Skip to main content

A New Trend to Power Up Next-Generation Internet of Things (IoT) Devices: ‘Rectenna’

  • Chapter
  • First Online:
Energy Conservation for IoT Devices

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 206))

Abstract

‘Wireless energy harvesting’ or ‘green energy harvesting’ are the terminologies used for the process of RF energy scavenging. This type of energy harvesting method shows distinct advantages over other renewable techniques such as low installation cost, simple conversion process, high conversion efficiency, and easy integration of transducer with other equipment. This chapter demonstrates a comprehensive review of various rectenna models using different types of receiving antenna and rectifier circuit linked through a matching network. The purpose of this comparative study is to analyze the topology that best suits the emerging wireless power transfer and RF energy scavenging/harvesting technology with high received power and conversion efficiency. The proposed chapter gives an overview of RF green energy systems that can be easily employed for powering next-generation IoT devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramezni, P., Jamalipour, A.: Toward the evolution of wireless powered communication networks for the future internet of things. IEEE Netw. 31, 12–19 (2017)

    Google Scholar 

  2. Sun, M., Shi, Z., Chen, S., Zhou, Z., Duan, Y.: Energy-efficient composition of configurable internet of things services. IEEE Access 5, 25609–25622 (2017)

    Article  Google Scholar 

  3. Ren, J., Hu, J., Zhang, D., Guo, H., Zhang, Y., Shen, Z.: RF energy harvesting and transfer in cognitive radio sensor networks: opportunities and challenges. IEEE Commun. Mag. 56, 104–110 (2018)

    Article  Google Scholar 

  4. Mishra, D., De, S., Jana, S., Basagni, S., Chowdhury, K., Heinzelman, W.: Smart RF energy harvesting communications: challenges and opportunities. IEEE Commun. Mag. 53, 70–78 (2015)

    Article  Google Scholar 

  5. Kamalinejad, P., Mahapatra, C., Sheng, Z., Mirabbasi, S., Leung, V.C.M., Guan, Y.L.: Wireless energy harvesting for the internet of things. IEEE Commun. Mag. 53, 102–108 (2015)

    Article  Google Scholar 

  6. Morin, E., Maman, M., Guizzetti, R., Duda, A.: Comparison of the device lifetime in wireless networks for the internet of things. IEEE Access 5, 7097–7114 (2017)

    Article  Google Scholar 

  7. Li, Q.Q., Gochhayat, S.P., Conti, M., Liu, F.A.: EnergIoT: a solution to improve network lifetime of IoT devices. Pervasive Mob. Comput. 42, 124–133 (2017)

    Article  Google Scholar 

  8. Visser, H.J., Vullers, R.J.M.: RF energy harvesting and transport for wireless sensor network applications: principles and requirements. Proc. IEEE 101, 1410–1423 (2013)

    Article  Google Scholar 

  9. Jabbar, H., Song, Y.S., Jeong, T.T.: RF energy harvesting system and circuits for charging of mobile devices. IEEE Trans. Cons. Electron. 56, 247–253 (2010)

    Article  Google Scholar 

  10. Pinuela, M., Mitcheson, P.D., Lucyszyn, S.: Ambient RF energy harvesting in urban and semi-urban environments. IEEE Trans. Microw. Theory Techn. 61, 2715–2726 (2013)

    Article  Google Scholar 

  11. Singh, N., Kanaujia, B.K., Beg, M.T., Mainuddin, Khan, T., Kumar, S.: A dual polarized multiband rectenna for RF energy harvesting. AEU Int. J. Electron. Commun. 93, 123–131 (2018)

    Article  Google Scholar 

  12. Brown, W.C.: The history of power transmission by radio waves. IEEE Trans. Microw. Theory Tech. 32, 1230–1242 (1984)

    Article  Google Scholar 

  13. Lu, X., Wang, P., Niyato, D., Kim, D.I., Han, Z.: Wireless networks with RF energy harvesting: a contemporary survey. IEEE Commun. Surv. Tutor. 17, 757–789 (2015)

    Article  Google Scholar 

  14. Carvalho, N.B., Georgiadis, A., Costanzo, A., Rogier, H., Collado, A., Garcia, J.A., Lucyszyn, S., Mezzanotte, P., Kracek, J., Masotti, D., Boaventura, A.J.S., Lavin, M.N.R., Pinuela, M., Yates, D.C., Mitcheson, P.D., Mazanek, M., Pankrac, V.: Wireless power transmission: R&D activities within Europe. IEEE Trans. Microw. Theory Tech. 62, 1031–1045 (2014)

    Article  Google Scholar 

  15. Valenta, C.R., Durgin, G.D.: Harvesting wireless power: survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems. IEEE Microw. Mag. 15, 108–120 (2014)

    Google Scholar 

  16. Hagerty, J.A., Helmbrecht, F.B., McCalpin, W.H., Zane, R., Popovic, Z.B.: Recycling ambient microwave energy with broad-band rectenna arrays. IEEE Trans. Microw. Theory Techn. 52, 1014–1024 (2004)

    Article  Google Scholar 

  17. Suh, Y.-H., Chang, K.: A high-efficiency dual-frequency rectenna for 2.45-and 5.8-GHz wireless power transmission. IEEE Trans. Microw. Theory Techn. 50, 1784–1789 (2002)

    Google Scholar 

  18. Hosain, M.K., Kouzani, A.Z., Samad, M.F., Tye, S.J.: A miniature energy harvesting rectenna for operating a head-mountable deep brain stimulation device. IEEE Access 3, 223–234 (2015)

    Article  Google Scholar 

  19. Chandravanshi, S., Sarma, S.S., Akhtar, M.J.: Design of triple band differential rectenna for rf energy harvesting. IEEE Trans. Antennas Propag. 66, 2716–2726 (2018)

    Article  Google Scholar 

  20. Ladan, S., Guntupalli, A.B., Wu, K.: A high-efficiency 24 GHz rectenna development towards millimeter-wave energy harvesting and wireless power transmission. IEEE Trans. Circuits Syst. I Reg. Pap. 61, 3358–3366 (2014)

    Article  Google Scholar 

  21. Saxena, S., Kanaujia, B.K., Dwari, S., Kumar, S., Tiwari, R.: a compact microstrip fed dual polarized multiband antenna for IEEE 802.11 a/b/g/n/ac/ax applications. AEU Int. J. Electron. Commun. 72, 95–103 (2017)

    Google Scholar 

  22. Kumar, S., Kanaujia, B.K., Khandelwal, M.K., Gautam, A.K.: Single-feed superstrate loaded circularly polarized microstrip antenna for wireless applications. Wirel. Pers. Commun. 92, 1333–1346 (2017)

    Article  Google Scholar 

  23. Khang, S.-T., Yu, J.W., Lee, W.-S.: Compact folded dipole rectenna with RF-Based energy harvesting for IoT smart sensors. Electron. Lett. 51, 926–928 (2015)

    Article  Google Scholar 

  24. Wu, Q., Wang, H., Yu, C., Hong, W.: Low-profile circularly polarized cavity-backed antennas using SIW techniques. IEEE Trans. Antennas Propag. 64, 2832–2839 (2016)

    Article  Google Scholar 

  25. Kim, H., Hwang, K.S., Chang, K., Yoon, Y.J.: Novel slot antennas for harmonic suppression. IEEE Microw. Wirel. Compon. Lett. 14, 286–288 (2004)

    Article  Google Scholar 

  26. Yang, Y., Li, L., Li, J., Liu, Y., Zhang, B., Zhu, H., Huang, K.: A circularly polarized rectenna array based on substrate integrated waveguide structure with harmonic suppression. IEEE Antennas Wirel. Propag. Lett. 17, 684–688 (2018)

    Article  Google Scholar 

  27. Ali, M., Yang, G., Dougal, R.: A new circularly polarized rectenna for wireless power transmission and data communication. IEEE Antennas Wirel. Propag. Lett. 4, 205–208 (2005)

    Article  Google Scholar 

  28. Yang, X.-X., Jiang, C., Elsherbeni, A.Z., Yang, F., Wang, Y.-Q.: A novel compact printed rectenna for data communication systems. IEEE Trans. Antennas Propag. 61, 2532–2539 (2013)

    Article  Google Scholar 

  29. Nie, M.-J., Yang, X.-X.: A compact 2.45-GHz broadband rectenna using grounded coplanar waveguide. IEEE Antennas Wirel. Propag. Lett. 14, 986–989 (2015)

    Article  Google Scholar 

  30. Lu, P., Yang, X.-S., Li, J.-L.: A compact frequency reconfigurable rectenna for 5.2-and 5.8-GHz wireless power transmission. IEEE Trans. Power Electron. 30, 6006–6010 (2015)

    Article  Google Scholar 

  31. Khoshniat, A., Yekan, T., Baktur, R., Warnick, K.F.: Active integrated antenna supporting linear and circular polarizations. IEEE Trans. Compon. Packag. Manuf. Technol. 7, 238–245 (2017)

    Google Scholar 

  32. Park, J.-Y., Han, S.-M., Itoh, T.: A rectenna design with harmonic rejecting circular-sector antenna. IEEE Antennas Wirel. Propag. Lett. 3, 52–54 (2004)

    Article  Google Scholar 

  33. Chou, J., Lin, D., Weng, K., Li, H.: All polarization receiving rectenna with harmonic rejection property for wireless power transmission. IEEE Trans. Antennas Propag. 62, 5242–5249 (2014)

    Article  Google Scholar 

  34. Huang, F.-J., Yo, T.-C., Lee, C.-M., Luo, C.-H.: Design of circular polarization antenna with harmonic suppression for rectenna application. IEEE Antennas Wirel. Propag. Lett. 11, 592–595 (2012)

    Article  Google Scholar 

  35. Arrawatia, M., Baghini, M.S., Kumar, G.: broadband bent triangular omnidirectional antenna for RF energy harvesting. IEEE Antennas Wirel. Propag. Lett. 15, 36–39 (2016)

    Google Scholar 

  36. Niotaki, K., Kim, S., Seongheon, J., Collado, A., Georgiadis, A., Tentzeris, M.M.: A compact dual-band rectenna using slot-loaded dual band folded dipole antenna. IEEE Antennas Wirel. Propag. Lett. 12, 1634–1637 (2013)

    Article  Google Scholar 

  37. Pei, J., Wang, A.-G., Gao, S., Leng, W.: Miniaturized triple-band antenna with a defected ground plane for WLAN/WiMAX applications. IEEE Antennas Wirel. Propag. Lett. 10, 298–301 (2011)

    Article  Google Scholar 

  38. Shen, S., Chiu, C.-Y., Murch, R.D.: A dual-port triple-band L-probe microstrip patch rectenna for ambient RF energy harvesting. IEEE Antennas Wirel. Propag. Lett. 16, 3071–3074 (2017)

    Article  Google Scholar 

  39. Sun, H.: An enhanced rectenna using differentially-fed rectifier for wireless Power transmission. IEEE Antennas Wirel. Propag. Lett. 15, 32–35 (2016)

    Google Scholar 

  40. Sun, H., Geyi, W.: A new rectenna with all-polarization-receiving capability for wireless power transmission. IEEE Antennas Wirel. Propag. Lett. 15, 814–817 (2016)

    Article  Google Scholar 

  41. Song, C., Huang, Y., Zhou, J., Zhang, J.: A high-efficiency broadband rectenna for ambient wireless energy harvesting. IEEE Trans. Antennas Propag. 63, 3486–3495 (2015)

    Article  MathSciNet  Google Scholar 

  42. Singh, R., Gehlot, A., Samkaria, R., Mittal, M.: IoT based intelligent robot for various disasters monitoring and prevention with visual data manipulation. Int. J. Tomogr. Simul. 32, 89–99 (2019)

    Google Scholar 

  43. Singh, R., Gehlot, A., Mittal, M., Samkaria, R., Choudhury, S.: Application of iCloud and wireless sensor network in environmental parameter analysis. Int. J. Sens. Wirel. Commun. Control 7, 170–177 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binod Kumar Kanaujia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, N., Kumar, S., Kanaujia, B.K. (2019). A New Trend to Power Up Next-Generation Internet of Things (IoT) Devices: ‘Rectenna’. In: Mittal, M., Tanwar, S., Agarwal, B., Goyal, L. (eds) Energy Conservation for IoT Devices . Studies in Systems, Decision and Control, vol 206. Springer, Singapore. https://doi.org/10.1007/978-981-13-7399-2_14

Download citation

Publish with us

Policies and ethics