Skip to main content

Energy-Efficient System Design for Internet of Things (IoT) Devices

  • Chapter
  • First Online:
Energy Conservation for IoT Devices

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 206))

Abstract

Nowadays, the Internet of Things (IoT) technology is increasing vastly and in the coming days, billions of things/devices/systems will be connected with each other through the internet. For making this emerging technology self-sustainable, there is a need for green and incessant energy, to power up different nodes of the IoT system, and it is only possible with the use of energy harvesting schemes. A number of renewable resources are available in nature and by using some means and methods the available renewable energy can be harnessed effectively. In this chapter, a brief overview of different energy harvesting schemes is presented along with their advantages and limitations. The wireless power transfer and wireless energy harvesting scheme using rectenna technology are also discussed in detail in the subsequent section. In the last subsection, the latest applications of IoT with their influence on human life are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borgia, E.: The internet of things vision: key features, applications and open issues. Comput. Commun. 54, 1–31 (2014)

    Article  Google Scholar 

  2. Geng, W., Talwar, S., Johnsson, K., Himayat, N., Johnson, K.: M2M: from mobile to embedded internet. IEEE Commun. Mag. 49, 36–43 (2011)

    Article  Google Scholar 

  3. Want, R., Schilit, B.N., Jenson, S.: Enabling the internet of things. Computer 48, 28–35 (2015)

    Article  Google Scholar 

  4. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surveys Tuts. 17, 2347–2376 (2015)

    Article  Google Scholar 

  5. Ulversoy, T.: Software defined radio: challenges and opportunities. IEEE Commun. Surv. Tutor. 12, 531–550 (2010)

    Article  Google Scholar 

  6. Ali, A., Shah, G.A., Farooq, M.O., Ghani, U.: Technologies and challenges in developing machine-to-machine applications: a survey. J. Netw. Comput. Appl. 83, 124–139 (2017)

    Article  Google Scholar 

  7. Accessed www.libelium.com

  8. Shaikh, F.K., Zeadally, S.: Energy harvesting in wireless sensor networks: a comprehensive review. Renew. Sustain. Energy Rev. 55, 1041–1054 (2016)

    Article  Google Scholar 

  9. Adame, T.: IEEE 802.11AH: the wifi approach for M2M communications. IEEE Wirel. Commun. 21, 144–52 (2014)

    Article  Google Scholar 

  10. Babayo, A.A., Anisi, M.H., Ali, I.: A review on energy management schemes in energy harvesting wireless sensor networks. Renew. Sustain. Energy Rev. 76, 1176–1184 (2017)

    Article  Google Scholar 

  11. Khosro Pour, N., Krummenacher, F., Kayal, M.: Fully integrated solar energy harvester and sensor interface circuits for energy-efficient wireless sensing applications. J. Low Power Electron. Appl. 3, 9–26 (2013)

    Article  Google Scholar 

  12. Rozgic, D., Markovic, D.: A miniaturized 0.78-mW/cm2 autonomous thermoelectric energy-harvesting platform for biomedical sensors. IEEE Trans. Biomed. Circuit Syst. 11, 773–783 (2017)

    Article  Google Scholar 

  13. Wang, Y., Zhang, Q., Zhao, L., Tang, Y., Shkel, A., Kim, E.S.: Vibration energy harvester with low resonant frequency based on flexible coil and liquid spring. Appl. Phys. Lett. 109, 203901 (2016)

    Article  Google Scholar 

  14. He, Q.B., Jiang, T.X.: Complementary multi-mode low-frequency vibration energy harvesting with chiral piezoelectric structure. Appl. Phys. Lett. 110, 213901 (2017)

    Article  Google Scholar 

  15. Khan, F.U., Khattak, M.U.: Contributed review: recent developments in acoustic energy harvesting for autonomous wireless sensor nodes applications. Rev. Sci. lnstrum. 87, 021501 (2016)

    Article  Google Scholar 

  16. Abdulmunam, R.T., Taha, L.Y., Ivey, P.: Electrostatic harvester for wind energy harvesting and wind speed remote sensing. In: IEEE Canadian Conference Electrical Computer Engineering (2015)

    Google Scholar 

  17. Bryans, A.G., Fox, B., Crossley, P.A., O’Malley, M.: Impact of tidal generation on power system operation in Ireland. IEEE Trans. Power Syst. 20, 2034–2040 (2005)

    Article  Google Scholar 

  18. Soyata, T., Copeland, L., Heinzelman, W.: RF energy harvesting for embedded systems: a survey of tradeoffs and methodology. IEEE Circuits Syst. Mag. 16, 22–57 (2016)

    Article  Google Scholar 

  19. Visser, H.J., Vullers, R.J.M.: RF energy harvesting and transport for wireless sensor network applications: principles and requirements. Proc. IEEE 101, 1410–1423 (2013)

    Article  Google Scholar 

  20. Kim, R., Vyas, J., Bito, J., Niotaki, K., Collado, A., Georgiadis, A., Tentzeris, M.M.: Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms. Proc. IEEE 102, 1649–1666 (2014)

    Article  Google Scholar 

  21. Le, C.P., Halvorsen, E.: Electrostatic modeling of in-plane overlap energy harvesters. In: Proceedings of Power MEMS, pp. 336–339 (2009)

    Google Scholar 

  22. O’Donnell, R., Schofield, N., Smith, A.C., Cullen, J.: Design concepts for high-voltage variable-capacitance DC generators. IEEE Trans. Ind. Appl. 45, 1778–1784 (2009)

    Article  Google Scholar 

  23. Nguyen, H., Hah, D., Patterson, P., Chao, R., Piyawattanametha, W., Wu, M.C.: A Novel mems tunable capacitor based on angular vertical comb drive actuators. In: Proceedings of Solid-State Sensor Actuator Microsystems Workshop, pp. 277–280 (2002)

    Google Scholar 

  24. Despesse, G., Jager, T., Condemine, C., Berger, P.D.: Mechanical vibrations energy harvesting and power management. In: Proceedings of IEEE Sensors Conference, pp. 29–32 (2008)

    Google Scholar 

  25. Reznikov, M.: Electrostatic swing energy harvester. In: Proceedings of ESA Annual Meeting on Electrostatics. http://www.electrostatics.org/images/ESA2010_G3_Reznikov.pdf (2010)

  26. Chandravanshi, S., Sarma, S.S., Akhtar, M.J.: Design of triple band differential rectenna for RF energy harvesting. IEEE Trans. Antennas Propag. 66, 2716–2726 (2018)

    Article  Google Scholar 

  27. Khemar, A., Kacha, A., Takhedmit, H., Abib, G.: Design and experiments of a dual-band rectenna for ambient rf energy harvesting in urban environments. IET Microw. Antennas Propag. 12, 49–55 (2018)

    Article  Google Scholar 

  28. Kumar, S.A., Shanmuganantham, T.: Design of implantable CPW fed monopole H-slot antenna for 2.45 GHz ISM band applications. AEU Int. J. Electron. Commun. 68, 661–666 (2014)

    Google Scholar 

  29. Liu, Y., Yi, H., Wang, F.-W., Gong, S.-X.: A novel miniaturized broadband dual-polarized dipole antenna for base station. IEEE Antennas Wirel. Propag. Lett. 12, 1335–1338 (2013)

    Article  Google Scholar 

  30. Sun, H., Guo, Y.X., He, M., Zhong, Z.: A dual-band rectenna using broadband yagi antenna array for ambient RF power harvesting. IEEE Antennas Wirel. Propag. Lett. 12, 918–921 (2013)

    Article  Google Scholar 

  31. Khang, S.-T., Yu, J.W., Lee, W.-S.: Compact folded dipole rectenna with RF-based energy harvesting for iot smart sensors. Electron. Lett. 51, 926–928 (2015)

    Article  Google Scholar 

  32. Chuma, E.L., Rodríguez, L.d.l.T., Iano, Y., Roger, L.L.B., Sanchez-Soriano, M.A.: Compact rectenna based on a fractal geometry with a high conversion energy efficiency per area. IET Microw. Antennas Propag. 12, 173–178 (2018)

    Article  Google Scholar 

  33. Alharbi, K.H., Khalid, A., Ofiare, A., Wang, J., Wasige, F.: Diced and grounded broadband bow-tie antenna with tuning stub for resonant tunnelling diode terahertz oscillators. IET Microw. Antennas Propag. 310–316 (2017)

    Google Scholar 

  34. Wang, H., Zhang, Z., Li, Y., Feng, Z.: A wideband differential-fed slot antenna using integrated compact balun with matching capability. IEEE Trans. Antennas Propag. 62, 5394–5399 (2014)

    Article  Google Scholar 

  35. Saxena, S., Kanaujia, B.K., Dwari, S., Kumar, S., Tiwari, R.: A compact microstrip fed dual polarised multiband antenna for IEEE 802.11 a/b/g/n/ac/ax applications. AEU Int. J. Electron. Commun. 72, 95–103 (2017)

    Google Scholar 

  36. Kumar, S., Kanaujia, B.K., Khandelwal, M.K., Gautam, A.K.: Single-feed superstrate loaded circularly polarized microstrip antenna for wireless applications. Wirel. Per. Commun. 92, 1333–1346 (2017)

    Article  Google Scholar 

  37. Abdelhalem, S.H., Gudem, P.S., Larson, L.E.: An RF-DC converter with wide-dynamic-range input matching for power recovery applications. IEEE Trans. Circuits Syst. II Express Briefs 60, 336–340 (2013)

    Article  Google Scholar 

  38. Yi, J., Ki, W.-H., Tsui, C.-Y.: Analysis and design strategy of UHF micro-power CMOS rectifiers for micro-sensor and RFID applications. IEEE Trans. Circuits Systems I 54, 153–166 (2007)

    Article  Google Scholar 

  39. Liu, L.-X., Mu, J.-C., Ma, N., Tu, W., Zhu, Z.-M., Yang, Y.-T.: An ultra-low-power integrated RF energy harvesting system in 65-nm CMOS process. Circuits Syst. Signal Process. 35, 1–21 (2016)

    Article  Google Scholar 

  40. Choi, K.W., Ginting, L., Rosyady, P.A., Aziz, A.A., Kim, D.I.: Wireless-powered sensor networks: how to realize. IEEE Trans. Wirel. Commun. 16, 221–234 (2017)

    Article  Google Scholar 

  41. Kamalinejad, P., Mahapatra, C., Sheng, Z., Mirabbasi, S., Leung, V.C.M., Guan, Y.L.: Wireless energy harvesting for the internet of things. IEEE Commun. Mag. 53, 102–108 (2015)

    Article  Google Scholar 

  42. Liu, H.: Maximizing Efficiency of Wireless Power Transfer with Resonant Inductive Coupling (2011)

    Google Scholar 

  43. Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J.D., Fisher, P., Soljačić, M.: Wireless power transfer via strongly coupled magnetic resonances. Science 317, 83–86 (2007)

    Article  MathSciNet  Google Scholar 

  44. Lu, X., Wang, P., Niyato, D., Kim, D.I., Han, Z.: Wireless charging technologies: fundamentals, standards, and network applications. IEEE Commun. Surveys Tuts. 18, 1413–1452 (2016)

    Article  Google Scholar 

  45. Bihr, U., Liu, T., Ortmanns, M.: Telemetry for implantable medical devices: part 3-data telemetry. IEEE Solid State Circuits Mag. 6, 56–62 (2014)

    Article  Google Scholar 

  46. Sharma, A.K., Yadav, S., Dandu, S.N., Kumar, V., Sengupta, J., Dhok, S.B., Kumar, S.: Magnetic induction-based non-conventional media communications: a review. IEEE Sens. J. 17, 926–940 (2017)

    Google Scholar 

  47. Mehrjerdi, Y.Z.: RFID: a bibliographical literature review with future research directions. Int. J. Ind. Eng. 25, 151–190 (2014)

    Google Scholar 

  48. Hannan, M.A., Abbas, S.M., Samad, S.A., Hussain, A.: Modulation techniques for biomedical implanted devices and their challenges. Sensors 12, 297–319 (2011)

    Article  Google Scholar 

  49. Singh, R., Gehlot, A., Samkaria, R., Mittal, M.: IoT based intelligent robot for various disasters monitoring and prevention with visual data manipulation. Int. J. Tomogr. Simul. 32, 89–99 (2019)

    Google Scholar 

  50. Singh, R., Gehlot, A., Mittal, M., Samkaria, R., Choudhury, S.: Application of iCloud and wireless sensor network in environmental parameter analysis. Int. J. Sens. Wirel. Commun. Control. 7, 170–177 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Wook Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, N., Kumar, S., Kanaujia, B.K., Choi, H.C., Kim, K.W. (2019). Energy-Efficient System Design for Internet of Things (IoT) Devices. In: Mittal, M., Tanwar, S., Agarwal, B., Goyal, L. (eds) Energy Conservation for IoT Devices . Studies in Systems, Decision and Control, vol 206. Springer, Singapore. https://doi.org/10.1007/978-981-13-7399-2_3

Download citation

Publish with us

Policies and ethics