Skip to main content

Design of a Quantum One-Way Trapdoor Function

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 937))

Abstract

Of late security has become a key concern of data transmission mechanism over a communications channel. In an asymmetric cryptographic system, a public key is shared across an insecure medium. This makes the data exchange vulnerable to potential threat from various attackers. This paper proposes the design of a one-way trapdoor function built upon a quantum public key and a classical private key-based encryption–decryption technique of the secret message. The mapping between numbers used in the classical paradigm and their corresponding quantum states is established through the proposed quantum one-way trapdoor function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C.H. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing, in Proceedings of IEEE International Conference on Computers Systems and Signal Processing (Bangalore, India, 1984), pp. 175–179

    Google Scholar 

  2. C. Bennett, Quantum cryptography using any two non-orthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  MathSciNet  Google Scholar 

  3. C.-N. Yang, C.-C. Kuo, Enhanced quantum. Key distribution protocols using BB84 and B92 (2002)

    Google Scholar 

  4. M. Houshmand, S. Hosseini-Khayat, An entanglement- base quantum key distribution protocol, in 8th International ISC Conference Information Security and Cryptology (ISCISC), IEEE (2011), pp. 45–48

    Google Scholar 

  5. A. Cabello, Experimentally testable state-independent quantum contextuality. Phys. Rev. Lett. 101, 210401 (2008)

    Article  Google Scholar 

  6. A. Aldhaheri, K. Elleithy, M. Alshammari, H. Ghunaim, A Novel Secure Quantum Key Distribution Algorithm (University of Bridgeport, 2014)

    Google Scholar 

  7. A. Odeh, K. Elleithy, M. Alshowkan, E. Abdelfattah, Quantum key distribution by using public key algorithm (RSA), in Third International Conference on Innovative Computing Technology (INTECH), IEEE (London, United Kingdom, 2013)

    Google Scholar 

  8. M.L. Adleman, Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  9. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, London, 2000)

    MATH  Google Scholar 

  10. A. Menezes, P. Van Oorschot, S. Vanstone, Handbook of Applied Cryptography (CRC Press, 1996)

    Google Scholar 

  11. C.-H. F. Fung, K. Tamaki, H.-K. Lo, Performance of two quantum key- distribution Protocols. Phys. Rev. A vol. 73 (2006)

    Google Scholar 

  12. G.J. Simmon, Symmetric and asymmetric encryption. ACM Comput. Surv. 11(4), 305–330 (1979)

    Article  Google Scholar 

  13. P.S. Goswami, P.K. Dey, A.C. Mandal, Quantum Cryptography: Security through Uncertainty, in National Conference on Computing & Systems 2010 (2010), pp 86–89

    Google Scholar 

  14. P.S. Goswami, T. Chakraborty, H. Chatterjee, A novel encryption technique using DNA encoding and single qubit rotations. Int. J. Comput. Sci. Eng., 6(3), 364–369 (2018)

    Article  Google Scholar 

  15. F. Bloch, Nuclear induction. Phys. Rev. 70, 460–474 (1946)

    Article  Google Scholar 

  16. Pauli matrices. Planetmath website. 28 March 2008

    Google Scholar 

  17. W.K. Wooters, W.H. Zurek, A single quantum cannot be cloned. Nature 299, 802 (1982)

    Article  Google Scholar 

  18. A. Young, The future of cryptography: practice and theory. IEEE IT Prof. J. 62–64 (2003)

    Google Scholar 

  19. V. Teja, P. Banerjee, N.N. Sharma, R.K. Mittal, Quantum cryptography: state-of-art, challenges and future perspectives, in 7th IEEE International Conference on Nanotechnology (2007), pp. 1296–1301

    Google Scholar 

  20. C. Elliott, D. Pearson, G. Troxel, Quantum cryptography in practice, Preprint of SIGCOMM (2003)

    Google Scholar 

  21. M.S. Sharbaf, Quantum cryptography: an emerging technology in network security. IEEE, (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Sarathi Goswami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goswami, P.S., Chakraborty, T. (2020). Design of a Quantum One-Way Trapdoor Function. In: Mandal, J., Bhattacharya, D. (eds) Emerging Technology in Modelling and Graphics. Advances in Intelligent Systems and Computing, vol 937. Springer, Singapore. https://doi.org/10.1007/978-981-13-7403-6_48

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7403-6_48

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7402-9

  • Online ISBN: 978-981-13-7403-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics