Skip to main content

Linking Omics Approaches to Medicinal Plants and Human Health

  • Chapter
  • First Online:
Natural Bio-active Compounds

Abstract

People have an intimate association with plants since the onset of civilizations on this planet for various purposes, such as food, shelter, dye and healing. The use of plants for medicinal purposes in ancient times involved trial-and-error methods for their bioactivities. The therapeutic potential of medicinal plants has been well acknowledged in recent times with increasing experimental proofs. This has led to increased interest in their use for nutraceutical as well as medicinal purposes. It is not surprising that many of the modern medicines used currently are derived from plants. For this reason, there is an increased interest in the bioprospecting, usage and drug formulations of medicinal plants because of the presence of specialized metabolites in them. This upsurge in the interest on the usage of medicinal plants is attributed to their easy availability, developments in the recent high-throughput omics approaches, increased disease burden and increased participation of pharmaceutical companies in the business of producing phytomedicinal products for delivering plant-based healthcare services. To date, the primary focus of research with regard to medicinal plants has been in the areas of phytochemistry, pharmacognosy and horticulture. However, recent breakthroughs in high-throughput approaches have revolutionized this area of research and shifted the focus towards omics approaches, such as genomics, transcriptomics, proteomics, metabolomics, epigenomics, trichomics and ionomics. Thus, the present chapter discusses the high-throughput omics approaches in identifying genes, proteins and metabolites of medicinal plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abourashed EA, El-Alfy AT, Khan IA, Walker L (2003) Ephedra in perspective-a current review. Phytother Res 17:703–712

    Article  CAS  PubMed  Google Scholar 

  • Ahmed H, Juraimi AS, Swamy MK, Ahmad-Hamdani MS, Omar D, Rafii MY, Sinniah UR, Akhtar MS (2018) Botany, chemistry, and pharmaceutical significance of Sida cordifolia: a traditional medicinal plant. In: Akhtar MS, Swamy MK (eds) Anticancer plants: properties and application, vol 1. Springer, Singapore, pp 517–537

    Chapter  Google Scholar 

  • Akerele O (1992) Importance of medicinal plants: WHO’s programme. In: Baba S, Akerele O, Kawaguchi Y (eds) Natural resources and human health: plants of medicinal and nutritional value. Elsevier, Amsterdam, pp 63–77

    Google Scholar 

  • Andre CM, Hausman JF, Guerriero G (2016) Cannabis sativa: the plant of the thousand and one molecules. Front Plant Sci 7:19. https://doi.org/10.3389/fpls.2016.00019

    Article  PubMed  PubMed Central  Google Scholar 

  • Bai N, He K, Roller M, Lai CS, Shao X, Pan MH, Ho CT (2010) Flavonoids and phenolic compounds from Rosmarinus officinalis. J Agric Food Chem 58:5363–5367

    Article  CAS  PubMed  Google Scholar 

  • Baldwin EL, Osheroff N (2005) Etoposide, topoisomerase II and cancer. Curr Med Chem Anticancer Agents 5:363–372

    Article  CAS  PubMed  Google Scholar 

  • Barbosa GB, Jayasinghe NS, Natera SHA, Inutan ED, Peteros NP, Roessner U (2017) From common to rare Zingiberaceae plants-a metabolomics study using GC-MS. Phytochemistry 140:141–150

    Article  CAS  PubMed  Google Scholar 

  • Barrett B (2003) Medicinal properties of Echinacea: a critical review. Phytomedicine 10:66–86

    Article  CAS  PubMed  Google Scholar 

  • Baxter I (2009) Ionomics: studying the social network of mineral nutrients. Curr Opin Plant Biol 12:381–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bent S (2008) Herbal medicine in the United States: review of efficacy, safety, and regulation. J Gen Intern Med. 23:854–859

    Article  PubMed  PubMed Central  Google Scholar 

  • Bishop WE, Clarke DP, Travis CC (2001) The genomic revolution: what does it mean for risk assessment? Risk Anal 21:983–987

    Article  CAS  PubMed  Google Scholar 

  • Blankenburg M, Haberland L, Elvers HD, Tannert C, Jandrig B (2009) High-throughput omics technologies: potential tools for the investigation of influences of EMF on biological systems. Curr Genomics 10:86–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bora M, Parihar P (2018) Omics: a holistic approach in cancer treatment. In: Akhtar MS, Swamy MK (eds) Anticancer plants: mechanisms and molecular interactions, vol 4. Springer, Singapore, pp 1–26

    Google Scholar 

  • Briskin DP (2000) Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health. Plant Physiol 124:507–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Graham NS, Bowen HC, Emmerson ZF, Fray RG, Iannetta PP, McNicol JW, May ST (2008) Evidence of neutral transcriptome evolution in plants. New Phytol 180:587–593

    Article  CAS  PubMed  Google Scholar 

  • Brodie BB, Tomich EG, Kuntzman R, Shore PA (1957) On the mechanism of action of reserpine: effect of reserpine on capacity of tissues to bind serotonin. J Pharmacol Exp Ther 119:461–467

    CAS  PubMed  Google Scholar 

  • Bryant L, Flatley B, Patole C, Brown GD, Cramer R (2015) Proteomic analysis of Artemisia annua-towards elucidating the biosynthetic pathways of the antimalarial pro-drug artemisinin. BMC Plant Biol 15:175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chakraborty P (2018) Herbal genomics as tools for dissecting new metabolic pathways of unexplored medicinal plants and drug discovery. Biochim Open 6:9–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Champagne A, Rischer H, Oksman-Caldentey KM, Boutry M (2012) In-depth proteome mining of cultured Catharanthus roseus cells identifies candidate proteins involved in the synthesis and transport of secondary metabolites. Proteomics 12:3536–3547

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Dang TT, Facchini PJ (2015) Noscapine comes of age. Phytochemistry 11:7–13

    Article  CAS  Google Scholar 

  • Chen SL, Yu H, Luo HM, Wu Q, Li CF, Steinmetz A (2016) Conservation and sustainable use of medicinal plants: problems, progress, and prospects. Chin Med 11:37. https://doi.org/10.1186/s13020-016-0108-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Cherukupalli N, Divate M, Mittapelli SR, Khareedu VR, Vudem DR (2016) De novo assembly of leaf transcriptome in the medicinal plant Andrographis paniculata. Front Plant Sci 17:1203. https://doi.org/10.3389/fpls.2016.01203

    Article  Google Scholar 

  • Corbiere C, Liagre B, Terro F, Beneytout JL (2004) Induction of antiproliferative effect by diosgenin through activation of p53, release of apoptosis-inducing factor (AIF) and modulation of caspase-3 activity in different human cancer cells. Cell Res 14:188–196

    Article  CAS  PubMed  Google Scholar 

  • Crocoll C, Mirza N, Reichelt M, Gershenzon J, Halkier BA (2016) Optimization of engineered production of the glucoraphanin precursor dihomomethionine in Nicotiana benthamiana. Front Bioeng Biotechnol 4:1–9. https://doi.org/10.3389/fbioe.2016.00014

    Article  Google Scholar 

  • Croteau RB, Ketchum REB, Long RM, Kaspera R, Wildong MR (2006) Taxol biosynthesis and molecular genetics. Phytochem Rev 5:75–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai XB, Wang GD, Yang DS, Tang YH, Broun P, Marks MD, Sumner LW, Dixon RA, Zhao PX (2010) TrichOME: a comparative omics database for plant trichomes. Plant Physiol 152:44–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeBono A, Capuano B, Scammells PJ (2015) Progress toward the development of noscapine and derivatives as anticancer agents. J Med Chem 58:5699–5727

    Article  CAS  PubMed  Google Scholar 

  • DeLuca V, Salim V, Atsumi SM, Yu F (2012) Mining the biodiversity of plants: a revolution in the making. Science 336:1658–1661

    Article  CAS  Google Scholar 

  • Desgagné-Penix I, Khan MF, Schriemer DC, Cram D, Nowak J, Facchini PJ (2010) Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures. BMC Plant Biol 10:252. https://doi.org/10.1186/1471-2229-10-252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duke JA (1993) Medicinal plants and the pharmaceutical industry. In: Janick J, Simon JE (eds) New crops. Wiley, New York, pp 664–669

    Google Scholar 

  • Effendi L, Weerawat R, Sarah OC, Kristala JP (2009) Opportunities in metabolic engineering to facilitate scalable alkaloid production. Nat Chem Biol 5:292–300

    Article  CAS  Google Scholar 

  • Ekor M (2013) The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 4:177. https://doi.org/10.3389/fphar.2013.00177

    Article  CAS  Google Scholar 

  • Geu-Flores F, Sherden NH, Courdavault V, Burlat V, Glenn WS, Wu C, Nims E, Cui Y, O’Connor SE (2012) An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature 492:138–142

    Article  CAS  PubMed  Google Scholar 

  • Graham IA, Besser K, Blumer S, Branigan CA, Czechowski T, Elias L (2010) The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin. Science 327:328–331

    Article  CAS  PubMed  Google Scholar 

  • Gu L, Zhang ZY, Quan H, Li MJ, Zhao FY, Xu YJ, Liu J, Sai M, Zheng WL, Lan XZ (2018) Integrated analysis of transcriptomic and metabolomic data reveals critical metabolic pathways involved in rotenoid biosynthesis in the medicinal plant Mirabilis himalaica. Mol Gen Genomics 293:635–647

    Article  CAS  Google Scholar 

  • Guo M, Suo Y, Gao Q, Du H, Zeng W, Wang Y (2015) The protective mechanism of Ginkgolides and Ginkgo flavonoids on the TNF-α induced apoptosis of rat hippocampal neurons and its mechanisms in vitro. Heliyon 1:e00020

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta P, Goel R, Agarwal AV, Asif MH, Sangwan NS, Sangwan RS, Trivedi PK (2015) Comparative transcriptome analysis of different chemotypes elucidates withanolide biosynthesis pathway from medicinal plant Withania somnifera. Sci Rep 5:18611. https://doi.org/10.1038/srep18611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall R, Beale M, Fiehn O, Hardy N, Sumner L, Bino R (2002) Plant metabolomics: the missing link in functional genomics strategies. Plant Cell 14:1437–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton HC (2004) Medicinal plants, conservation and livelihoods. Biodivers Conserv 13:1477–1517

    Article  Google Scholar 

  • Hammond JP, Broadley MR, White PJ, King GJ, Bowen HC, Hayden R, Meacham MC, Mead A, Overs T, Spracklen WP, Greenwood DJ (2009) Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits. J Exp Bot 60:1953–1968

    Article  CAS  PubMed  Google Scholar 

  • Hardy K, Buckley S, Collins MJ, Estalrrich A, Brothwel D, Copeland L, García-Tabernero A, García-Vargas S, de la Rasilla M, Lalueza-Fox C, Huguet R, Bastir M, Santamaría D, Madella M, Wilson J, Cortés AF, Rosas A (2012) Neanderthal medics. Evidence for food, cooking, and medicinal plants entrapped in dental calculus. Naturwissenschaften 99:617–626

    Article  CAS  PubMed  Google Scholar 

  • Herrendorff R, Faleschini MT, Stiefvater A, Erne B, Wiktorowicz T, Kern F, Hamburger M, Potterat O, Kinter J, Sinnreich M (2016) Identification of plant-derived alkaloids with therapeutic potential for myotonic dystrophy type I. J Biol Chem 291:17165–17177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higashi Y, Saito K (2013) Network analysis for gene discovery in plant-specialized metabolism. Plant Cell Environ 36:1597–1606

    Article  CAS  PubMed  Google Scholar 

  • Hirai MY, Yano M, Goodenowe DB, Kanaya S, Kimura T, Awazuhara M, Arita M, Fujiwara T, Saito K (2004) Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc Natl Acad Sci U S A 101:10205–10210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirai MY, Klein M, Fujikawa Y, Yano M, Goodenowe DB, Yamazaki Y, Kanaya S, Nakamura Y, Kitayama M, Suzuki H, Sakurai N, Shibata D, Tokuhisa J, Reichelt M, Gershenzon J, Papenbrock J, Saito K (2005) Elucidation of gene-to-gene and metabolite-to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics. J Biol Chem 280:25590–25595

    Article  CAS  PubMed  Google Scholar 

  • Hoopes GM, Hamilton JP, Kim J, Zhao D, Wiegert-Rininger K, Crisovan E, Buell CR (2018) Genome assembly and annotation of the medicinal plant Calotropis gigantea, a producer of anticancer and antimalarial cardenolides. G3 (Bethesda) 8:385–391

    Article  CAS  Google Scholar 

  • Huang QL, Roessner CA, Croteau R, Scott AI (2001) Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol. Bioorg Med Chem 9:2237–2242

    Article  CAS  PubMed  Google Scholar 

  • Hussain MA, Huygens F (2012) Proteomic and bioinformatics tools to understand virulence mechanisms in Staphylococcus aureus. Curr Proteom 9:2–8

    Article  CAS  Google Scholar 

  • Jia L, Zhao Y (2009) Current evaluation of the millennium phytomedicine ginseng (I): etymology, pharmacognosy, phytochemistry, market and regulations. Curr Med Chem 16:2475–2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juárez-Rojop IE, Tovilla-Zárate CA, Aguilar-Domínguez DE, Roa-de la Fuentec LF, Lobato-Garcíac CF, Blé-Castillo JL, López-Meraz L, Díaz-Zagoya JC, Bermúdez-Ocañab DY (2014) Phytochemical screening and hypoglycemic activity of Carica papaya leaf in streptozotocin-induced diabetic rats. Rev Bras Pharmacogn 24:341–347

    Article  CAS  Google Scholar 

  • Katherine SR, Bradley SM (2009) Alkaloid biosynthesis takes root. Nat Chem Biol 5:140–141

    Article  CAS  Google Scholar 

  • Kaufman PB, Cseke LJ, Warber S, Duke JA, Brielmann HL (1999) Natural products from plants, 1st edn. CRC Press, Boca Raton, p 328

    Google Scholar 

  • Kaushal N, Rao S, Ghanghas P, Abraham S, George T, D’Souza S, Mathew JM, Chavali J, Swamy MK, Baliga MS (2018) Usefulness of Ocimum sanctum Linn. in cancer prevention: an update. In: Akhtar MS, Swamy MK (eds) Anticancer plants: properties and application, vol 1. Springer, Singapore, pp 415–429

    Chapter  Google Scholar 

  • Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, Seo E, Choi J, Cheong K, Kim KT, Jung K, Lee GW, Oh SK (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270–278

    Article  CAS  PubMed  Google Scholar 

  • Kohzadi S, Shahmoradi B, Ghaderi E, Loqmani H, Maleki A (2018) Concentration, source, and potential human health risk of heavy metals in the commonly consumed medicinal plants. Biol Trace Elem Res (Online). https://doi.org/10.1007/s12011-018-1357-3

    Article  PubMed  CAS  Google Scholar 

  • Krishna S, Bustamante L, Haynes RK, Staines HM (2008) Artemisinins: their growing importance in medicine. Trends Pharmacol Sci 29:520–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar VV, Swamy MK, Akhtar MS (2018) Anticancer plants and their conservation strategies: an update. In: Akhtar MS, Swamy MK (eds) Anticancer plants: properties and application, vol 1. Springer, Singapore, pp 455–483

    Chapter  Google Scholar 

  • Lahner B, Gong J, Mahmoudian M, Smith EL, Abid KB, Rogers EE, Guerinot ML, Harper JF, Ward JM, McIntyre L, Schroeder JI, Salt DE (2003) Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nat Biotechnol 21:1215–1221

    Article  CAS  PubMed  Google Scholar 

  • Lasda E, Parker R (2014) Circular RNAs: diversity of form and function. RNA 20:1829–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KW, Ching SM, Hoo FK, Ramachandran V, Swamy MK (2018) Traditional medicinal plants and their therapeutic potential against major cancer types. In: Akhtar MS, Swamy MK (eds) Anticancer plants: natural products and biotechnological implements, vol 2. Springer, Singapore, pp 383–410

    Chapter  Google Scholar 

  • Lenka SK, Boutaoui N, Paulose B, Vongpaseuth K, Normanly J, Roberts SC, Walker EL (2012) Identification and expression analysis of methyl jasmonate responsive ESTs in paclitaxel producing Taxus cuspidata suspension culture cells. BMC Genomics 13:148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Li C, Lu S (2018) Systematic analysis of DEMETER-like DNA glycosylase genes shows lineage-specific Smi-miR7972 involved in SmDML1 regulation in Salvia miltiorrhiza. Sci Rep 8:7143. https://doi.org/10.1038/s41598-018-25315-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lietava J (1992) Medicinal plants in a middle paleolithic grave Shanidar IV? J Ethnopharmacol 35:263–266

    Article  CAS  PubMed  Google Scholar 

  • Lim CG, Fowler ZL, Hueller T, Schaffer S, Koffas MA (2011) High-yield resveratrol production in engineered Escherichia coli. Appl Environ Microbiol 77:3451–3460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Wang Y, Guo F, Zhan L, Mohr T, Cheng P, Huo N, Gu R, Pei D, Sun J, Tang L, Long C, Huang L, Gu YQ (2017) Deep sequencing and transcriptome analyses to identify genes involved in secoiridoid biosynthesis in the Tibetan medicinal plant Swertia mussotii. Sci Rep 22:43108. https://doi.org/10.1038/srep43108

    Article  CAS  Google Scholar 

  • Lorence A, Nessler CL (2004) Camptothecin, over four decades of surprising findings. Phytochemistry 65:2735–2749

    Article  CAS  PubMed  Google Scholar 

  • Lown JW (1983) The mechanism of action of quinone antibiotics. Mol Cell Biochem 55:17–40

    Article  CAS  PubMed  Google Scholar 

  • Lu JM, Yao Q, Chen C (2009) Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol 7:293–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manayi A, Vazirian M, Saeidnia S (2015) Echinacea purpurea: pharmacology, phytochemistry and analysis methods. Pharmacogn Rev 9:63–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marker RE, Turner DL, Ulshafer PR (1940) Sterols CIV Diosgenin from certain American plants. J Am Chem Soc 62:2542–2543

    Article  CAS  Google Scholar 

  • Martinez-Esteso MJ, Martinez-Marquez A, Selles-Marchart S, Morante-Carriel JA, Bru-Martinez R (2015) The role of proteomics in progressing insights into plant secondary metabolism. Front Plant Sci 6:504

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehta A, Hasija Y (2018) Bioinformatics approaches for genomics and post genomics applications of anticancer plants. In: Akhtar MS, Swamy MK (eds) Anticancer plants: mechanisms and molecular interactions, vol 4. Springer, Singapore, pp 283–317

    Chapter  Google Scholar 

  • Meng HL, Wang Y, Hua Q, Zhang SL, Wang XN (2011) In silico analysis and experimental improvement of taxadiene heterologous biosynthesis in Escherichia coli. Biotechnol Bioprocess Eng 16:205–215

    Article  CAS  Google Scholar 

  • Michael WB, Cristobal U (2013) Genomics reveals new landscapes for crop improvement. Genome Biol 14:206

    Article  CAS  Google Scholar 

  • Mikkelsen MD, Olsen CE, Halkier BA (2010) Production of the cancer-preventive glucoraphanin in tobacco. Mol Plant 3:751–759

    Article  CAS  PubMed  Google Scholar 

  • Mirza N, Crocoll C, Erik Olsen C, Ann Halkier B (2016) Engineering of methionine chain elongation part of glucoraphanin pathway in E. coli. Metab Eng 35:31–37

    Article  CAS  PubMed  Google Scholar 

  • Mochida K, Sakurai T, Seki H, Yoshida T, Takahagi K, Sawai S, Uchiyama H, Muranaka T, Saito K (2017) Draft genome assembly and annotation of Glycyrrhiza uralensis, a medicinal legume. Plant J 89:181–194

    Article  CAS  PubMed  Google Scholar 

  • Mohanty SK, Swamy MK, Sinniah UR, Anuradha M (2017) Leptadenia reticulata (Retz.) Wight & Arn. (Jivanti): botanical, agronomical, phytochemical, pharmacological, and biotechnological aspects. Molecules 22:1019

    Article  PubMed Central  CAS  Google Scholar 

  • Muangphrom P, Seki H, Fukushima EO, Muranaka T (2016) Artemisinin-based antimalarial research: application of biotechnology to the production of artemisinin, its mode of action, and the mechanism of resistance of Plasmodium parasites. J Nat Med 70:318–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nahrstedt A, Butterweck V (1997) Biologically active and other chemical constituents of the herb Hypericum perforatum L. Pharmacopsychiatry 30:129–134

    Article  CAS  PubMed  Google Scholar 

  • Nims E, Dubois CP, Roberts SC, Walker EL (2006) Expression profiling of genes involved in paclitaxel biosynthesis for targeted metabolic engineering. Metab Eng 8:385–394

    Article  CAS  PubMed  Google Scholar 

  • Noble RL (1990) The discovery of the vinca alkaloids-chemotherapeutic agents against cancer. Biochem Cell Biol 68:1344–1351

    Article  CAS  PubMed  Google Scholar 

  • Oberlies NH, Kroll DJ (2004) Camptothecin and taxol: historic achievements in natural products research. J Nat Prod 67:129–135

    Article  CAS  PubMed  Google Scholar 

  • Ogita S, Uefuji H, Yamaguchi Y, Koizumi N, Sano H (2003) RNA interference: producing decaffeinated coffee plants. Nature 423:823

    Article  CAS  PubMed  Google Scholar 

  • Oldham JT, Hincapie M, Rejtar T, Wall PK, Carlson JE, Lee-Parsons CW (2010) Shotgun proteomic analysis of yeast-elicited California poppy (Eschscholzia californica) suspension cultures producing enhanced levels of benzophenanthridine alkaloids. J Proteome Res 9:4337–4345

    Article  CAS  PubMed  Google Scholar 

  • Olivas NHD (2016) Ecogenomics of plant resistance to biotic and abiotic stresses. PhD thesis, Wageningen University, Wageningen, NL

    Google Scholar 

  • Orekhov AN, Ivanova EA (2016) Cellular models of atherosclerosis and their implication for testing natural substances with anti-atherosclerotic potential. Phytomedicine 23:1190–1197

    Article  CAS  PubMed  Google Scholar 

  • Orrego F (1984) Calcium and the mechanism of action of digitalis. Gen Pharmacol 15:273–280

    Article  CAS  PubMed  Google Scholar 

  • Ouedraogo M, Baudoux T, Stévigny C, Nortier J, Colet JM, Efferth T, Qu F, Zhou J, Chan K, Shaw D, Pelkonen O, Duez P (2012) Review of current and omics methods for assessing the toxicity (genotoxicity, teratogenicity and nephrotoxicity) of herbal medicines and mushrooms. J Ethnopharmacol 140:492–512

    Article  CAS  PubMed  Google Scholar 

  • Padulosi S, Leaman D, Quek P (2002) Challenges and opportunities in enhancing the conservation and use of medicinal and aromatic plants. J Herbs Spices Med Plants 9:243–267

    Article  Google Scholar 

  • Pathania S, Ramakrishnan SM, Randhawa V, Bagler G (2015) SerpentinaDB: a database of plant-derived molecules of Rauvolfia serpentina. BMC Compl Altern Med 15:262

    Article  CAS  Google Scholar 

  • Pelkonen O, Pasanen M, Lindon JC, Chan K, Zhao L, Deal G, Xu Q, Fan TP (2012) Omics and its potential impact on R & D and regulation of complex herbal products. J Ethnopharmacol 140:587–593

    Article  CAS  PubMed  Google Scholar 

  • Petrovska BB (2012) Historical review of medicinal plants usage. Pharmacogn Rev 6:1–5. https://doi.org/10.4103/0973-7847.95849

    Article  PubMed  PubMed Central  Google Scholar 

  • Pichersky E, Gang DR (2000) Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci 5:439–445

    Article  CAS  PubMed  Google Scholar 

  • Pickens LB, Tang Y, Chooi YH (2011) Metabolic engineering for the production of natural products. Annu Rev Chem Biomol Eng 2:211–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pommier Y (2006) Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer 10:789–802

    Article  CAS  Google Scholar 

  • Porter TM, Hajibabaei M (2018) Scaling up: a guide to high-throughput genomic approaches for biodiversity analysis. Mol Ecol 27:313–338

    Article  PubMed  Google Scholar 

  • Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, Cheng J, Zhao S, Xu M, Luo Y, Yang Y, Wu Z (2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci U S A 11:5135–5140

    Article  CAS  Google Scholar 

  • Raharjo TJ, Widjaja I, Roytrakul S, Verpoorte R (2004) Comparative proteomics of Cannabis sativa plant tissues. J Biomol Tech 15:97–106

    PubMed  PubMed Central  Google Scholar 

  • Rai A, Saito K, Yamazaki M (2017) Integrated omics analysis of specialized metabolism in medicinal plants. Plant J 90:764–787

    Article  CAS  PubMed  Google Scholar 

  • Rischer H, Oresic M, Seppanen-Laakso T, Katajamaa M, Lammertyn F, Ardiles-Diaz W, Van Montagu MC, Inze D, Oksman-Caldentey KM, Goossens A (2006) Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proc Natl Acad Sci U S A 103:5614–5619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    Article  CAS  PubMed  Google Scholar 

  • Roepke J, Salim V, Wu M, Thamm AM, Murata J, Ploss K, Boland W, De Luca V (2010) Vinca drug components accumulate exclusively in leaf exudates of Madagascar periwinkle. Proc Natl Acad Sci U S A 24:15287–15292

    Article  Google Scholar 

  • Roza O, Lovász N, Zupkó I, Hohmann J, Csupor D (2013) Sympathomimetic activity of a Hoodia gordonii product: a possible mechanism of cardiovascular side effects. BioMed Res Int’l 2013:171059

    Google Scholar 

  • Runguphan W, O’Connor SE (2009) Metabolic reprogramming of periwinkle plant culture. Nat Chem Biol 5:151–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Runguphan W, Qu X, O’Connor SE (2010) Integrating carbon-halogen bond formation into medicinal plant metabolism. Nature 468:461–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito K (2013) Phytochemical genomics: a new trend. Curr Opin Plant Biol 16:373–380

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Matsuda F (2010) Metabolomics for functional genomics, systems biology and biotechnology. Annu Rev Plant Biol 61:463–489

    Article  CAS  PubMed  Google Scholar 

  • Salt DE, Baxter I, Lahner B (2008) Ionomics and the study of the plant ionome. Annu Rev Plant Biol 59:709–733

    Article  CAS  PubMed  Google Scholar 

  • Sato F, Hashimoto T, Hachiya A, Tamura KI, Choi KB, Morishige T, Fujimoto H, Yamada Y (2011) Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci U S A 98:367–372

    Article  Google Scholar 

  • Schippmann U, Leaman D, Cunningham A (2002) Impact of cultivation and gathering of medicinal plants on biodiversity: global trends and issues. FAO, Rome

    Google Scholar 

  • Senchina DS, Strauch JH, Hoffmann GB, Shah NB, Laflen BK, Dumke BL, Dao CT, Dias AS, Perera MA (2011) Phytochemical and immunomodulatory properties of an Echinacea laevigata (Asteraceae) tincture. J Altern Complement Med 17:375–377

    Article  PubMed  Google Scholar 

  • Sharma A, Purkait B (2012) Identification of medicinally active ingredient in ultradiluted Digitalis purpurea: fluorescence spectroscopic and cyclic-voltammetric study. J Anal Methods Chem 109058:5

    Google Scholar 

  • Smith JV, Luo Y (2004) Studies on molecular mechanisms of Ginkgo biloba extract. Appl Microbiol Biotechnol 64:465–472

    Article  CAS  PubMed  Google Scholar 

  • Sommer JD (1999) The Shanidar IV ‘Flower Burial’: a re-evaluation of Neanderthal burial ritual. Camb Archaeol J 9:127–129

    Article  Google Scholar 

  • Sricharoen P, Lamaiphan N, Patthawaro P, Limchoowong N, Techawongstien S, Chanthai S (2016) Phytochemicals in Capsicum oleoresin from different varieties of hot chilli peppers with their antidiabetic and antioxidant activities due to some phenolic compounds. Ultrason Sonochem 38:629–639

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan K (2016) Biological activities of red pepper (Capsicum annuum) and its pungent principle capsaicin: a review. Crit Rev Food Sci Nutr 56:1488–1500

    Article  CAS  PubMed  Google Scholar 

  • Strickler SR, Bombarely A, Mueller LA (2012) Designing a transcriptome next-generation sequencing project for a non-model plant species. Am J Bot 99:257–266

    Article  CAS  PubMed  Google Scholar 

  • Suárez AI, Chávez K (2018) Appraisal of medicinal plants with anticancer properties in South America. In: Akhtar MS, Swamy MK (eds) Anticancer plants: properties and application, vol 1. Springer, Singapore, pp 229–283

    Chapter  Google Scholar 

  • Swamy MK, Akhtar MS, Sinniah UR (2016a) Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evid Based Compl Altern Med 2016:3012462. https://doi.org/10.1155/2016/3012462

    Article  Google Scholar 

  • Swamy MK, Akhtar MS, Sinniah UR (2016b) Response of PGPR and AM fungi toward growth and secondary metabolite production in medicinal and aromatic plants. In: Hakeem KR, Akhtar MS (eds) Plant, soil and microbes: mechanism and molecular interactions, vol 2. Springer, Switzerland, pp 145–168

    Chapter  Google Scholar 

  • Swamy MK, Paramashivaiah S, Hiremath L, Akhtar MS, Sinniah UR (2018a) Micropropagation and conservation of selected endangered anticancer medicinal plants from the Western Ghats of India. In: Akhtar MS, Swamy MK (eds) Anticancer plants: natural products and biotechnological implements, vol 2. Springer, Singapore, pp 481–505

    Chapter  Google Scholar 

  • Swamy MK, Sinniah UR, Ghasemzadeh A (2018b) Anticancer potential of rosmarinic acid and its improved production through biotechnological interventions and functional genomics. Appl Microbiol Biotechnol 102:7775–7793

    Article  CAS  PubMed  Google Scholar 

  • Talei D, Valdiani A, Rafii MY, Maziah M (2014) Proteomic analysis of the salt-responsive leaf and root proteins in the anticancer plant Andrographis paniculata Nees. PLoS One 9:e112907. https://doi.org/10.1371/journal.pone.0112907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tattersall DB, Bak S, Jones PR, Olsen CE, Nielsen JK, Hansen ML, Høj PB, Møller BL (2001) Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science 293:1826–1828

    Article  CAS  PubMed  Google Scholar 

  • Ulbricht C, Basch E, Hammerness P, Vora M, Wylie J Jr, Woods J (2004) An evidence-based systematic review of belladonna by the natural standard research collaboration. J Herb Pharmacother 4:61–90

    Article  PubMed  Google Scholar 

  • Ulrich-Merzenich G, Zeitler H, Jobst D, Panek D, Vetter H, Wagner H (2007) Application of the Omic technologies in phytomedicine. Phytomedicine 14:70–82

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay AK, Chacko AR, Gandhimathi A, Ghosh P, Harini K, Joseph AP, Joshi AG, Karpe SD, Kaushik S, Kuravadi N, Lingu CS, Mahita J, Malarini R, Malhotra S (2015) Genome sequencing of herb Tulsi (Ocimum tenuiflorum) unravels key genes behind its strong medicinal properties. BMC Plant Biol 15:212. https://doi.org/10.1186/s12870-015-0562-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upton R (1999) Valerian root, Valeriana officinalis, analytical, quality control and therapeutic monograph. American Herbal Pharmacopoeia (AHP) and Therapeutic Compendium. http://www.herbal-ahp.org/documents/sample/valerian.pdf. Accessed 24 Sept 2018

  • Urasaki N, Takagi H, Natsume S, Uemura A, Taniai N, Miyagi N, Fukushima M, Suzuki S, Tarora K, Tamaki M, Sakamoto M, Terauchi R, Matsumura H (2017) Draft genome sequence of bitter gourd (Momordica charantia), a vegetable and medicinal plant in tropical and subtropical regions. DNA Res 24:51–58. https://doi.org/10.1093/dnares/dsw047

    Article  CAS  PubMed  Google Scholar 

  • Van Moerkercke A, Fabris M, Pollier J, Baart GJE, Rombauts S, Hasnain G, Rischer H, Memelink J, Oksman-Caldentey KM, Goossens A (2013) CathaCyc, a metabolic pathway database built from Catharanthus roseus RNA-seq data. Plant Cell Physiol 54:673–685

    Article  PubMed  CAS  Google Scholar 

  • Vongpaseuth K, Nims E, Amand MS, Walker EL, Roberts SC (2007) Development of a particle bombardment-mediated transient transformation system for Taxus spp. cells in culture. Biotechnol Prog 23:1180–1185

    CAS  PubMed  Google Scholar 

  • Wadley L, Sievers C, Bamford M, Goldberg P, Berna F, Miller C (2011) Middle stone-age bedding construction and settlement patterns at Sibudu, South Africa. Science 334:1388–1391

    Article  CAS  PubMed  Google Scholar 

  • Wang HV, Chekanova JA (2017) Long noncoding RNAs in plants. Adv Exp Med Biol 1008:133–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Halls C, Zhang J, Matsuno M, Zhang Y, Yu O (2011) Stepwise increase of resveratrol biosynthesis in yeast Saccharomyces cerevisiae by metabolic engineering. Metab Eng 13:455–463

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhang J, He S, Gao Y, Ma X, Gao Y, Zhang G, Kui L, Wang W, Wang Y, Yang S, Dong Y (2018) HMOD: an omics database for herbal medicine plants. Mol Plant 11:757–759

    Article  CAS  PubMed  Google Scholar 

  • Whiting S, Derbyshire EJ, Tiwari B (2013) Could capsaicinoids help to support weight management? A systematic review and meta-analysis of energy intake data. Appetite 73:183–188

    Article  PubMed  Google Scholar 

  • Wilson SA, Roberts SC (2014) Metabolic engineering approaches for production of biochemicals in food and medicinal plants. Curr Opin Biotechnol 26:174–182

    Article  CAS  PubMed  Google Scholar 

  • Wink M, Schimmer O (1999) Modes of action of defensive secondary metabolites. In: Wink M (ed) Functions of plant secondary metabolites and their exploitation in biotechnology, 1st edn. CRC Press, Boca Raton, pp 17–112

    Google Scholar 

  • Wurtele E, Chappell J, Jones A, Celiz M, Ransom N, Hur M, Rizshsky L, Crispin M, Dixon P, Liu J (2012) Medicinal plants: a public resource for metabolomics and hypothesis development. Metabolites 2:1031–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao M, Zhang Y, Chen X, Lee EJ, Barber CJ, Chakrabarty R, Desgagné-Penix I, Haslam TM, Kim YB, Liu E, MacNevin G (2013a) Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. J Biotechnol 166:122–134

    Article  CAS  PubMed  Google Scholar 

  • Xiao M, Zhang Y, Chen X, Lee EJ, Barber CJS, Chakrabarty R, Desgagne-Penix I, Haslam TM, Kim YB, Liu EW (2013b) Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. J Biotechnol 166:122–134

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Song J, Luo H, Zhang Y, Li Q, Zhu Y, Xu J, Li Y, Song C, Wang B, Sun W, Shen G, Zhang X, Qian J, Ji A, Xu Z, Luo X, He L, Li C, Sun C, Yan H, Cui G, Li X, Li X, Wei J, Liu J, Wang Y, Hayward A, Nelson D, Ning Z, Peters RJ, Qi X, Chen S (2016) Analysis of the genome sequence of the medicinal plant Salvia miltiorrhiza. Mol Plant 9:949–952

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Wang X, Liu H, Tian Y, Lian J, Yang R, Hao S, Wang X, Yang S (2015) The genome of Dendrobium officinale illuminates the biology of the important traditional Chinese orchid herb. Mol Plant 8:922–934

    Article  CAS  PubMed  Google Scholar 

  • Yang JH, Qu LH (2013) Discovery of microRNA regulatory networks by integrating multidimensional high-throughput data. Adv Exp Med Biol 774:251–266

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Xie Y, Guo M, Rosner MH, Yang H, Ronco C (2018) Nephrotoxicity and Chinese herbal medicine. Clin J Am Soc Nephrol 2:CJN.11571017. https://doi.org/10.2215/CJN.11571017

    Article  Google Scholar 

  • Zhang J, Wei L, Jiang J, Mason AS, Li H, Cui C, Chai L, Zheng B, Zhu Y, Xia Q, Jiang L, Fu D (2018a) Genome-wide identification, putative functionality and interactions between lncRNAs and miRNAs in Brassica species. Sci Rep 21:4960. https://doi.org/10.1038/s41598-018-23334-1

    Article  CAS  Google Scholar 

  • Zhang Y, Xu Z, Ji A, Luo H, Song J (2018b) Genomic survey of bZIP transcription factor genes related to tanshinone biosynthesis in Salvia miltiorrhiza. Acta Pharm Sin B 8:295–305

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Kumar, S., Thomas, T.D., Ramchiary, N., Swamy, M.K., Ahmad, I. (2019). Linking Omics Approaches to Medicinal Plants and Human Health. In: Akhtar, M., Swamy, M. (eds) Natural Bio-active Compounds. Springer, Singapore. https://doi.org/10.1007/978-981-13-7438-8_2

Download citation

Publish with us

Policies and ethics