Skip to main content

Plant Cell Culture as Alternatives to Produce Secondary Metabolites

  • Chapter
  • First Online:
Natural Bio-active Compounds

Abstract

Plants are often regarded as “natural chemical factories” and produce variety of biomolecules for their metabolism and survival. They are mainly represented as primary metabolites and secondary metabolites. Primary metabolites are essentially required for the plant growth and its survival, whereas secondary metabolites are chemical compounds which are not directly associated with their growth, survival, development, and reproduction but are involved in various defense mechanisms and environmental adaptations. These compounds have been used throughout the history as medicines, flavors, fragrances, and pigmented colors. In recent years, these natural products have started dominating the food, healthcare, cosmetics, and pharmaceutical industries and are considered economically important and high-valued marketed products. The production of these phytochemicals is generally dependent on the plant species, geographical locations, climatic conditions, and edaphic factors. The main constraint in their large-scale production is quality and quantity control during their synthesis. In this chapter, the choice of plant tissue culture as an alternative way for the production and extraction of secondary metabolites is discussed. The expression of the synthetic pathway for their mass production can be enhanced and altered by selecting proper cell lines, manipulating media components, addition of precursors and elicitors, biotransformation, permeabilization, and immobilization. A combinatorial research in the field of plant tissue culture, metabolite synthesis pathway, and downstream processing can exploit the potentiality of these natural factories for large-scale production of secondary metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S (2012) Toxic cardenolides: chemical ecology and coevolution of specialized plant-herbivore interactions. New Phytol 194:28–45

    Article  CAS  PubMed  Google Scholar 

  • Arya D, Patni V, Kant U (2008) In vitro propagation and quercetin quantification in callus cultures of Rasna (Pluchea lanceolata Oliver & Hiern.). Indian J Biotechnol 7:383–387

    CAS  Google Scholar 

  • Baebler Š, Hren M, Camloh M, Ravnikar M, Bohanec B, Plaper I, Ucman R, Žel J (2005) Establishment of cell suspension cultures of yew (Taxus × media Rehd.) and assessment of their genomic stability. In Vitro Cell DevBiol Plant 41:338–343

    Article  CAS  Google Scholar 

  • Baldi A, Dixit VK (2008) Yield enhancement strategies for artemisinin production by suspension cultures of Artemisia annua. Bioresour Technol 99:4609–4614

    Article  CAS  PubMed  Google Scholar 

  • Bentebibel S, Moyano E, Palazon J, Cusido RM, Bonfill M, Eibl R, Pinol MT (2005) Effects of immobilization by entrapment in alginate and scale-up on paclitaxel and baccatin III production in cell suspension cultures of Taxus baccata. Biotechnol Bioeng 89:647–655

    Article  CAS  PubMed  Google Scholar 

  • Bhatia S, Bera T (2015) Classical and nonclassical techniques for secondary metabolite production in plant cell culture. In: Bhatia S, Sharma K, Dahiya R, Bera T (eds) Modern applications of plant biotechnology in pharmaceutical sciences. Academic, Boston, pp 231–291

    Chapter  Google Scholar 

  • Bhatia S, Sharma K, Dahiya R, Bera T (eds) (2015) Modern applications of plant biotechnology in pharmaceutical sciences. Academic, Boston. https://doi.org/10.1016/C2014-0-02123-5

    Book  Google Scholar 

  • Bhojwani SS, Dantu PK (2013) Somaclonal variation. In: Bhojwani SS, Dantu A (eds) Plant tissue culture: an introductory text. Springer, New Delhi, pp 141–154

    Chapter  Google Scholar 

  • Bird DA, Franceschi VR, Facchini PJ (2003) A tale of three cell types: alkaloid biosynthesis is localized to sieve elements in opium poppy. Plant Cell 15:2626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodeutsch T, James E, Lee J (2001) The effect of immobilization on recombinant protein production in plant cell culture. Plant Cell Rep 20:562–566

    Article  CAS  Google Scholar 

  • Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161:839–851

    Article  CAS  Google Scholar 

  • Brena B, González-Pombo P, Batista-Viera F (2013) Immobilization of enzymes: a literature survey. In: Guisan JM (ed) Immobilization of enzymes and cells, 3rd edn. Humana Press, Totowa, pp 15–31

    Chapter  Google Scholar 

  • Cai Z, Knorr D, Smetanska I (2012) Enhanced anthocyanins and resveratrol production in Vitis vinifera cell suspension culture by indanoyl-isoleucine, N-linolenoyl-L-glutamine and insect saliva. Enzym Microb Technol 50:29–34

    Article  CAS  Google Scholar 

  • Chiang L, Abdullah MA (2007) Enhanced anthraquinones production from adsorbent-treated Morinda elliptica cell suspension cultures in production medium strategy. Process Biochem 42:757–763

    Article  CAS  Google Scholar 

  • Cusido RM, Onrubia M, Sabater-Jara AB, Moyano E, Bonfill M, Goossens A, Angeles Pedreño M, Palazon J (2014) A rational approach to improving the biotechnological production of taxanes in plant cell cultures of Taxus spp. Biotechnol Adv 32:1157–1167

    Article  CAS  PubMed  Google Scholar 

  • Delgoda R, Murray J (2017) Evolutionary perspectives on the role of plant secondary metabolites. In: Badal S, Delgoda R (eds) Pharmacognosy. Elsevier, Amstedam, pp 93–100

    Chapter  Google Scholar 

  • Devika R, Koilpillai J (2012) An overview on plant secondary metabolites: its medicinal importance. J Pharm Res 5:984–986

    Google Scholar 

  • Dhawan S, Shasany AK, Arif Naqvi A, Kumar S, Khanuja SPS (2003a) Menthol tolerant clones of Mentha arvensis: approach for in vitro selection of menthol rich genotypes. Plant Cell Tissue Organ Cult 75:87–94

    Article  CAS  Google Scholar 

  • Dhawan S, Shasany AK, Naqvi AA, Kumar S, Khanuja SP (2003b) Menthol tolerant clones of Mentha arvensis: approach for in vitro selection of menthol rich genotypes. Plant Cell Tissue Organ Cult 75:87–94

    Article  CAS  Google Scholar 

  • Fazilatun N, Nornisah M, Zhari I (2005) Superoxide radical scavenging properties of extracts and flavonoids isolated from the leaves of Blumea balsamifera. Pharm Biol 43:15–20

    Article  CAS  Google Scholar 

  • Fedoreev S, Kulish N, Glebko L, Pokushalova T, Veselova M, Saratikov A, Vengerovskii A, Chuchalin V (2004) Maksar: a preparation based on Amur Maackia. Pharm Chem J 38:605–610

    Article  CAS  Google Scholar 

  • Forkmann G, Martens S (2001) Metabolic engineering and applications of flavonoids. Curr Opin Biotechnol 12:155–160

    Article  CAS  PubMed  Google Scholar 

  • Fukui H, Hasan AF, Ueoka T, Kyo M (1998) Formation and secretion of a new brown benzoquinone by hairy root cultures of Lithospermum erythrorhizon. Phytochemistry 47:1037–1039

    Article  CAS  Google Scholar 

  • Georgiev M, Pavlov A, Ilieva M (2006) Selection of high rosmarinic acid producing Lavandula vera MM cell lines. Process Biochem 41:2068–2071

    Article  CAS  Google Scholar 

  • Georgiev MI, Weber J, Maciuk A (2009) Bioprocessing of plant cell cultures for mass production of targeted compounds. Appl Microbiol Biotechnol 83:809–823

    Article  CAS  PubMed  Google Scholar 

  • Giray Kurt A, Aytan E, Ozer U, Ates B, Geckil H (2009) Production of L-DOPA and dopamine in recombinant bacteria bearing the Vitreoscilla hemoglobin gene. Biotechnol J 4:1077–1088

    Article  CAS  Google Scholar 

  • Giri A, Narasu ML (2000) Transgenic hairy roots: recent trends and applications. Biotechnol Adv 18:1–22

    Article  CAS  PubMed  Google Scholar 

  • Gopi C, Vatsala T (2006) In vitro studies on effects of plant growth regulators on callus and suspension culture biomass yield from Gymnema sylvestre R. Br Afr J Biotechnol 5:1215–1219

    CAS  Google Scholar 

  • Grech-Baran M, Syklowska-Baranek K, Krajewska-Patan A, Wyrwal A, Pietrosiuk A (2014) Biotransformation of cinnamyl alcohol to rosavins by non-transformed wild type and hairy root cultures of Rhodiola kirilowii. Biotechnol Lett 36:649–656

    Article  CAS  PubMed  Google Scholar 

  • Hakkinen ST, Raven N, Henquet M, Laukkanen ML, Anderlei T, Pitkanen JP, Twyman RM, Bosch D, Oksman-Caldentey KM, Schillberg S, Ritala A (2014) Molecular farming in tobacco hairy roots by triggering the secretion of a pharmaceutical antibody. Biotechnol Bioeng 111:336–346

    Article  PubMed  CAS  Google Scholar 

  • He S, Zhu J, Zi J, Zhou P, Liang J, Yu R (2015) A novel terpenoid indole alkaloid derived from catharanthine via biotransformation by suspension-cultured cells of Catharanthus roseus. Biotechnol Lett 37:2481–2487

    Article  CAS  PubMed  Google Scholar 

  • Holland T, Blessing D, Hellwig S, Sack M (2013) The in-line measurement of plant cell biomass using radio frequency impedance spectroscopy as a component of process analytical technology. Biotechnol J 8:1231–1240

    CAS  PubMed  Google Scholar 

  • Holst B, Fenwick GR (2003) Glucosinolates A2. In: Caballero B (ed) Encyclopedia of food sciences and nutrition, 2nd edn. Academic, Oxford, pp 2922–2930

    Chapter  Google Scholar 

  • Hu ZB, Du M (2006) Hairy root and its application in plant genetic engineering. J Integr Plant Biol 48:121–127

    Article  CAS  Google Scholar 

  • Hussain MS, Fareed S, Ansari S, Rahman MA, Ahmad IZ, Saeed M (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 4:10–20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jain SC, Pancholi B, Jain R (2012) In-vitro callus propagation and secondary metabolite quantification in Sericostoma pauciflorum. Iranian J Pharm Res 11:1103–1109

    CAS  Google Scholar 

  • Jeong C-S, Murthy HN, Hahn E-J, Paek K-Y (2008) Improved production of ginsenosides in suspension cultures of ginseng by medium replenishment strategy. J Biosci Bioeng 105:288–291

    Article  CAS  PubMed  Google Scholar 

  • Kabera JN, Semana E, Mussa AR, He X (2014) Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. J Pharm Pharmacol 2:377–392

    Google Scholar 

  • Kacprzak KM (2013) Chemistry and biology of cinchona alkaloids. In: Ramawat KG, Mérillon JM (eds) Natural products: phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Springer, Berlin/Heidelberg, pp 605–641

    Chapter  Google Scholar 

  • Kaimoyo E, Farag MA, Sumner LW, Wasmann C, Cuello JL, VanEtten H (2008) Sub-lethal levels of electric current elicit the biosynthesis of plant secondary metabolites. Biotechnol Prog 24:377–384

    Article  CAS  PubMed  Google Scholar 

  • Kašparová M, Siatka T, Dušek J (2009) Production of isoflavonoids in the Trifolium pratense L. suspension culture. Ceska Sloven Farma 58:67–70

    Google Scholar 

  • Keskin N, Kunter B, Yaş UK, Işını U, Inkübasyon U (2009) The effects of callus age, UV irradiation and incubation time on trans-resveratrol production in grapevine callus culture. Tarim Bilimleri Derg 15:9–13

    Article  Google Scholar 

  • Khanam N, Khoo C, Khan A (2000) Effects of cytokinin/auxin combinations on organogenesis, shoot regeneration and tropane alkaloid production in Duboisia myoporoides. Plant Cell Tissue Organ Cult 62:125–133

    Article  CAS  Google Scholar 

  • Kim Y, Wyslouzil BE, Weathers PJ (2002) Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cell Dev Biol Plant 38:1–10

    Article  CAS  Google Scholar 

  • Kim KH, Janiak V, Petersen M (2004) Purification, cloning and functional expression of hydroxyphenylpyruvate reductase involved in rosmarinic acid biosynthesis in cell cultures of Coleus blumei. Plant Mol Biol 54:311–323

    Article  CAS  PubMed  Google Scholar 

  • Kim OT, Bang KH, Shin YS, Lee MJ, Jung SJ, Hyun DY, Kim YC, Seong NS, Cha SW, Hwang B (2007) Enhanced production of asiaticoside from hairy root cultures of Centella asiatica (L.) urban elicited by methyl jasmonate. Plant Cell Rep 26:1941–1949

    Article  CAS  PubMed  Google Scholar 

  • Kolewe ME, Gaurav V, Roberts SC (2008) Pharmaceutically active natural product synthesis and supply via plant cell culture technology. Mol Pharm 5:243–256

    Article  CAS  PubMed  Google Scholar 

  • Komaraiah P, Ramakrishna S, Reddanna P, Kishor PK (2003) Enhanced production of plumbagin in immobilized cells of Plumbago rosea by elicitation and in situ adsorption. J Biotechnol 101:181–187

    Article  CAS  PubMed  Google Scholar 

  • Królicka A, Kartanowicz R, Wosiński SA, Szpitter A, Kamiński M, Łojkowska E (2006) Induction of secondary metabolite production in transformed callus of Ammi majus L. grown after electromagnetic treatment of the culture medium. Enzym Microb Technol 39:1386–1391

    Article  CAS  Google Scholar 

  • Lee CW, Shuler ML (2000) The effect of inoculum density and conditioned medium on the production of ajmalicine and catharanthine from immobilized Catharanthus roseus cells. Biotechnol Bioeng 67:61–71

    Article  CAS  PubMed  Google Scholar 

  • Lee EK, Jin YW, Park JH, Yoo YM, Hong SM, Amir R, Yan Z, Kwon E, Elfick A, Tomlinson S, Halbritter F, Waibel T, Yun B-W, Loake GJ (2010) Cultured cambial meristematic cells as a source of plant natural products. Nat Biotechnol 28:1213

    Article  CAS  PubMed  Google Scholar 

  • Lee-Parsons CW, Royce AJ (2006) Precursor limitations in methyl jasmonate-induced Catharanthus roseus cell cultures. Plant Cell Rep 25:607–612

    Article  CAS  PubMed  Google Scholar 

  • Li Siah C, Doran P (1991) Enhanced codeine and morphine production in suspended Papaver somniferum cultures after removal of exogenous hormones. Plant Cell Rep 10:349–353

    Google Scholar 

  • Li W, Koike K, Asada Y, Hirotani M, Rui H, Yoshikawa T, Nikaido T (2002) Flavonoids from Glycyrrhiza pallidiflora hairy root cultures. Phytochemistry 60:351–355

    Article  CAS  PubMed  Google Scholar 

  • Li YC, Tao WY, Cheng L (2009) Paclitaxel production using co-culture of Taxus suspension cells and paclitaxel-producing endophytic fungi in a co-bioreactor. Appl Microbiol Biotechnol 83:233–239

    Article  CAS  PubMed  Google Scholar 

  • Lijavetzky D, Almagro L, Belchi-Navarro S, Martínez-Zapater JM, Bru R, Pedreño MA (2008) Synergistic effect of methyl jasmonate and cyclodextrin on stilbene biosynthesis pathway gene expression and resveratrol production in Monastrell grapevine cell cultures. BMC Res Notes 1:132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ludwig-Müller J, Georgiev M, Bley T (2008) Metabolite and hormonal status of hairy root cultures of Devil’s claw (Harpagophytum procumbens) in flasks and in a bubble column bioreactor. Process Biochem 43:15–23

    Article  CAS  Google Scholar 

  • Luo J, He GY (2004) Optimization of elicitors and precursors for paclitaxel production in cell suspension culture of Taxus chinensis in the presence of nutrient feeding. Process Biochem 39:1073–1079

    Article  CAS  Google Scholar 

  • Malik S, Cusidó RM, Mirjalili MH, Moyano E, Palazón J, Bonfill M (2011) Production of the anticancer drug taxol in Taxus baccata suspension cultures: a review. Process Biochem 46:23–34

    Article  CAS  Google Scholar 

  • Malik S, HosseinMirjalili M, Fett-Neto AG, Mazzafera P, Bonfill M (2013) Living between two worlds: two-phase culture systems for producing plant secondary metabolites. Crit Rev Biotechnol 33:1–22. https://doi.org/10.3109/07388551.2012.659173

    Article  CAS  PubMed  Google Scholar 

  • Markus W (2012) Phyto praxis. Springer, Berlin/Heidelberg

    Google Scholar 

  • Mehrotra S, Kumar A, Singh Khanuja SP, Nath Mishra B (2008) Genetic transformation studies and scale up of hairy root culture of Glycyrrhiza glabra in bioreactor. Electron J Biotechnol 11:69–75

    Article  CAS  Google Scholar 

  • Mijts BN, Schmidt-Dannert C (2003) Engineering of secondary metabolite pathways. Curr Opin Biotechnol 14:597–602

    Article  CAS  PubMed  Google Scholar 

  • Min JY, Jung HY, Kang SM, Kim YD, Kang YM, Park DJ, Prasad DT, Choi MS (2007) Production of tropane alkaloids by small-scale bubble column bioreactor cultures of Scopolia parviflora adventitious roots. Bioresour Technol 98:1748–1753

    Article  CAS  PubMed  Google Scholar 

  • Mohamad NR, Marzuki NHC, Buang NA, Huyop F, Wahab RA (2015) An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip 29:205–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulabagal V, Tsay HS (2004) Plant cell cultures-an alternative and efficient source for the production of biologically important secondary metabolites. Int J Appl Sci Eng 2:29–48

    Google Scholar 

  • Mulabagal V, Lee CY, Lo S-F, Nalawade S, Yih Lin C, Tsay HS (2004) Studies on the production of some important secondary metabolites from medicinal plants by plant tissue cultures. Bot Bull Acad Sin 45:22

    Google Scholar 

  • Muranaka T, Saito K (2010) Production of pharmaceuticals by plant tissue cultures. In: Comprehensive natural products II. Elsevier, Oxford, pp 615–628

    Chapter  Google Scholar 

  • Murthy HN, Lee EJ, Paek KY (2014) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Org Cult 118:1–16

    Article  CAS  Google Scholar 

  • Nakagawa A, Matsumura E, Koyanagi T, Katayama T, Kawano N, Yoshimatsu K, Yamamoto K, Kumagai H, Sato F, Minami H (2016) Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli. Nat Commun 7:10390. https://doi.org/10.1038/ncomms10390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazif N, Rady M, El-Nasr S (2000) Stimulation of anthraquinone production in suspension cultures of Cassia acutifolia by salt stress. Fitoterapia 71:34–40

    Article  CAS  PubMed  Google Scholar 

  • Nurcahyani N, Solichatun S, Anggarwulan E (2008) The reserpine production and callus growth of Indian snake root (Rauvolfia serpentina (L.) benth. Ex Kurz) culture by addition of Cu2+. Biodiversitas 9:177–179

    Article  Google Scholar 

  • Ochoa-Villarreal M, Howat S, Hong S, Jang MO, Jin Y-W, Lee E-K, Loake GJ (2016) Plant cell culture strategies for the production of natural products. BMB Rep 49:149–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsaeimehr A, Sargsyan E, Vardanyan A (2011) Expression of secondary metabolites in plants and their useful perspective. ABAH Bioflux 3:115–124

    CAS  Google Scholar 

  • Pauwels L, Inzé D, Goossens A (2009) Jasmonate-inducible gene: what does it mean? Trends Plant Sci 14:87–91

    Article  CAS  PubMed  Google Scholar 

  • Pence VC (2011) Evaluating costs for the in vitro propagation and preservation of endangered plants. In Vitro Cell Dev Biol Plant 47:176–187

    Article  Google Scholar 

  • Piątczak E, Kuźma Ł, Sitarek P, Wysokińska H (2015) Shoot organogenesis, molecular analysis and secondary metabolite production of micropropagated Rehmannia glutinosa Libosch. Plant Cell Tissue Organ Cult 120:539–549

    Article  CAS  Google Scholar 

  • Raghavendra S, Kumar V, Ramesh CK, Khan MH (2012) Enhanced production of L-DOPA in cell cultures of Mucuna pruriens L. and Mucuna prurita H. Nat Prod Res 26:792–801

    Article  CAS  PubMed  Google Scholar 

  • Rahnama H, Hasanloo T, Shams MR, Sepehrifar R (2008) Silymarin production by hairy root culture of Silybum marianum (L.) Gaertn. Iran J Biotechnol 6:113–118

    CAS  Google Scholar 

  • Ramani S, Jayabaskaran C (2008) Enhanced catharanthine and vindoline production in suspension cultures of Catharanthus roseus by ultraviolet-B light. J Mol Signal 3:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rao SR, Ravishankar G (2000) Biotransformation of protocatechuic aldehyde and caffeic acid to vanillin and capsaicin in freely suspended and immobilized cell cultures of Capsicum frutescens. J Biotechnol 76:137–146

    Article  CAS  PubMed  Google Scholar 

  • Rao SR, Ravishankar G (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    Article  CAS  PubMed  Google Scholar 

  • Raven N, Rasche S, Kuehn C, Anderlei T, Klockner W, Schuster F, Henquet M, Bosch D, Buchs J, Fischer R, Schillberg S (2015) Scaled-up manufacturing of recombinant antibodies produced by plant cells in a 200-L orbitally-shaken disposable bioreactor. Biotechnol Bioeng 112:308–321

    Article  CAS  PubMed  Google Scholar 

  • Rekha K, Thiruvengadam M (2017) Secondary metabolite production in transgenic hairy root cultures of cucurbits. In: Jha S (ed) Transgenesis and secondary metabolism. Springer, Cham, pp 267–293

    Chapter  Google Scholar 

  • Roberts SC, Naill M, Gibson DM, Shuler ML (2003) A simple method for enhancing paclitaxel release from Taxus canadensis cell suspension cultures utilizing cell wall digesting enzymes. Plant Cell Rep 21:1217–1220

    Article  CAS  PubMed  Google Scholar 

  • Sato F, Matsui K (2012) Engineering the biosynthesis of low molecular weight metabolites for quality traits (essential nutrients, health-promoting phytochemicals, volatiles, and aroma compounds). In: Altman A, Hasegawa PM (eds) Plant biotechnology and agriculture. Academic, San Diego, pp 443–461

    Chapter  Google Scholar 

  • Schäfer H, Wink M (2009) Medicinally important secondary metabolites in recombinant microorganisms or plants: progress in alkaloid biosynthesis. Biotechnol J 4:1684–1703

    Article  PubMed  CAS  Google Scholar 

  • Sepehr MF, Ghorbanli Z (2005) Formation of Catechin in callus cultures and micropropagation of Rheum ribes L. Pak J Biol Sci 8:1346–1350

    Article  CAS  Google Scholar 

  • Shohael AM, Murthy HN, Hahn EJ, Paek KY (2007) Methyl jasmonate induced overproduction of eleutherosides in somatic embryos of Eleutherococcus senticosus cultured in bioreactors. Electron J Biotechnol 10:633–637

    Article  CAS  Google Scholar 

  • Smetanska I (2008) Production of secondary metabolites using plant cell cultures. In: Stahl U, Donalies UEB, Nevoigt E (eds) Food biotechnology. Springer, Berlin, pp 187–228

    Chapter  Google Scholar 

  • Sujanya S, Devi BP, Sai I (2008) In vitro production of azadirachtin from cell suspension cultures of Azadirachta indica. J Biosci 33:113–120

    Article  CAS  PubMed  Google Scholar 

  • Tabata H (2006) Production of paclitaxel and the related taxanes by cell suspension cultures of Taxus species. Curr Drug Targ 7:453–461

    Article  CAS  Google Scholar 

  • Ten Hoopen HJG, Vinke JL, Moreno PRH, Verpoorte R, Heijnen JJ (2002) Influence of temperature on growth and ajmalicine production by Catharanthus roseus suspension cultures. Enzym Microb Technol 30:56–65

    Article  Google Scholar 

  • Tyler VM, Russo EB (2015) Handbook of psychotropic herbs: a scientific analysis of herbal remedies for psychiatric conditions. Routledge, Abingdon

    Google Scholar 

  • Vasilev N, Gromping U, Lipperts A, Raven N, Fischer R, Schillberg S (2013) Optimization of BY-2 cell suspension culture medium for the production of a human antibody using a combination of fractional factorial designs and the response surface method. Plant Biotechnol J 11:867–874

    Article  CAS  PubMed  Google Scholar 

  • Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13–25

    Article  CAS  Google Scholar 

  • Wang C, Wu J, Mei X (2001) Enhanced taxol production and release in Taxus chinensis cell suspension cultures with selected organic solvents and sucrose feeding. Biotechnol Prog 17:89–94

    Article  PubMed  CAS  Google Scholar 

  • Wilson SA, Roberts SC (2012) Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnol J 10:249–268

    Article  CAS  PubMed  Google Scholar 

  • Wink M (2015) Modes of action of herbal medicines and plant secondary metabolites. Medicines 2:251–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C-H, Murthy HN, Hahn EJ, Paek KY (2008) Establishment of adventitious root co-culture of Ginseng and Echinacea for the production of secondary metabolites. Acta Physiol Plant 30:891

    Article  CAS  Google Scholar 

  • Xu J, Ge X, Dolan MC (2011) Towards high-yield production of pharmaceutical proteins with plant cell suspension cultures. Biotechnol Adv 29:278–299

    Article  CAS  PubMed  Google Scholar 

  • Yadav VG, De Mey M, Giaw Lim C, KumaranAjikumar P, Stephanopoulos G (2012) The future of metabolic engineering and synthetic biology: towards a systematic practice. Metab Eng 14:233–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto H, Inoue K, Yazaki K (2000a) Caffeic acid oligomers in Lithospermum erythrorhizon cell suspension cultures. Phytochemistry 53:651–657

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto H, Yazaki K, Inoue K (2000b) Simultaneous analysis of shikimate-derived secondary metabolites in Lithospermum erythrorhizon cell suspension cultures by high-performance liquid chromatography. J Chromatogr B 738:3–15

    Article  CAS  Google Scholar 

  • Yamamoto H, Zhao P, Inoue K (2002) Origin of two isoprenoid units in a lavandulyl moiety of sophoraflavanone G from Sophora flavescens cultured cells. Phytochemistry 60:263–267

    Article  CAS  PubMed  Google Scholar 

  • Ye M, Ning L, Zhan J, Guo H, Guo D (2003) Biotransformation of cinobufagin by cell suspension cultures of Catharanthus roseus and Platycodon grandiflorum. J Mol Catal B Enzym 22:89–95

    Article  CAS  Google Scholar 

  • Zhang DM, Liu JS, Deng LJ, Chen MF, Yiu A, Cao HH, Tian HY, Fung KP, Kurihara H, Pan JX, Ye WC (2013) Arenobufagin, a natural bufadienolide from toad venom, induces apoptosis and autophagy in human hepatocellular carcinoma cells through inhibition of PI3K/Akt/mTOR pathway. Carcinogenesis 34:1331–1342

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Zhu WH, Hu Q (2001) Selection of fungal elicitors to increase indole alkaloid accumulation in Catharanthus roseus suspension cell culture. Enzym Microb Technol 28:666–672

    Article  CAS  Google Scholar 

  • Zhao JL, Zhou LG, Wu JY (2010) Effects of biotic and abiotic elicitors on cell growth and tanshinone accumulation in Salvia miltiorrhiza cell cultures. Appl Microbiol Biotechnol 87:137–144

    Article  CAS  PubMed  Google Scholar 

  • Zhong JJ (2001) Biochemical engineering of the production of plant-specific secondary metabolites by cell suspension cultures. In: Zhong JJ (ed) Plant cells. Springer, Berlin, pp 1–26

    Chapter  Google Scholar 

  • Zhou S, Lou YR, Tzin V, Jander G (2015) Alteration of plant primary metabolism in response to insect herbivory. Plant Physiol 169:1488–1498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu M, Zhang H, Humphreys WG (2011) Drug metabolite profiling and identification by high-resolution mass spectrometry. J Biol Chem 286:25419–25425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Zeng X, Sun C, Chen S (2014) Biosynthetic pathway of terpenoidindole alkaloids in Catharanthus roseus. Front Med 8:285–293

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Saudagar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raj, S., Saudagar, P. (2019). Plant Cell Culture as Alternatives to Produce Secondary Metabolites. In: Akhtar, M., Swamy, M. (eds) Natural Bio-active Compounds. Springer, Singapore. https://doi.org/10.1007/978-981-13-7438-8_11

Download citation

Publish with us

Policies and ethics