CAS  Google Scholar 

  • Zhao, H., Geng, Y., Chen, L., Tao, K., & Hou, T. (2013). Biodegradation of cypermethrin by a novel Catellibacterium sp. strain CC-5 isolated from contaminated soil. Canadian Journal of Microbiology, 59(5), 311–317.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaohua Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, S., Zhan, H. (2019). Biodegradation of Synthetic Pyrethroid Insecticides. In: Arora, P. (eds) Microbial Metabolism of Xenobiotic Compounds. Microorganisms for Sustainability, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-13-7462-3_11

Download citation

Publish with us

Policies and ethics