Skip to main content

Receptor-Targeted Radionuclide Imaging (RTRI) and Peptide Receptor Radionuclide Therapy (PRRT)

  • Chapter
  • First Online:
  • 892 Accesses

Abstract

Increased amount of folate is needed for cells under rapid proliferation such as cancer cells. Folate receptors (FRs) are shown to be overexpressed on the surface of tumor cells under low folate conditions and viewed as tumor-associated antigen. The FRs could specifically bind folate and folate conjugates with very high affinity and then transport these molecules into cells through an endocytic mechanism. The fact that various tumors are folate dependent has been applied to improve tumor diagnosis and treatment, developing anti-FRa antibodies, high-affinity antifolates, folate-conjugated drugs and toxins, and folate-based imaging agents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bailey LB, Gregory JF (1999) Folate metabolism and requirements. J Nutr 129(4):779–782

    CAS  PubMed  Google Scholar 

  2. Lucock M (2000) Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab 71(1–2):121–138

    CAS  PubMed  Google Scholar 

  3. Sudimack J, Lee RJ (2002) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41(2):147–162

    Google Scholar 

  4. Ke CY, Mathias CJ, Green MA (2004) Folate-receptor-targeted radionuclide imaging agents. Adv Drug Deliv Rev 56(8):1143–1160

    CAS  PubMed  Google Scholar 

  5. Müller C (2013) Folate-based radiotracers for PET imaging--update and perspectives. Molecules 18(5):5005–5031

    PubMed  PubMed Central  Google Scholar 

  6. Müller C, Schibli R (2011) Folic acid conjugates for nuclear imaging of folate receptor-positive cancer. J Nucl Med 52(1):1–4

    PubMed  Google Scholar 

  7. Mathias CJ, Lewis MR, Reichert DE et al (2003) Preparation of 66Ga- and 68Ga-labeled Ga(III)-deferoxamine-folate as potential folate-receptor-targeted PET radiopharmaceuticals. Nucl Med Biol 30(7):725–731

    CAS  PubMed  Google Scholar 

  8. Wang S, Luo J, Lantrip DA et al (1997) Design and synthesis of [111In]DTPA-folate for use as a tumor-targeted radiopharmaceutical. Bioconjug Chem 8(5):673–679

    CAS  PubMed  Google Scholar 

  9. Mathias CJ, Hubers D, And PSL et al (2000) Synthesis of [99mTc]DTPA-Folate and its evaluation as a Folate-receptor-targeted radiopharmaceutical. Bioconjug Chem 11(2):253–257

    CAS  PubMed  Google Scholar 

  10. Trump DP, Mathias CJ, Yang Z et al (2002) Synthesis and evaluation of 99mTc(CO)3-DTPA-folate as a folate-receptor-targeted radiopharmaceutical. Nucl Med Biol 29(5):569–573

    CAS  PubMed  Google Scholar 

  11. Leamon CP, Parker MA, Vlahov IR et al (2002) Synthesis and biological evaluation of EC20: a new folate-derived, 99mTc-based radiopharmaceutical. Bioconjug Chem 13(6):1200–1210

    CAS  PubMed  Google Scholar 

  12. Guo W, Hinkle GH, Lee RJ (1999) 99mTc-HYNIC-folate: a novel receptor-based targeted radiopharmaceutical for tumor imaging. J Nucl Med 40(9):1563–1569

    CAS  PubMed  Google Scholar 

  13. Guo Z, Gao M, Song M et al (2016) Synthesis and evaluation of 99mTc-Labeled Dimeric folic acid for FR-targeting. Molecules 21(6):817

    PubMed Central  Google Scholar 

  14. Fani M, Wang X, Nicolas G et al (2011) Development of new folate-based PET radiotracers: preclinical evaluation of 68Ga-DOTA-folate conjugates. Eur J Nucl Med Mol Imaging 38(1):108–119

    CAS  PubMed  Google Scholar 

  15. Müller C, Vlahov IR, Santhapuram HK et al (2011) Tumor targeting using 67Ga-DOTA-Bz-folate--investigations of methods to improve the tissue distribution of radiofolates. Nucl Med Biol 38(5):715–723

    PubMed  Google Scholar 

  16. Müller C, Zhernosekov K, Köster U et al (2012) A unique matched quadruplet of terbium radioisotopes for PET and SPECT and for α- and β- radionuclide therapy: an in vivo proof-of-concept study with a new receptor-targeted folate derivative. J Nucl Med 53(12):1951–1959

    PubMed  Google Scholar 

  17. Fani M, Tamma ML, Nicolas GP et al (2012) In vivo imaging of Folate receptor positive tumor Xenografts using novel 68Ga-NODAGA-Folate conjugates. Mol Pharm 9(5):1136–1145

    CAS  PubMed  Google Scholar 

  18. Chen Q, Meng X, Mcquade P et al (2017) Folate-PEG-NOTA-Al18F, a new folate based radiotracer for PET imaging of folate receptor-positive tumors. Mol Pharm 14:4353–4361

    CAS  PubMed  Google Scholar 

  19. Chen Q, Meng X, Mcquade P et al (2016) Synthesis and preclinical evaluation of Folate-NOTA-Al18F for PET imaging of Folate-receptor-positive Tumors. Mol Pharm 13(5):1520–1527

    PubMed  PubMed Central  Google Scholar 

  20. Bettio A, Honer M, Müller C et al (2006) Synthesis and preclinical evaluation of a folic acid derivative labeled with 18F for PET imaging of folate receptor-positive tumors. J Nucl Med 47(7):1153–1160

    CAS  PubMed  Google Scholar 

  21. Al Jammaz I, Al-Otaibi B, Okarvi S et al (2010) Novel synthesis of [18F]-fluorobenzene and pyridinecarbohydrazide-folates as potential PET radiopharmaceuticals. J Label Compd Radiopharm 49(2):125–137

    Google Scholar 

  22. Al Jammaz I, Al-Otaibi B, Okarvi S (2011) Rapid synthesis and in vitro and in vivo evaluation of folic acid derivatives labeled with fluorine-18 for PET imaging of folate receptor-positive tumors. Nucl Med Bio 38(7):1019–1028

    Google Scholar 

  23. Al Jammaz I, Al-Otaibi B, Amer S et al (2012) Novel synthesis and preclinical evaluation of folic acid derivatives labeled with [18F]FDG for PET imaging of folate receptor-positive tumors. Nucl Med Biol 39(6):864–870

    PubMed  Google Scholar 

  24. Fischer CR, Müller C, Reber J et al (2012) [18F]fluoro-deoxy-glucose folate: a novel PET radiotracer with improved in vivo properties for folate receptor targeting. Bioconjug Chem 23(4):805–813

    CAS  PubMed  Google Scholar 

  25. Ross TL, Honer M, Lam PYH et al (2008) Fluorine-18 click Radiosynthesis and preclinical evaluation of a new 18F-Labeled folic acid derivative. Bioconjug Chem 19(12):2462–2470

    CAS  PubMed  Google Scholar 

  26. Aljammaz I, Al-Otaibi B, Al-Rumayan F et al (2014) Development and preclinical evaluation of new 124I-folate conjugates for PET imaging of folate receptor-positive tumors. Nucl Med Biol 41(6):457–463

    CAS  PubMed  Google Scholar 

  27. Ross TL, Honer M, Müller C et al (2010) A new 18F-labeled folic acid derivative with improved properties for the PET imaging of folate receptor-positive tumors. J Nucl Med 51(51):1756–1762

    CAS  PubMed  Google Scholar 

  28. Betzel T, Müller C, Groehn V et al (2013) Radiosynthesis and preclinical evaluation of 3′-Aza-2′-[18F]fluorofolic acid: a novel PET radiotracer for Folate receptor targeting. Bioconjug Chem 24(2):205–214

    CAS  PubMed  Google Scholar 

  29. Koch BD, Schonbrunn A (1984) The somatostatin receptor is directly coupled to adenylate cyclase in GH4C1 pituitary cell membranes. Endocrinology 114(5):1784–1790

    CAS  PubMed  Google Scholar 

  30. Vanetti M et al (1992) Cloning and expression of a novel mouse somatostatin receptor (SSTR2B). FEBS Lett 311(3):290–294

    CAS  PubMed  Google Scholar 

  31. Patel YC (1999) Somatostatin and its receptor family. Front Neuroendocrinol 20:157–198

    CAS  PubMed  Google Scholar 

  32. Pawlikowski M (2007) Somatostatin analogs in diagnostics and therapy. Landes Bioscience, Austin

    Google Scholar 

  33. Lamberts SWJ, Krenning EP, Reubi JC (1991) The role of somatostatin and its analogs in the diagnosis and treatment of tumors. Endocr Rev 12:450–482

    CAS  PubMed  Google Scholar 

  34. Balon HR, Brown TL, Goldsmith SJ et al (2011) The SNM practice guideline for somatostatin receptor scintigraphy 2.0. J Nucl Med Technol 39(4):317–324

    PubMed  Google Scholar 

  35. Krenning EP, Bakker WH, Kooij PPM et al (1992) Somatostatin receptor scintigraphy with Indium-111-DTPA-D-Phe-1-Oman: metabolism, dosimetry and comparison with iodine-123-Tyr-3-octreotide. J Nucl Med 33(5):652–658

    CAS  PubMed  Google Scholar 

  36. Buchmann I, Henze M, Engelbrecht S et al (2007) Comparison of 68 Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 34(10):1617–1626

    CAS  PubMed  Google Scholar 

  37. Wild D, Bomanji JB, Benkert P et al (2013) Comparison of 68Ga-DOTANOC and 68Ga-DOTATATE PET/CT within patients with gastroenteropancreatic neuroendocrine tumors. J Nucl Med 54(3):364–372

    CAS  PubMed  Google Scholar 

  38. Ambrosini V, Campana D, Tomassetti P, Fanti S (2012) 68 Ga-labelled peptides for diagnosis of gastroenteropancreatic NET. Eur J Nucl Med Mol Imaging 39:s52–s60

    PubMed  Google Scholar 

  39. Valkema R, Pauwels S, Kvols LK et al (2006) Survival and response after peptide receptor radionuclide therapy with [90Y-DOTA0, Tyr3]octreotide in patients with advanced gastroenteropancreatic neuroendocrine tumors. Semin Nucl Med 36(2):147–156

    PubMed  Google Scholar 

  40. Ezziddin S, Attassi M, Yong-Hing CJ et al (2014) Predictors of long-term outcome in patients with well-differentiated gastroenteropancreatic neuroendocrine tumors after peptide receptor radionuclide therapy with 177Lu-octreotate. J Nucl Med 55(2):183–190

    CAS  PubMed  Google Scholar 

  41. de Jong M, Breeman WA, Valkema R, Bernard BF, Krenning EP (2005) Combination radionuclide therapy using 177 Lu and 90 Y-labeled somatostatin analogs. J Nucl Med 46:13S–17S

    PubMed  Google Scholar 

  42. Romer A, Seiler D, Marincek N et al (2014) Somatostatin-based radiopeptide therapy with [177 Lu-DOTA]-TOC versus [ 90 Y-DOTA]-TOC in neuroendocrine tumours. Eur J Nucl Med Mol Imaging 41(2):214–222

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd. and Shanghai Jiao Tong University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, W., Wang, C., Huang, G. (2019). Receptor-Targeted Radionuclide Imaging (RTRI) and Peptide Receptor Radionuclide Therapy (PRRT). In: Huang, G. (eds) Nuclear Medicine in Oncology. Springer, Singapore. https://doi.org/10.1007/978-981-13-7458-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7458-6_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7457-9

  • Online ISBN: 978-981-13-7458-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics