Skip to main content

Metabolic Engineering Strategies for Enhancing the Production of Bio-active Compounds from Medicinal Plants

  • Chapter
  • First Online:
Natural Bio-active Compounds

Abstract

Bio-active compounds, isolated from medicinal plants play a vital role in modern medicine as some of them have become very potent drugs. Although these compounds are produced and accumulated in different parts of the plants, there are many bottlenecks in getting plant-based bio-active compounds. In particular, phytocompounds are limited to a particular species/genus and are produced only under specific conditions, such as pathogen attack, stage of growth and development, etc. In this regard, metabolic engineering is very promising as it offers the possibilities of overcoming the dearth of desired plant compounds by using various strategies that include increased flux of precursors, blocking of competitive pathway by using the intermediate compounds, introducing new metabolic pathways, overcoming rate-limiting steps, and the overexpression of regulatory genes or transcription factors for inducing the biosynthetic pathways. The metabolic engineering approach has been exploited in transforming plants as “cell factories” for producing various bio-active compounds. Due to the tremendous biological potential of these compounds, the understanding of their synthesis, accumulation, and manipulation in different parts of the plant along with their regulation is very crucial. By utilizing different genomics and metabolomics tools, the production of various bio-active compounds has been enhanced. This chapter provides the present-day knowledge on the production of some plant-derived bio-active compounds, such as polyphenols, alkaloids, terpenes, and saponins. Further, various biotechnological approaches for increasing the accumulation of bio-active compounds through metabolic pathways engineering in plants are discussed in this chapter.

Munish Sharma and Manoj K. Dhar have equally contributed for this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agerbirk N, Olsen CE (2012) Glucosinolate structures in evolution. Phytochemistry 77:16–45

    Article  CAS  PubMed  Google Scholar 

  • Ahmed H, Juraimi AS, Swamy MK, Ahmad-Hamdani MS, Omar D, Rafii MY, Sinniah UR, Akhtar MS (2018) Botany, chemistry, and pharmaceutical significance of Sida cordifolia: a traditional medicinal plant. In: Akhtar MS, Swamy MK (eds) Anticancer plants: properties and application, vol 1. Springer, Singapore, pp 517–537

    Chapter  Google Scholar 

  • Akthar MS, Birhanu G, Demisse S (2014) Antimicrobial activity of Piper nigrum L. and Cassia didymobotyra L. leaf extract on selected food borne pathogens. Asian Pac J Trop Dis 4:S911–S919

    Article  Google Scholar 

  • Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM (2015) CRISPR/Cas9-mediated viral interference in plants. Genome Biol 16:238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allen RS, Millgate AG, Chitty JA, Thisleton J, Miller JA, Fist AJ, Gerlach WL, Larkin PJ (2004) RNAi-mediated replacement of morphine with the nonnarcotic alkaloid reticuline in opium poppy. Nat Biotechnol 22:1559–1566

    Article  CAS  PubMed  Google Scholar 

  • Anand S (2010) Various approaches for secondary metabolite production through plant tissue culture. Pharmacia 1:1–7

    Google Scholar 

  • Angelova S, Buchheim M, Frowitter D, Schierhorn A, Roos W (2010) Overproduction of alkaloid phytoalexins in California poppy cells is associated with the co-expression of biosynthetic and stress-protective enzymes. Mol Plant 3:927–939

    Article  CAS  PubMed  Google Scholar 

  • Arumugam G, Swamy MK, Sinniah UR (2016) Plectranthus amboinicus (Lour.) Spreng: botanical, phytochemical, pharmacological and nutritional significance. Molecules 21:369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bai Z, Li W, Jia Y, Yue Z, Jiao J, Huang W, Xia P, Liang Z (2018) The ethylene response factor SmERF6 co-regulates the transcription of SmCPS1 and SmKSL1 and is involved in tanshinone biosynthesis in Salvia miltiorrhiza hairy roots. Planta 248:243–255

    Article  CAS  PubMed  Google Scholar 

  • Balandrin MF, Klocke JA, Wurtele ES, Bollinger WH (1985) Natural plant chemicals: sources of industrial and medicinal materials. Science 228:1154–1160

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Sharkey TD (2014) Methylerythritol 4-phosphate (MEP) pathway metabolic regulation. Nat Prod Rep 31:1043–1055

    Article  CAS  PubMed  Google Scholar 

  • Belonwu DC, Ibegbulem CO, Chikezie PC (2014) Systemic evaluation of antibacterial activity of Anacardium occidentale. J Phytopharmacol 3:193–199

    Google Scholar 

  • Bernard G, Dromard A (2011) Book of etymology and medical terminology. Lexicon Etymology

    Google Scholar 

  • Bernhoft A (2010) A brief review on bioactive compounds in plants. In: Bernhoft A (ed) Bioactive compounds in plants: benefits and risks for man and animals. Novus Forlag, Oslo, pp 11–18

    Google Scholar 

  • Biswas S, Hazra S, Chattopadhyay S (2016) Identification of conserved miRNAs and their putative target genes in Podophyllum hexandrum (Himalayan Mayapple). Plant Gene 6:82–89

    Article  CAS  Google Scholar 

  • Bohinc T, Ban SG, Ban D, Trdan S (2012) Glucosinolates in plant protection strategies: a review. Arch Biol Sci Belgrade 64:821–828

    Article  Google Scholar 

  • Brouwer C, Bruce W, Maddock S, Avramova Z, Bowen B (2002) Suppression of transgene silencing by matrix attachment regions in maize: a dual role for the maize 5. ADH1 matrix attachment region. Plant Cell 14:2251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruneton J (1999) Pharmacognosy, phytochemistry, medicinal plants. Lavoisier, Paris, pp 1–15

    Google Scholar 

  • Cammack R, Atwood T, Campell P, Parish H, Smith A, Vella F, Stirling J (2006) Oxford dictionary of biochemistry and molecular biology, 2nd edn. Oxford University Press, Oxford, pp 74–75

    Book  Google Scholar 

  • Cermak T, Baltes NJ, Cegan R, Cegan R, Zhang Y, Voytas DF (2015) High-frequency, precise modification of the tomato genome. Genome Biol 16:232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen W, Viljoen AM (2010) Geraniol-a review of a commercially important fragrance material. S Afr J Bot 76:643–651

    Article  CAS  Google Scholar 

  • Cheng Y, Liu L, Zhao G, Shen C, Yan H, Guan J, Yang K (2015) The effects of modified atmosphere packaging on core browning and the expression patterns of PPO and PAL genes in “Yali” pears during cold storage LWT. Food Sci Technol 60:1243–1248

    CAS  Google Scholar 

  • Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20

    Article  CAS  PubMed  Google Scholar 

  • Chilcoat D, Liu ZB, Sander J (2017) Use of CRISPR/ Cas9 for crop improvement in maize and soybean. Prog Mol Biol Transl Sci 149:27–46

    Article  PubMed  Google Scholar 

  • Choudhary N, Siddiqui MB, Azmat S, Khatoon S (2013) Tinospora cordifolia: ethnobotany, phytopharmacology and phytochemistry aspects. Int J Pharma Sci Res 4:891–899

    Google Scholar 

  • Cote JJ, Caillet SS, Doyon GG, Sylvain JF, Lacroix MM (2010) Analyzing cranberry bioactive compounds. Crit Rev Food Sci Nutr 50:872–888

    Article  CAS  PubMed  Google Scholar 

  • Dar TA, Uddin M, Khan MMA, Hakeem KR, Jaleel H (2015) Jasmonates counter plant stress: a review. Environ Exp Bot 115:49–57

    Article  CAS  Google Scholar 

  • De Jong F, Hanley SJ, Beale MH, Karp A (2015) Characterization of the willow phenylalanine ammonia-lyase (PAL) gene family reveals expression differences compared with poplar. Phytochemistry 117:90–97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dey A, De JN (2015) Neuroprotective therapeutics from botanicals and phytochemicals against Huntington’s disease and related neurodegenerative disorders. J Herbal Med 5:1–19

    Article  CAS  Google Scholar 

  • Dhar MK, Sharma R, Koul A, Kaul S (2015) Development of fruit color in Solanaceae: a story of two biosynthetic pathways. Brief Funct Genomics 108:412–421

    Google Scholar 

  • Dhar MK, Sharma M, Bhat A, Chrungoo NK, Kaul S (2017) Functional genomics of apocarotenoids in saffron: insights from chemistry, molecular biology and therapeutic applications. Brief Funct Genom 16:336–347

    Article  CAS  Google Scholar 

  • Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K, Dubery IA (2017) Functional roles of microRNAs in agronomically important plants-potential as targets for crop improvement and protection. Front Plant Sci 8:378

    Article  PubMed  PubMed Central  Google Scholar 

  • Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Panchon MS, Villano D, Troncoso AM, Garcia-Parrilla MC (2008) Antioxidant activity of phenolic compounds: from in vitro results to in vivo evidence. Crit Rev Food Sci Nutr 48:649–671

    Article  CAS  PubMed  Google Scholar 

  • Ferrari S (2010) Biological elicitors of plant secondary metabolites: mode of action and use in the production of nutraceutics. In: Giardi MT, Rea G, Berra B (eds) Bio-farms for nutraceuticals. Springer, Boston, pp 152–166

    Chapter  Google Scholar 

  • Fits L, Memelin J (2000) ORCA3: a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297

    Article  PubMed  Google Scholar 

  • Fujita Y, Tabata M (1987) Secondary metabolites from plant cells: pharmaceutical applications and progress in commercial production. In: Green CE, Somers DA, Hackett WP, Biesboer DD (eds) Plant tissue and cell culture. Alan R. Liss, New York, pp 169–185

    Google Scholar 

  • Gabriac B, Werck-Reichhart D, Teutsch H, Durst F (1991) Purification and immunocharacterization of a plant cytochrome P450: the cinnamic acid 4-hydroxylase. Arch Biochem Biophys 288:302–309

    Article  CAS  PubMed  Google Scholar 

  • Georgiev MI, Eibl R, Zhong JJ (2013) Hosting the plant cells in vitro: recent trends in bioreactors. Appl Microbiol Biotechnol 97:3787–3800

    Article  CAS  PubMed  Google Scholar 

  • Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408–414

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Galera S, Pelacho AM, Gené A, Capell T, Christou P (2007) The genetic manipulation of medicinal and aromatic plants. Plant Cell Rep 26:1689–1715

    Article  CAS  PubMed  Google Scholar 

  • Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW (2011) Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell 23:1512–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Q, Liu Q, Smith NA, Liang G, Wang MB (2016) RNA silencing in plants: mechanisms, technologies and applications in horticultural crops. Curr Genomics 17:476–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta OP, Karkute SG, Banerjee S, Meena NL, Dahuja A (2017) Contemporary understanding of miRNA-based regulation of secondary metabolites biosynthesis in plants. Front Plant Sci 8:374

    PubMed  PubMed Central  Google Scholar 

  • Gutensohn M, Nguyen TTH, McMahon RD, Kaplan I, Pichersky E, Dudareva N (2014) Metabolic engineering of monoterpene biosynthesis in tomato fruits via introduction of the non-canonical substrate neryl diphosphate. Metab Eng 24:107–116

    Article  CAS  PubMed  Google Scholar 

  • Hadacek F (2002) Secondary metabolites as plant traits: current assessment and future perspectives. Crit Rev Plant Sci 21:273–322

    Article  CAS  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  CAS  PubMed  Google Scholar 

  • Hamberger B, Hahlbrock K (2004) The 4-coumarate:CoA ligase gene family in Arabidopsis thaliana comprises one rare, sinapate-activating and three commonly occurring isoenzymes. Proc Natl Acad Sci U S A 101:2209–2214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han JY, In JG, Kwon YS, Choi YE (2010) Regulation of ginsenoside and phytosterol biosynthesis by RNA interferences of squalene epoxidase gene in Panax ginseng. Phytochemistry 71:36–46

    Article  CAS  PubMed  Google Scholar 

  • Hao DC, Xiao PG (2015) Genomics and evolution in traditional medicinal plants: road to a healthier life. Evol Bioinforma 11:197–212

    Article  CAS  Google Scholar 

  • Hayut SF, Bessudo CM, Levy AA (2017) Targeted recombination between homologous chromosomes for precise breeding in tomato. Nat Commun 8:15605

    Article  CAS  Google Scholar 

  • Hendrawati O, Woerdenbag HJ, Hille J, Kayser O (2012) Metabolic engineering of medicinal plants and microorganisms for the production of natural products. In: Kayser O, Warzecha H (eds) Pharmaceutical biotechnology: drug discovery and clinical applications, 2nd edn. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, p 152. https://doi.org/10.1002/9783527632909.ch19

    Chapter  Google Scholar 

  • Huang TK, McDonald KA (2012) Bioreactor systems for in vitro production of foreign proteins using plant cell cultures. Biotechnol Adv 30:398–409

    Article  CAS  PubMed  Google Scholar 

  • Ingebrigtsen K (2010) Main plant poisonings in livestock in the Nordic countries. In: Bernhoft A (ed) Bioactive compounds in plants-benefits and risks for man and animals. Novus Forlag, Oslo, pp 30–43

    Google Scholar 

  • Ishida M, Hara M, Fukino N, Kakizaki T, Morimitsu Y (2014) Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breed Sci 64:48–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jamshidi-Kia F, Lorigooini Z, Amini-Khoei H (2018) Medicinal plants: past history and future perspective. J HerbMed Pharmacol 1:1–7

    Article  Google Scholar 

  • Joshi GY, Nulkar G (2018) Green: the new shade of personal care products in India. In: Patricia Ordóñez de Pablos (ed) Management strategies and technology fluidity in the Asian business sector. IGI Global, Oviedo, pp 99–113

    Google Scholar 

  • Julsing MK, Quax WJ, Kayser O (2007) The engineering of medicinal plants. In: Kayser O, Quax MK, Julsing MK (eds) Medicinal plant biotechnology. Wiley-VCH, Weinheim, pp 3–8

    Google Scholar 

  • Kamthan A, Chaudhuri A, Kamthan M, Datta A (2015) Small RNAs in plants: recent development and application for crop improvement. Front Plant Sci 6:20810

    Article  Google Scholar 

  • Kayser O, Warzecha H (2012) Pharmaceutical biotechnology: drug discovery and clinical applications. Wiley, Hoboken

    Book  Google Scholar 

  • Kempe K, Higashi Y, Frick S, Sabarna K, Kutchan TM (2009) RNAi suppression of the morphine biosynthetic gene salAT and evidence of association of pathway enzymes. Phytochemistry 70:579–589

    Article  CAS  PubMed  Google Scholar 

  • Khadem S, Marles RJ (2012) Chromone and flavonoid alkaloids: occurrence and bioactivity. Molecules 17:191–206

    Article  CAS  Google Scholar 

  • Kim DJ, Chang HN (1990) Enhanced shikonin production from Lithospermum erythrorhizon by in situ extraction and calcium alginate immobilization. Biotechnol Bioeng 36:460–466

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Lee KW, Lee HJ (2011) Cacao (Theobroma cacao) seeds and phytochemicals in human health. In: Preedy V, Vatson EE, Patel VB (eds) Nuts and seeds in health and disease prevention. Academic, London, pp 351–360

    Chapter  Google Scholar 

  • Kirakosyan A, Cseke LJ, Kaufman PB (2009) The use of plant cell biotechnology for the production of phytochemicals. In: Kirakosyan A, Kaufman PB (eds) Recent advances in plant biotechnology. Springer, Boston, pp 15–33

    Chapter  Google Scholar 

  • Knorr D, Caster C, Dornenburg H, Dorn R, Graf S, Havkin-Frenkel D, Podstolski A, Werrmann U (1993) Biosynthesis and yield improvement of food ingredients from plant cell and tissue culture. Food Technol 47:57–63

    CAS  Google Scholar 

  • Koukol J, Conn EE (1961) The metabolism of aromatic compounds in higher plants. IV. Purification and properties of the phenylalanine deaminase of Hordeum vulgare. J Biol Chem 236:2692–2698

    CAS  PubMed  Google Scholar 

  • Krzyzanowska J, Czubacka A, Oleszek W (2010) Dietary phytochemicals and human health. In: Giardi MT, Rea G, Berra B (eds) Bio-farms for nutraceuticals: functional food and safety control by biosensors. Springer, New York, pp 74–99

    Chapter  Google Scholar 

  • Kuete V (2014) 21-health effects of alkaloids from African medicinal plants. In: Kuete V (ed) Toxicological survey of African medicinal plants. Elsevier, New York, pp 611–633

    Chapter  Google Scholar 

  • Kumar S, Narwal S, Kumar V, Prakash O (2011) α-glucosidase inhibitors from plants: a natural approach to treat diabetes. Pharmacogn Rev 5:19–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CWT, Shuler ML (2000) The effect of inoculum density and conditioned medium on the production of ajmalicine and catharanthine from immobilized Catharanthus roseus cells. Biotechnol Bioeng 67:61–71

    Article  CAS  PubMed  Google Scholar 

  • Lenka SK, Boutaoui N, Paulose B, Vongpaseuth K, Normanly J, Roberts SC, Walker EL (2012) Identification and expression analysis of methyl jasmonate responsive ESTs in paclitaxel producing Taxus cuspidata suspension culture cells. BMC Genomics 13:148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesney MS (2004) Nature’s pharmaceuticals: natural products from plants remain at the core of modern medicinal chemistry. Todays Chemist Work 13:26–31

    Google Scholar 

  • Lessard PA, Kulaveerasingam H, York GM, Strong A, Sinskey AJ (2001) Manipulating gene expression for the metabolic engineering of plants. Metab Eng 4:67–79

    Article  CAS  Google Scholar 

  • Li MY, Wang F, Xu ZS (2014) High throughput sequencing of two celery varieties small RNAs identifies microRNAs involved in temperature stress response. BMC Genomics 15:242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li T, Liu B, Chen CY, Yang B (2016) TALEN-mediated homologous recombination produces site-directed DNA base change and herbicide-resistant rice. J Genet Genom 43:297–305

    Article  Google Scholar 

  • Li B, Cui G, Shen G, Zhan Z, Huang L, Chen J, Qi X (2017) Targeted mutagenesis in the medicinal plant Salvia miltiorrhiza. Sci Rep 7:43320–43329

    Article  PubMed  PubMed Central  Google Scholar 

  • Lichtenthaler HK, Rohmer M, Schwender J (1997) Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiol Plant 101:643–652

    Article  CAS  Google Scholar 

  • Loto I, Gutiérrez MS, Barahona S, Sepulveda D, Martínez-Moya P, Baeza M, Cifuentes V, Alcaino J (2012) Enhancement of carotenoid production by disrupting the C22-sterol desaturase gene (CYP61) in Xanthophyllomyces dendrorhous. BMC Microbiol 12:235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucchesini M, Bertoli A, Mensuali-Sodi A, Pistelli L (2009) Establishment of in vitro tissue cultures from Echinacea angustifolia D.C. adult plants for the production of phytochemical compounds. Sci Hortic 122:484–490

    Article  CAS  Google Scholar 

  • Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu YG (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8:1274–1284

    Article  CAS  PubMed  Google Scholar 

  • Mantell SH, Pearson DW, Hazell LP, Smith H (1983) The effect of initial phosphate and sucrose levels on nicotine accumulation in batch suspension cultures of Nicotiana tabacum L. Plant Cell Rep 2:73–83

    Article  CAS  PubMed  Google Scholar 

  • Marienhagen J, Bott M (2013) Metabolic engineering of microorganisms for the synthesis of plant natural products. J Biotechnol 163:166–178

    Article  CAS  PubMed  Google Scholar 

  • Matsubara K, Shigekazu K, Yoshioka T, Fujita Y, Yamada Y (1989) High density culture of Coptis japonica cells increases berberine production. J Chem Technol Biotechnol 46:61–69

    Article  CAS  Google Scholar 

  • McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7:1015–1026

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michno JM, Wang X, Liu J, Curtin SJ, Kono TJ, Stupar RM (2015) CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops Food 6:243–252

    Article  PubMed  PubMed Central  Google Scholar 

  • Miralpeix B, Rischer H, Hakkinen ST, Ritala A, Seppanen-Laakso T, Oksman-Caldentey KM, Capell T, Christou P (2013) Metabolic engineering of plant secondary products: which way forward? Curr Pharm Des 19:5622–5639

    Article  CAS  PubMed  Google Scholar 

  • Misawa N (2011) Pathway engineering for functional isoprenoids. Curr Opin Biotechnol 22:627–633

    Article  CAS  PubMed  Google Scholar 

  • Nabity PD, Zavala JA, DeLucia EH (2013) Herbivore induction of jasmonic acid and chemical defences reduce photosynthesis in Nicotiana attenuata. J Exp Bot 64:685–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narula A, Arora L (2017) Gene editing and crop improvement using CRISPR-Cas9 system. Front Plant Sci 8:1932

    Article  PubMed  PubMed Central  Google Scholar 

  • Niraula NP, Kim SH, Sohng JK, Kim ES (2010) Biotechnological doxorubicin production: pathway and regulation engineering of strains for enhanced production. Appl Microbiol Biotechnol 8:1187–1197

    Article  CAS  Google Scholar 

  • Ochoa-Villarreal M, Howat S, Hong S, Jang MO, Jin YW, Lee EK, Loake GJ (2016) Plant cell culture strategies for the production of natural products. BMB Rep 49:149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivoto T, Nardino M, Carvalho IR, Follmann DN, Szareski V, Jardel I, Ferrari M, Pelegrin AJ, Souza VQ (2017) Plant secondary metabolites and its dynamical systems of induction in response to environmental factors: a review. Afr J Agri Res 12:71–84

    Article  CAS  Google Scholar 

  • Opitz S, Nes WD, Gershenzon J (2014) Both methylerythritol phosphate and mevalonate pathways contribute to biosynthesis of each of the major isoprenoid classes in young cotton seedlings. Phytochemistry 98:110–119

    Article  CAS  PubMed  Google Scholar 

  • Paiva PMG, Gomes FS, Napoleao TH, Sá RA, Correia MTS, Coelho CBB (2010) Antimicrobial activity of secondary metabolites and lictins from plants. Res Technol Edu Top Appl Microbiol Biotechnol 1:396–406

    Google Scholar 

  • Pan C, Ye L, Qin L, Liu X, He Y, Wang J, Lu G (2016) CRISPR/Cas9- mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci Rep 6:24765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parekh HS, Liu G, Wei MQ (2009) A new dawn for the use of traditional Chinese medicine in cancer therapy. Mol Cancer 8:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parsaeimehr A, Sargsyan E, Vardanyan A (2011) Expression of secondary metabolites in plants and their useful perspective in animal health. ABAH Bioflux 3:115–124

    CAS  Google Scholar 

  • Pasquali G, Porto DD, Fett-Neto AG (2006) Metabolic engineering of cell cultures versus whole plant complexity in production of bioactive monoterpene indole alkaloids: recent progress related to an old dilemma. J Biosci Bioeng 101:287–296

    Article  CAS  PubMed  Google Scholar 

  • Petersen M, Simmonds MS (2003) Rosmarinic acid. Phytochemistry 62:121–125

    Article  CAS  PubMed  Google Scholar 

  • Petolino JF (2015) Genome editing in plants via designed zinc finger nucleases. In Vitro Cell Dev Biol Plant 51:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrillo E, Godoy Herz MA, Barta A, Kalyna M, Kornblihtt AR (2014) Let there be light: regulation of gene expression in plants. RNA Biol 11:1215–1220

    Article  PubMed  Google Scholar 

  • Rabi T, Bishayee A (2009) Terpenoids and breast cancer chemoprevention. Breast Cancer Res Treat 115:223–239

    Article  CAS  PubMed  Google Scholar 

  • Rahimi M, Farhadi R, Balashahri MS, Raeisi AS (2012) Applications of new technologies in medicinal plant. Int J Agron Plant Prod 3:128–131

    Google Scholar 

  • Rai A, Saito K, Yamazaki M (2017) Integrated omics analysis of specialized metabolism in medicinal plants. Plant J 90:764–787

    Article  CAS  PubMed  Google Scholar 

  • Ramawat KG, Dass S, Mathur M (2009) The chemical diversity of bioactive molecules and therapeutic potential of medicinal plants. In: Ramawat KG (ed) Herbal drugs: ethnomedicine to modern medicine. Springer, New York, pp 7–32

    Chapter  Google Scholar 

  • Rea G, Antonacci A, Lambreva M, Margonelli A, Ambrosi C, Giardi M (2010) Basic research and biotechnological programs on nutraceutical. In: Giardi MT, Rea G, Berra B (eds) Bio-farms for nutraceuticals: functional food and safety control by biosensors, vol 698. Springer, Boston, pp 1–16

    Chapter  Google Scholar 

  • Ricroch A, Clairand P, Harwood W (2017) Use of CRISPR systems in plant genome editing: toward new opportunities in agriculture. Emerg Top Life Sci 1:169–182

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberto T, Francesca M (2011) Sustainable sourcing of natural food ingredients by plant cell cultures. Agro Food Ind Hi Tech 22:26–28

    Google Scholar 

  • Rout GR, Samantaray S, Das P (2000) In vitro manipulation and propagation of medicinal plants. Biotechnol Adv 18:91–120

    Article  CAS  PubMed  Google Scholar 

  • Rubio-Somoza I, Weigel D (2011) MicroRNA networks and developmental plasticity in plants. Trends Plant Sci 16:258–264

    Article  CAS  PubMed  Google Scholar 

  • Saifi M, Nasrullah N, Ahmad MM, Ali A, Khan JA, Abdin MZ (2015) In silico analysis and expression profiling of miRNAs targeting genes of steviol glycosides biosynthetic pathway and their relationship with steviol glycosides content in different tissues of Stevia rebaudiana. Plant Physiol Biochem 94:57–64

    Article  CAS  PubMed  Google Scholar 

  • Samad AFA, Sajad M, Nazaruddin N, Fauzi IA, Murad AMA, Zainal Z, Ismail I (2017) MicroRNA and transcription factor: key players in plant regulatory network. Front Plant Sci 8:565

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato T (2013) Unique biosynthesis of sesquiterpenes (c35 terpenes). Biosci Biotechnol Biochem 77:1155–1159

    Article  CAS  PubMed  Google Scholar 

  • Satwadhar PN, Deshpande HW, Syed IH, Syed KA (2011) Nutritional compounds and identification of some of the bioactive compounds in Morinda citrifolia juice. Int J Pharm Pharm Sci 3:58–59

    Google Scholar 

  • Seigler DS (1998) Plant secondary metabolism. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  • Sharma M, Gupta R, Khajuria RK, Mallubhotla S, Ahuja A (2015) Bacoside biosynthesis during in vitro shoot multiplication in Bacopa monnieri (L.) Wettst. grown in Growtek and air lift bioreactor. Indian J Biotechnol 14:547–551

    CAS  Google Scholar 

  • Singh N, Srivastava S, Shasany AK, Sharma A (2016) Identification of miRNAs and their targets involved in the secondary metabolic pathways of Mentha spp. Comput Biol Chem 64:154–162

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Singh DB, Singh S, Shukla R, Ramteke PW, Misra K (2018) Exploring medicinal plant legacy for drug discovery in post-genomic era. Proc Natl Acad Sci, USA. (Online). https://doi.org/10.1007/s40011-018-1013-x

  • Siritunga D, Sayre RT (2003) Generation of cyanogen-free transgenic cassava. Planta 217:367–373

    Article  CAS  PubMed  Google Scholar 

  • Smanski MJ, Peterson RM, Huang SX, Shen B (2012) Bacterial diterpene synthases: new opportunities for mechanistic enzymology and engineered biosynthesis. Curr Opin Chem Biol 16:132–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stromgaard K, Nakanishi K (2004) Chemistry and biology of terpene Trilactones from Ginkgo biloba. Angew Chem Int Ed Engl 43:1640–1658

    Article  CAS  PubMed  Google Scholar 

  • Sudipta KM, Swamy MK, Ashok G, Balasubramanya S, Anuradha M (2014) Evaluation of antioxidant, in vitro cytotoxicity of micropropagated and naturally grown plants of Leptadenia reticulata (Retz.) Wight & Arn.-an endangered medicinal plant. Asian Pac J Trop Med 7:267–271

    Article  CAS  Google Scholar 

  • Sun J, Jiao G, Liu Z, Zhang X, Li J, Guo X, Du W, Du J, Francis F, Zhao Y (2017) Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci 8:298

    PubMed  PubMed Central  Google Scholar 

  • Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169:931–945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Swamy MK, Sinniah UR (2015) A comprehensive review on the phytochemical constituents and pharmacological activities of Pogostemon cablin Benth.: an aromatic medicinal plant of industrial importance. Molecules 20:8521–8854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swamy MK, Sinniah UR (2016) Patchouli (Pogostemon cablin Benth.): botany, agrotechnology and biotechnological aspects. Indust Crops Prod 87:161–176

    Article  CAS  Google Scholar 

  • Swamy MK, Sinniah UR, Akhtar MS (2015) In vitro pharmacological activities and GC-MS analysis of different solvent extracts of Lantana camara leaves collected from tropical region of Malaysia. Evid-Based Complement Alternat Med 2015:1–9

    Article  Google Scholar 

  • Swamy MK, Akhtar MS, Sinniah UR (2016) Response of PGPR and AM Fungi toward growth and secondary metabolite production in medicinal and aromatic plants. In: Hakeem KR, Akhtar MS (eds) Plant, soil and microbes. Springer, Cham, pp 145–168

    Chapter  Google Scholar 

  • Tadele Y (2015) Important anti-nutritional substances and inherent toxicants of feeds. Food Sci Qual Manag 36:40–47

    Google Scholar 

  • Talreja T (2011) Biochemical estimation of three primary metabolites from medicinally important plant Moringa oleifera. Int J Pharma Sci Rev Res 7:186–188

    CAS  Google Scholar 

  • Tatsis EC, O’Connor SE (2016) New developments in engineering plant metabolic pathways. Curr Opin Biotechnol 42:126–132

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Han ZY, Zhang JHYJ, Song T, Yao Y (2015) The balance of expression of dihydroflavonol 4-reductase and flavonol synthase regulates flavonoid biosynthesis and red foliage coloration in crabapples. Sci Rep 5:12228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unamba CI, Nag A, Sharma RK (2015) Next generation sequencing technologies: the doorway to the unexplored genomics of non-model plants. Front Plant Sci 6:1074

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Acker R, Leplé JC, Aerts D, Storme V, Goeminne G, Ivens B, Légée F, Lapierre C, Piens K, Van Montagu MC, Santoro N, Foster CE, Ralph J, Soetaert W, Pilate G, Boerjan W (2014) Improved saccharification and ethanol yield from field-grown transgenic poplar deficient in cinnamoyl-CoA reductase. Proc Natl Acad Sci U S A 111:845–850

    Article  PubMed  CAS  Google Scholar 

  • Van Eck J, Conlin B, Garvin DF, Mason H, Navarre DA, Brown CR (2007) Enhancing beta-carotene content in potato by RNAi-mediated silencing of the beta-carotene hydroxylase gene. Am J Potato Res 84:331–342

    Article  Google Scholar 

  • Vanisree M, Lee CY, Lo SF, Nalawade SM, Lin CY, Tsay HS (2004) Studies on the production of some important secondary metabolites from medicinal plants by plant tissue cultures. Bot Bull Acad Sin 45:1–22

    CAS  Google Scholar 

  • Vashisht I, Mishra P, Pal T, Chanumolu S, Singh TR, Chauhan RS (2015) Mining NGS transcriptomes for miRNAs and dissecting their role in regulating growth, development, and secondary metabolites production in different organs of a medicinal herb, Picrorhiza kurroa. Planta 241:1255–1268

    Article  CAS  PubMed  Google Scholar 

  • Vasilev N, Schmitz C, Gromping U, Fischer R, Schillberg S (2014) Assessment of cultivation factors that affect biomass and geraniol production in transgenic tobacco cell suspension cultures. PLoS One 9:e104620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verpoorte R, van der Heijden R, Memelink J (2000) Engineering the plant cell factory for secondary metabolite production. Transgenic Res 9:323–343

    Article  CAS  PubMed  Google Scholar 

  • Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20

    Article  CAS  PubMed  Google Scholar 

  • Vongpaseuth K, Roberts SC (2007) Advancements in the understanding of paclitaxel metabolism in tissue culture. Curr Pharm Biotechnol 8:219–236

    Article  CAS  PubMed  Google Scholar 

  • Vranova E, Coman D, Gruissem W (2012) Structure and dynamics of the isoprenoid pathway network. Mol Plant 5:318–333

    Article  CAS  PubMed  Google Scholar 

  • Wagner KH, Elmadfa I (2003) Biological relevance of terpenoids. Ann Nutr Metab 47:95–106

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chen S, Yu O (2011) Metabolic engineering of flavonoids in plants and microorganisms. Appl. Microbiol Biotechnol 91:949–956

    Article  CAS  Google Scholar 

  • Wang M, Lu Y, Botella JR, Mao Y, Hua K, Zhu JK (2017) Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 system. Mol Plant 5:1007–1010

    Article  CAS  Google Scholar 

  • Watanabe K, Kobayashi A, Endo M, Sage-Ono K, Toki S, Mi O (2017) CRISPR/Cas9-mediated mutagenesis of the dihydroflavonol-4-reductase-B (DFR-B) locus in the Japanese morning glory Ipomoea (Pharbitis) nil. Sci Rep 7:10028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weathers PJ, Elkholy S, Wobbe KK (2006) Artemisinin: the biosynthetic pathway and its regulation in Artemisia annua, a terpenoid-rich species. In Vitro Cell Dev Biol Plant 42:309–317

    Article  CAS  Google Scholar 

  • Wink M (1999) Biochemistry, role and biotechnology of secondary metabolites. In: Wink M (ed) Biochemistry of plant secondary metabolism, Annual plant reviews, vol 2. Sheffield Academic Press and CRC Press, Sheffield, UK, pp 1–16

    Google Scholar 

  • Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, Kim H, Kim SG, Kim ST, Choe S, Kim JS (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162–1164

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Chappell J (2008) Metabolic engineering of natural products in plants; tools of the trade and challenges for the future. Curr Opin Biotechnol 19:145–152

    Article  CAS  PubMed  Google Scholar 

  • Xu R, Yang Y, Qin R, Hao L, Qiu C, Li L, Wei P, Yang J (2016) Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. J Genet Genomics 43:529–532

    Article  PubMed  Google Scholar 

  • Yadav MS, Chatterji S, Gupta SK, Watal G (2014) Preliminary phytochemical screening of six medicinal plants used in traditional medicine. Int J Pharm Pharm Sci 6:539–542

    Google Scholar 

  • Yamamoto H, Katano N, Ooi A, Inoue K (2000) Secologanin synthase which catalyzes the oxidative cleavage of loganin into secologanin is a cytochrome P450. Phytochemistry 53:7–12

    Article  CAS  PubMed  Google Scholar 

  • Yu ZX, Wang LJ, Zhao B, Shan CM, Zhang YH, Chen DF, Chen XY (2015) Progressive regulation of sesquiterpene biosynthesis in Arabidopsis and patchouli (Pogostemon cablin) by the miR156-targeted SPL transcription factors. Mol Plant 8:98–110

    Article  CAS  PubMed  Google Scholar 

  • Zenk MH (1977) Plant tissue culture and its bio-technological application. Springer, Berlin/Heidelberg, p 27

    Book  Google Scholar 

  • Zhang B (2015) MicroRNA: a new target for improving plant tolerance to abiotic stress. J Exp Bot 66:1749–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Wang Q (2015) MicroRNA-based biotechnology for plant improvement. J Cell Physiol 230:1–15

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Wang Q (2016) MicroRNA, a new target for engineering new crop cultivars. Bioengineered 7:7–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Jing F, Fupeng L (2009) Development of transgenic Artemisia annua (Chinese wormwood) plants with enhanced content of artemisinin, an effective antimalarial drug, by hairpin-RNA-mediated gene silencing. Biotechnol Appl Biochem 52:199–207

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Dong Y, Nie L, Lu M, Fu C, Yu L (2015) High-throughput sequencing reveals miRNA effects on the primary and secondary production properties in long-term subcultured Taxus cells. Front Plant Sci 6:604

    PubMed  PubMed Central  Google Scholar 

  • Zhang H, Zhang J, Lang Z, Botella JR, Zhu JK (2017) Genome editing-principles and applications for functional genomics research and crop improvement. Crit Rev Plant Sci 36:291–309

    Article  Google Scholar 

  • Ziegler J, Facchini PJ (2008) Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol 59:735–769

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munish Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, M., Koul, A., Sharma, D., Kaul, S., Swamy, M.K., Dhar, M.K. (2019). Metabolic Engineering Strategies for Enhancing the Production of Bio-active Compounds from Medicinal Plants. In: Akhtar, M., Swamy, M. (eds) Natural Bio-active Compounds. Springer, Singapore. https://doi.org/10.1007/978-981-13-7438-8_12

Download citation

Publish with us

Policies and ethics