Skip to main content

Glacial and Tectonic Mass Transportation in High Mountain Asia

  • Chapter
  • First Online:
  • 263 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Nearly each part of the HMA glaciers develops in its own individual features. For instance, glaciers on the TP are generally of three different types and are controlled by diverse factors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adler, R. F., et al. (2003). The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). Journal of Hydrometeorology, 4(6), 1147–1167. https://doi.org/10.1175/1525-7541(2003)004%3c1147:tvgpcp%3e2.0.co;2.

    Article  Google Scholar 

  • Batchelor, G. K. (2000). An introduction to fluid dynamics. Cambridge University Press.

    Google Scholar 

  • Bohling, G. (2005). Kriging, edited. http://people.ku.edu/~gbohling/cpe940/Kriging.pdf.

  • Bolch, T., Yao, T., Kang, S., Buchroithner, M. F., Scherer, D., Maussion, F., et al. (2010). A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes 1976–2009. Cryosphere, 4(3), 419–433. https://doi.org/10.5194/tc-4-419-2010.

    Article  Google Scholar 

  • Bolch, T., et al. (2012). The state and fate of Himalayan glaciers. Science, 336(6079), 310–314. https://doi.org/10.1126/science.1215828.

    Article  Google Scholar 

  • Braitenberg, C., Zadro, M., Fang, J., Wang, Y., & Hsu, H. (2000). The gravity and isostatic Moho undulations in Qinghai-Tibet plateau. Journal of Geodynamics, 30(5), 489–505.

    Article  Google Scholar 

  • Farinotti, D., Longuevergne, L., Moholdt, G., Duethmann, D., Mölg, T., Bolch, T., et al. (2015). Substantial glacier mass loss in the Tien Shan over the past 50 years. Nature Geoscience. https://doi.org/10.1038/ngeo2513.

    Article  Google Scholar 

  • Fielding, E. J. (1996). Tibet uplift and erosion. Tectonophysics, 260(1–3), 55–84. https://doi.org/10.1016/0040-1951(96)00076-5.

    Article  Google Scholar 

  • Fishman, G. (2013). Monte Carlo: Concepts, algorithms, and applications. Springer Science & Business Media.

    Google Scholar 

  • Gardelle, J., Berthier, E., & Arnaud, Y. (2012). Slight mass gain of Karakoram glaciers in the early twenty-first century. Nature Geoscience, 5(5), 322–325. https://doi.org/10.1038/ngeo1450.

    Article  Google Scholar 

  • Hansen, P. C., & O’Leary, D. P. (1993). The use of the L-curve in the regularization of discrete ill-posed problems. SIAM Journal on Scientific Computing, 14, 1487–1503.

    Article  Google Scholar 

  • Harrison, T. M., Copeland, P., Kidd, W., & Yin, A. (1992). Raising Tibet. Science, 255(5052), 1663–1670.

    Article  Google Scholar 

  • Heiskanen, W. A., & Moritz, H. (1967). Physical geodesy. San Francisco: W. H. Freeman and Company.

    Google Scholar 

  • Heki, K., & Matsuo, K. (2010). Coseismic gravity changes of the 2010 earthquake in central Chile from satellite gravimetry. Geophysical Research Letters, 37(24).

    Google Scholar 

  • Jacob, T., Wahr, J., Pfeffer, W. T., & Swenson, S. (2012). Recent contributions of glaciers and ice caps to sea level rise. Nature, 482(7386), 514–518. https://doi.org/10.1038/nature10847.

    Article  Google Scholar 

  • Jiménez-Munt, I., Fernàndez, M., Vergés, J., & Platt, J. P. (2008). Lithosphere structure underneath the Tibetan Plateau inferred from elevation, gravity and geoid anomalies. Earth & Planetary Science Letters, 267(1–2), 276–289.

    Article  Google Scholar 

  • Li, Y.-A., Tan, Y., & Jiang, F. (2003). Study on hydrological features of the Kaidu River and the Bosten Lake in the second half of 20th century. Journal of Glaciology and Geocryology, 25, 215–218.

    Google Scholar 

  • Liang, S., Gan, W., Shen, C., Xiao, G., Liu, J., Chen, W., et al. (2013). Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements. Journal of Geophysical Research: Solid Earth, 118(10), 2013JB010503. https://doi.org/10.1002/2013jb010503.

    Google Scholar 

  • Matsuo, K., & Heki, K. (2010). Time-variable ice loss in Asian high mountains from satellite gravimetry. Earth and Planetary Science Letters, 290(1–2), 30–36. https://doi.org/10.1016/j.epsl.2009.11.053.

    Article  Google Scholar 

  • Matsuo, K., & Heki, K. (2012). Anomalous precipitation signatures of the Arctic Oscillation in the time-variable gravity field by GRACE. Geophysical Journal International, 190(3), 1495–1506. https://doi.org/10.1111/j.1365-246X.2012.05588.x.

    Article  Google Scholar 

  • Molnar, P., England, P., & Martinod, J. (1993). Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Reviews of Geophysics, 31(4), 357–396.

    Article  Google Scholar 

  • Nan, Z. T., Li, S. X., & Cheng, G. D. (2005). Prediction of permafrost distribution on the Qinghai-Tibet Plateau in the next 50 and 100 years. Science in China Series D-Earth Sciences, 48(6), 797–804. https://doi.org/10.1360/03yd0258.

    Article  Google Scholar 

  • Qiu, H., Zhao, Q., Zhu, W., Tao, R., & Qian, H. (2013). Analysis of the Bosten lake’s level and its possible mechanism. Journal of the Meteorological Sciences, 33, 289–295.

    Google Scholar 

  • Rodell, M., Velicogna, I., & Famiglietti, J. S. (2009), Satellite-based estimates of groundwater depletion in India. Nature, 460(7258), 999-U980. https://doi.org/10.1038/nature08238.

    Article  Google Scholar 

  • Royden, L. H., Burchfiel, B. C., King, R. W., Wang, E., Chen, Z., Shen, F., et al. (1997). Surface deformation and lower crustal flow in eastern Tibet. Science, 276(5313), 788–790.

    Article  Google Scholar 

  • Shi, Y., Shen, Y., Kang, E., Li, D., Ding, Y., Zhang, G., et al. (2006). Recent and future climate change in northwest China. Climatic Change, 80, 379–393.

    Article  Google Scholar 

  • Shi, Y., Zheng, B., & Li, S. (1992). Last glaciation and maximum glaciation in the Qinghai-Xizang (Tibet) Plateau: A controversy to M. Kuhle’s ice sheet hypothesis. Chinese Geographical Science, 2(4), 293–311. https://doi.org/10.1007/BF02664561.

    Article  Google Scholar 

  • Shrestha, A. B., Wake, C. P., Dibb, J. E., & Mayewski, P. A. (2000). Precipitation fluctuations in the Nepal Himalaya and its vicinity and relationship with some large scale climatological parameters. International Journal of Climatology, 20(3), 317–327. https://doi.org/10.1002/(sici)1097-0088(20000315)20:3%3c317:aid-joc476%3e3.0.co;2-g.

    Article  Google Scholar 

  • Sun, H.-Y., Liu, C.-M., Zhang, X.-Y., Shen, Y.-J., & Zhang, Y.-Q. (2006a). Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain. Agricultural Water Management, 85(1), 211–218.

    Google Scholar 

  • Sun, W. K., Wang, Q., Li, H., Wang, Y., Okubo, S. H., Shao, D. S., et al. (2009). Gravity and GPS measurements reveal mass loss beneath the Tibetan Plateau: Geodetic evidence of increasing crustal thickness. Geophysical Research Letters, 36. https://doi.org/10.1029/2008gl036512.

    Article  Google Scholar 

  • Sun, Z., Wang, R., & Huang, Q. (2006b). Comparison of water level changes during the past 20 years between Daihai and Bositen Lakes. Journal of Arid Land Resources and Environment, 20, 56–60.

    Google Scholar 

  • Thompson, D. W., & Wallace, J. M. (1998). The arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophysical Research Letters, 25, 1297–1300.

    Article  Google Scholar 

  • Tiwari, V. M., Wahr, J., & Swenson, S. (2009). Dwindling groundwater resources in northern India, from satellite gravity observations, Geophysical Research Letters, 36. https://doi.org/10.1029/2009gl039401.

  • Turcotte, D., & Schubert, G. (2014). Geodynamics. Cambridge University Press.

    Google Scholar 

  • Wang, C. Y., Han, W. B., Wu, J. P., Lou, H., & Chan, W. W. (2007). Crustal structure beneath the eastern margin of the Tibetan Plateau and its tectonic implications. Journal of Geophysical Research: Solid Earth (1978–2012), 112(B7).

    Google Scholar 

  • Wang, C.-Y., Lou, H., Lü, Z., Wu, J., Chang, L., Dai, S., et al. (2008). S-wave crustal and upper mantle’s velocity structure in the eastern Tibetan Plateau—Deep environment of lower crustal flow. Science in China, Series D: Earth Sciences, 51(2), 263–274.

    Article  Google Scholar 

  • Wang, H. (2001). Effects of glacial isostatic adjustment since the late Pleistocene on the uplift of the Tibetan Plateau. Geophysical Journal International, 144(2), 448–458. https://doi.org/10.1046/j.1365-246x.2001.00340.x.

    Article  Google Scholar 

  • Wang, J., Chen, Y.-N., & Chen, Z.-S. (2012). Quantitative assessment of climate change and human activities impact the inflowing runoff of bosten lake. Xinjiang Agricultural Sciences, 49, 581–587.

    Google Scholar 

  • Yao, T. (2010). Glacial fluctuations and its impacts on lakes in the southern Tibetan Plateau. Chinese Science Bulletin, 55(20), 2071. https://doi.org/10.1007/s11434-010-4327-5.

    Article  Google Scholar 

  • Yao, T., et al. (2012). Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2(9), 663–667. https://doi.org/10.1038/nclimate1580.

    Article  Google Scholar 

  • Yi, S., & Sun, W. (2014). Evaluation of glacier changes in high-mountain Asia based on 10 year GRACE RL05 models. Journal of Geophysical Research: Solid Earth, 119(3), 2504–2517.

    Google Scholar 

  • Yi, S., Wang, Q., & Sun, W. (2016). Is it possible that a gravity increase of 20  μGal  yr−1 in southern Tibet comes from a wide-range density increase? Geophysical Research Letters. https://doi.org/10.1002/2015GL067509.

    Article  Google Scholar 

  • Zhang, G., Yao, T., Xie, H., Kang, S., & Lei, Y. (2013). Increased mass over the Tibetan Plateau: From lakes or glaciers? Geophysical Research Letters, 40(10), 2125–2130. https://doi.org/10.1002/grl.50462.

    Article  Google Scholar 

  • Zhang, P.-Z., Shen, Z., Wang, M., Gan, W., Bürgmann, R., Molnar, P., et al. (2004). Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32(9), 809–812.

    Article  Google Scholar 

  • Zhou, S., Kang, S., Chen, F., & Joswiak, D. R. (2013). Water balance observations reveal significant subsurface water seepage from Lake Nam Co, south-central Tibetan Plateau. Journal of Hydrology, 491, 89–99. https://doi.org/10.1016/j.jhydrol.2013.03.030.

    Article  Google Scholar 

  • Zhu, S., & Shi, Y. (2011). Estimation of GPS strain rate and its error analysis in the Chinese continent. Journal of Asian Earth Sciences, 40(1), 351–362.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Yi .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yi, S. (2019). Glacial and Tectonic Mass Transportation in High Mountain Asia. In: Application of Satellite Gravimetry to Mass Transports on a Global Scale and the Tibetan Plateau. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-7353-4_6

Download citation

Publish with us

Policies and ethics