Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 245 Accesses

Abstract

Human activities, climate change and environmental change are three mutually influential elements. Factors such as the accumulation of greenhouse gases from human activities have led to global warming and more frequent extreme weather phenomena; intensive human activities and rising global temperatures have brought irreversible effects on the environment, of which the most significant and manifest is the mass transports in the water cycle system; the deterioration of the environment will further weaken the stability of the climate, which will ultimately threaten the sustainable development of human production and living environment. In recent years, people have become more and more aware of the significance of these three elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aeschbach-Hertig, W., & Gleeson, T. (2012). Regional strategies for the accelerating global problem of groundwater depletion. Nature Geoscience, 5(12), 853–861.

    Article  Google Scholar 

  • Arendt, A. A., Luthcke, S. B., Larsen, C. F., Abdalati, W., Krabill, W. B., & Beedle, M. J. (2008). Validation of high-resolution GRACE mascon estimates of glacier mass changes in the St Elias Mountains, Alaska, USA, using aircraft laser altimetry. Journal of Glaciology, 54(188), 778–787.

    Article  Google Scholar 

  • Bai, D., Unsworth, M. J., Meju, M. A., Ma, X., Teng, J., Kong, X., et al. (2010). Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nature Geoscience, 3(5), 358–362.

    Article  Google Scholar 

  • Bolch, T., Sandberg Sørensen, L., Simonsen, S. B., Mölg, N., Machguth, H., Rastner, P., et al. (2013). Mass loss of Greenland’s glaciers and ice caps 2003–2008 revealed from ICESat data. Geophysical Reseach Letters, 40, 875–881. https://doi.org/10.1002/grl.50270.

    Article  Google Scholar 

  • Bolch, T., et al. (2012). The state and fate of Himalayan glaciers. Science, 336(6079), 310–314. https://doi.org/10.1126/science.1215828.

    Article  Google Scholar 

  • Braitenberg, C., Zadro, M., Fang, J., Wang, Y., & Hsu, H. (2000). The gravity and isostatic Moho undulations in Qinghai-Tibet plateau. Journal of Geodynamics, 30(5), 489–505.

    Article  Google Scholar 

  • Broerse, D. B. T., Vermeersen, L. L. A., Riva, R. E. M., & van der Wal, W. (2011). Ocean contribution to co-seismic crustal deformation and geoid anomalies: Application to the 2004 December 26 Sumatra-Andaman earthquake. Earth and Planetary Science Letters, 305, 341–349.

    Article  Google Scholar 

  • Cazenave, A., & Chen, J. (2010). Time-variable gravity from space and present-day mass redistribution in theEarth system. Earth and Planetary Science Letters, 298(3–4), 263–274. https://doi.org/10.1016/j.epsl.2010.07.035.

    Article  Google Scholar 

  • Cazenave, A., & Cozannet, G. L. (2014). Sea level rise and its coastal impacts. Earth’s Future, 2(2), 15–34.

    Article  Google Scholar 

  • Cazenave, A., Dieng, H.-B., Meyssignac, B., von Schuckmann, K., Decharme, B., & Berthier, E. (2014). The rate of sea-level rise. Nature Climate Change, 4(5), 358–361.

    Article  Google Scholar 

  • Cazenave, A., Dominh, K., Guinehut, S., Berthier, E., Llovel, W., Ramillien, G., et al. (2009). Sea level budget over 2003–2008: A reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Global and Planetary Change, 65(1), 83–88.

    Article  Google Scholar 

  • Cazenave, A., & Llovel, W. (2010). Contemporary sea level rise. Annual review of Marine Science, 2, 145–173.

    Article  Google Scholar 

  • Cazenave, A., & Remy, F. (2011). Sea level and climate: Measurements and causes of changes. Wiley Interdisciplinary Reviews-Climate Change, 2(5), 647–662. https://doi.org/10.1002/wcc.139.

    Article  Google Scholar 

  • Changming, L., Jingjie, Y., & Kendy, E. (2001). Groundwater exploitation and its impact on the environment in the North China Plain. Water International, 26(2), 265–272.

    Article  Google Scholar 

  • Chao, B. F., Wu, Y., & Li, Y. (2008). Impact of artificial reservoir water impoundment on global sea level. Science, 320(5873), 212–214.

    Article  Google Scholar 

  • Chen, J., Wilson, C., Blankenship, D., & Tapley, B. (2009). Accelerated Antarctic ice loss from satellite gravity measurements. Nature Geoscience, 2(12), 859–862.

    Article  Google Scholar 

  • Chen, J., Wilson, C., & Tapley, B. (2006). Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science, 313(5795), 1958–1960.

    Article  Google Scholar 

  • Chen, J. L., Wilson, C. R., & Tapley, B. D. (2010). The 2009 exceptional Amazon flood and interannual terrestrial water storage change observed by GRACE. Water Resources Research, 46(12).

    Google Scholar 

  • Chen, J., Wilson, C., & Tapley, B. (2013). Contribution of ice sheet and mountain glacier melt to recent sea level rise. Nature Geoscience, 6(7), 549–552.

    Article  Google Scholar 

  • Chen, J., Wilson, C., Tapley, D., Blankenship, D., & Ivins, E. (2007). Patagonia icefield melting observed by gravity recovery and climate experiment (GRACE). Geophysical Research Letters, 34(22).

    Google Scholar 

  • Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., et al. (2013a), Sea level change. In Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press.

    Google Scholar 

  • Church, J. A., & White, N. J. (2011). Sea-level rise from the late 19th to the early 21st century. Surveys in Geophysics, 32(4–5), 585–602.

    Article  Google Scholar 

  • Church, J. A., White, N. J., Konikow, L. F., Domingues, C. M., Cogley, J. G., Rignot, E., et al. (2013b). Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008 (Vol. 38, L18601, 2011). Geophysical Research Letters, 40(15), 4066–4066. https://doi.org/10.1002/grl.50752.

    Article  Google Scholar 

  • Clark, M. K., & Royden, L. H. (2000). Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28(8), 703–706.

    Article  Google Scholar 

  • Cogley, G. (2012). GLACIOLOGY No ice lost in the Karakoram. Nature Geoscience, 5(5), 305–306. https://doi.org/10.1038/ngeo1456.

    Article  Google Scholar 

  • Crowley, J. W., Mitrovica, J. X., Bailey, R. C., Tamisiea, M. E., & Davis, J. L. (2006). Land water storage within the Congo Basin inferred from GRACE satellite gravity data. Geophysical Research Letters, 33(19).

    Google Scholar 

  • De Linage, C., Rivera, L., Hinderer, J., Boy, J. P., Rogister, Y., Lambotte, S., et al. (2009). Separation of coseismic and postseismic gravity changes for the 2004 Sumatra–Andaman earthquake from 4.6 yr of GRACE observations and modelling of the coseismic change by normal-modes summation. Geophysical Journal International, 176(3), 695–714.

    Article  Google Scholar 

  • Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M.-J., van Angelen, J. H., & van den Broeke, M. R. (2014). An improved mass budget for the Greenland ice sheet. Geophysical Reseach Letters, 41, 866–872. https://doi.org/10.1002/2013GL059010.

    Article  Google Scholar 

  • England, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai, W., et al. (2014). Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change, 4(3), 222–227.

    Article  Google Scholar 

  • Famiglietti, J., Lo, M., Ho, S., Bethune, J., Anderson, K., Syed, T., et al. (2011), Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophysical Research Letters, 38(3).

    Article  Google Scholar 

  • Farinotti, D., Longuevergne, L., Moholdt, G., Duethmann, D., Mölg, T., Bolch, T., et al. (2015) A. Substantial glacier mass loss in the tien shan over the past 50 years. National Geoscience. https://doi.org/10.1038/ngeo2513.

    Article  Google Scholar 

  • Feng, W., Zhong, M., Lemoine, J. M., Biancale, R., Hsu, H. T., & Xia, J. (2013). Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resources Research, 49(4), 2110–2118.

    Article  Google Scholar 

  • Fielding, E. J. (1996). Tibet uplift and erosion. Tectonophysics, 260(1–3), 55–84. https://doi.org/10.1016/0040-1951(96)00076-5.

    Article  Google Scholar 

  • Fu, G., Gao, S., Freymueller, J. T., Zhang, G., Zhu, Y., & Yang, G. (2014). Bouguer gravity anomaly and isostasy at western Sichuan Basin revealed by new gravity surveys. Journal of Geophysical Research: Solid Earth, 119, 3925–3938. https://doi.org/10.1002/2014JB011033.

    Article  Google Scholar 

  • Gardelle, J., Berthier, E., & Arnaud, Y. (2012). Slight mass gain of Karakoram glaciers in the early twenty-first century. Nature Geoscience, 5(5), 322–325. https://doi.org/10.1038/ngeo1450.

    Article  Google Scholar 

  • Gardner, A. S., et al. (2013). A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340(6134), 852–857.

    Article  Google Scholar 

  • Gleeson, T., Wada, Y., Bierkens, M. F., & van Beek, L. P. (2012). Water balance of global aquifers revealed by groundwater footprint. Nature, 488(7410), 197–200.

    Article  Google Scholar 

  • Gregory, J. M., & Lowe, J. A. (2000). Predictions of global and regional sea-level rise using AOGCMs with and without flux adjustment. Geophysical Reseach Letters, 27, 3069–3072.

    Article  Google Scholar 

  • Han, S. C., Sauber, J., & Luthcke, S. (2010). Regional gravity decrease after the 2010 Maule (Chile) earthquake indicates large-scale mass redistribution. Geophysical Research Letters, 37(23).

    Google Scholar 

  • Han, S. C., Sauber, J., & Pollitz, F. (2015). Coseismic compression/dilatation and viscoelastic uplift/subsidence following the 2012 Indian Ocean earthquakes quantified from satellite gravity observations. Geophysical Research Letters, 42(10), 3764–3772.

    Article  Google Scholar 

  • Han, S. C., Sauber, J., & Pollitz, F. (2016). Postseismic gravity change after the 2006–2007 great earthquake doublet and constraints on the asthenosphere structure in the central Kuril Islands. Geophysical Research Letters.

    Google Scholar 

  • Han, S. C., Shum, C. K., Bevis, M., Ji, C., & Kuo, C. Y. (2006). Crustal dilatation observed by GRACE after the 2004 Sumatra-Andaman earthquake. Science, 313(5787), 658–662.

    Article  Google Scholar 

  • Hanna, E., Navarro, F. J., Pattyn, F., Domingues, C. M., Fettweis, X., Ivins, E. R., et al. (2013). Ice-sheet mass balance and climate change. Nature, 498(7452), 51–59.

    Article  Google Scholar 

  • Hay, C. C., Morrow, E., Kopp, R. E., & Mitrovica, J. X. (2015). Probabilistic reanalysis of twentieth-century sea-level rise. Nature, 517, 481–484.

    Article  Google Scholar 

  • Heki, K., & Matsuo, K. (2010). Coseismic gravity changes of the 2010 earthquake in central Chile from satellite gravimetry. Geophysical Research Letters, 37(24).

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). (2014). Climate change 2013: The physical science basis. Cambridge, UK, and New York: Cambridge University Press.

    Google Scholar 

  • Jacob, T., Wahr, J., Pfeffer, W. T., & Swenson, S. (2012). Recent contributions of glaciers and ice caps to sea level rise. Nature, 482(7386), 514–518. https://doi.org/10.1038/nature10847.

    Article  Google Scholar 

  • Joodaki, G., Wahr, J., & Swenson, S. (2014). Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations. Water Resources Research, 50(3), 2679–2692.

    Article  Google Scholar 

  • Kääb, A., Berthier, E., Nuth, C., Gardelle, J., & Arnaud, Y. (2012). Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488(7412), 495–498.

    Article  Google Scholar 

  • Kang, S., Xu, Y., You, Q., Flügel, W.-A., Pepin, N., & Yao, T. (2010). Review of climate and cryospheric change in the Tibetan Plateau. Environmental Research Letters, 5(1), 015101.

    Article  Google Scholar 

  • Kendy, E., Gérard-Marchant, P., Walter, M. T., Zhang, Y., Liu, C., & Steenhuis, T. S. (2003). A soil-water-balance approach to quantify groundwater recharge from irrigated cropland in the North China Plain. Hydrological Processes, 17(10), 2011–2031.

    Article  Google Scholar 

  • Konikow, L. F. (2011), Contribution of global groundwater depletion since 1900 to sea-level rise. Geophysical Research Letters, 38(17).

    Article  Google Scholar 

  • Leuliette, E. W., & Miller, L. (2009). Closing the sea level rise budget with altimetry, Argo, and GRACE. Geophysical Research Letters, 36(4).

    Google Scholar 

  • Leuliette, E. W., & Willis, J. K. (2011). Balancing the sea level budget. Oceanography, 24.

    Google Scholar 

  • Liang, S., Gan, W., Shen, C., Xiao, G., Liu, J., Chen, W., et al. (2013). Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements. Journal of Geophysical Research: Solid Earth, 118(10), 2013JB010503. https://doi.org/10.1002/2013jb010503.

    Google Scholar 

  • Liu, Q. Y., van der Hilst, R. D., Li, Y., Yao, H. J., Chen, J. H., Guo, B., et al. (2014). Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults. Nature Geoscience, 7(5), 361–365.

    Article  Google Scholar 

  • Llovel, W., Willis, J. K., Landerer, F. W., & Fukumori, I. (2014). Deep-ocean contribution to sea level and energy budget not detectable over the past decade. Nature Climate Change, 4(11), 1031–1035.

    Article  Google Scholar 

  • Luthcke, S. B., Arendt, A. A., Rowlands, D. D., McCarthy, J. J., & Larsen, C. F. (2008). Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions. Journal of Glaciology, 54(188), 767–777.

    Article  Google Scholar 

  • Luthcke, S. B., Sabaka, T., Loomis, B., Arendt, A., McCarthy, J., & Camp, J. (2013). Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. Journal of Glaciology, 59(216), 613–631.

    Article  Google Scholar 

  • Luthcke, S. B., Zwally, H., Abdalati, W., Rowlands, D., Ray, R., Nerem, R., et al. (2006). Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science, 314(5803), 1286–1289.

    Article  Google Scholar 

  • Ma, R., Duan, H., Hu, C., Feng, X., Li, A., Ju, W., et al. (2010). A half-century of changes in China’s lakes: Global warming or human influence? Geophysical Research Letters, 37(24).

    Article  Google Scholar 

  • Matsuo, K., Chao, B. F., Otsubo, T., & Heki, K. (2013). Accelerated ice mass depletion revealed by low-degree gravity field from satellite laser ranging: Greenland, 1991–2011. Geophysical Research Letters, 40(17), 4662–4667.

    Article  Google Scholar 

  • Matsuo, K., & Heki, K. (2010). Time-variable ice loss in Asian high mountains from satellite gravimetry. Earth and Planetary Science Letters, 290(1–2), 30–36. https://doi.org/10.1016/j.epsl.2009.11.053.

    Article  Google Scholar 

  • Matsuo, K., & Heki, K. (2011). Coseismic gravity changes of the 2011 Tohoku-Oki earthquake from satellite gravimetry. Geophysical Research Letters, 38(7).

    Google Scholar 

  • Marotta, A. M., Fernàndez, M., & Sabadini, R. (1998). Mantle unrooting in collisional settings. Tectonophysics, 296, 31–46.

    Google Scholar 

  • Marotta, A. M., Fernàndez, M., & Sabadini, R. (1999). The onset of extension during lithospheric shortening: A two-dimensional thermomechanical model for lithospheric unrooting. Geophysical Journal International, 139, 98–114.

    Google Scholar 

  • Meier, M. F., Dyurgerov, M. B., Rick, U. K., O’Neel, S., Pfeffer, W. T., Anderson, R. S., et al. (2007). Glaciers dominate eustatic sea-level rise in the 21st century. Science, 317(5841), 1064–1067.

    Article  Google Scholar 

  • Molnar, P., England, P., & Martinod, J. (1993). Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Reviews of Geophysics, 31(4), 357–396.

    Article  Google Scholar 

  • Moucha, R., Forte, A. M., Mitrovica, J. X., Rowley, D. B., Quere, S., Simmons, N. A., et al. (2008). Dynamic topography and long-term sea-level variations: There is no such thing as a stable continental platform. Earth and Planetary Science Letters, 271, 101–108.

    Article  Google Scholar 

  • Neckel, N., Kropáček, J., Bolch, T. & Hochschild, V. (2014). Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environmental Research Letters, 9, 014009.

    Google Scholar 

  • Peltier, W. R. (2001). Global glacial isostatic adjustment and modern instrumental records of relative sea level history. In B. C. Douglas, M. S. Kearney, & S. P. Leatherman (Eds.), Sea level rise: History and consequences (Vol. 75, pp. 65–95). San Diego, CA: Academic Press.

    Google Scholar 

  • Peltier, W. R. (2004). Global glacial isostasy and the surface of the Ice-Age Earth: the ICE-5G(VM2) model and GRACE. Annual Review of Earth and Planetary Sciences, 32, 111–149.

    Article  Google Scholar 

  • Peltier, W. R. (2009). Closure of the budget of global sea level rise over the GRACE era: The importance and magnitudes of the required corrections for global glacial isostatic adjustment. Quaternary Science Reviews, 28, 1658–1674. https://doi.org/10.1016/j.quascirev.2009.04.004.

    Article  Google Scholar 

  • Purkey, S. G., & Johnson, G. C. (2010). Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. Journal of Climate, 23(23), 6336–6351.

    Article  Google Scholar 

  • Ramillien, G., Lombard, A., Cazenave, A., Ivins, E. R., Llubes, M., Remy, F., et al. (2006). Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE. Global and Planetary Change, 53(3), 198–208. https://doi.org/10.1016/j.gloplacha.2006.06.003.

    Article  Google Scholar 

  • Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A., & Lenaerts, J. (2011). Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters, 38. https://doi.org/10.1029/2011gl046583.

    Article  Google Scholar 

  • Rodell, M., et al. (2004). The global land data assimilation system. Bulletin of the American Meteorological Society, 85(3), 381–. https://doi.org/10.1175/bams-85-3-381.

    Article  Google Scholar 

  • Rodell, M., Velicogna, I., & Famiglietti, J. S. (2009). Satellite-based estimates of groundwater depletion in India. Nature, 460(7258), 999–U980. https://doi.org/10.1038/nature08238.

    Article  Google Scholar 

  • Royden, L. H., Burchfiel, B. C., King, R. W., Wang, E., Chen, Z., Shen, F., et al. (1997). Surface deformation and lower crustal flow in eastern Tibet. Science, 276(5313), 788–790.

    Article  Google Scholar 

  • Royden, L. H., Burchfiel, B. C., & van der Hilst, R. D. (2008). The geological evolution of the Tibetan Plateau. Science, 321(5892), 1054–1058.

    Google Scholar 

  • Shen, Z.-K., Sun, J., Zhang, P., Wan, Y., Wang, M., Bürgmann, R., et al. (2009). Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake. Nature Geoscience, 2(10), 718–724.

    Article  Google Scholar 

  • Shepherd, A., Ivins, E. R., Geruo, A., Barletta, V. R., Bentley, M. J., Bettadpur, S., et al. (2012). A reconciled estimate of ice-sheet mass balance. Science, 338(6111), 1183–1189.

    Article  Google Scholar 

  • Shin, Y. H., Shum, C. K., Braitenberg, C., Lee, S. M., Xu, H., Choi, K. S., et al. (2009). Three-dimensional fold structure of the Tibetan Moho from GRACE gravity data. Geophysical Research Letters, 36(1).

    Google Scholar 

  • Shin, Y. H., et al. (2015). Moho topography, ranges and folds of Tibet by analysis of global gravity models and GOCE data. Scientific reports, 5,.

    Google Scholar 

  • Steffen, K., Thomas, R. H., Rignot, E., Cogley, J. G., Dyurgerov, M. B., Raper, S. C., et al. (2010). Cryospheric contributions to sea-level rise and variability. In Understanding sea-level rise and variability (pp. 177–225).

    Chapter  Google Scholar 

  • Sun, W. K., Wang, Q., Li, H., Wang, Y., Okubo, S. H., Shao, D. S., et al. (2009). Gravity and GPS measurements reveal mass loss beneath the Tibetan Plateau: Geodetic evidence of increasing crustal thickness. Geophysical Research Letters, 36, https://doi.org/10.1029/2008gl036512.

    Article  Google Scholar 

  • Swenson, S., & Wahr, J. (2007). Multi-sensor analysis of water storage variations of the Caspian Sea. Geophysical Research Letters, 34(16).

    Google Scholar 

  • Syed, T. H., Famiglietti, J. S., Rodell, M., Chen, J., & Wilson, C. R. (2008). Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resources Research, 44(2).

    Google Scholar 

  • Syvitski, J. P. M., & Kettner, A. (2011). Sediment flux and the Anthropocene. Philosophical Transactions of the Royal Society London A, 369, 957–975.

    Article  Google Scholar 

  • Tamisiea, M. E. (2011). Ongoing glacial isostatic contributions to observations of sea level change. Geophysical Journal International, 186(3), 1036–1044.

    Article  Google Scholar 

  • Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F., & Watkins, M. M. (2004). GRACE measurements of mass variability in the Earth system. Science, 305(5683), 503–505.

    Article  Google Scholar 

  • Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., Van Beek, R., Wada, Y., et al. (2013a). Ground water and climate change. Nature Climate Change, 3(4), 322–329.

    Article  Google Scholar 

  • Taylor, R. G., Todd, M. C., Kongola, L., Maurice, L., Nahozya, E., Sanga, H., et al. (2013b). Evidence of the dependence of groundwater resources on extreme rainfall in East Africa. Nature Climate Change, 3(4), 374–378. https://doi.org/10.1038/nclimate1731.

    Article  Google Scholar 

  • Tiwari, V. M., Wahr, J., & Swenson, S. (2009). Dwindling groundwater resources in northern India, from satellite gravity observations. Geophysical Research Letters, 36. https://doi.org/10.1029/2009gl039401.

  • United Nations World Water Assessment Programme. (2015). The UN world water development report 2015: Water for a sustainable world. Paris: UNESCO.

    Google Scholar 

  • Velicogna, I. (2009). Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophysical Research Letters, 36. https://doi.org/10.1029/2009gl040222.

  • Velicogna, I., & Wahr, J. (2006a). Acceleration of Greenland ice mass loss in spring 2004. Nature, 443(7109), 329–331.

    Article  Google Scholar 

  • Velicogna, I., & Wahr, J. (2006b). Measurements of time-variable gravity show mass loss in Antarctica. Science, 311(5768), 1754–1756.

    Article  Google Scholar 

  • Voss, K. A., Famiglietti, J. S., Lo, M., Linage, C., Rodell, M., & Swenson, S. C. (2013). Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resources Research, 49(2), 904–914.

    Article  Google Scholar 

  • Wada, Y., Beek, L. P. H., & Bierkens, M. F. P. (2012a). Nonsustainable groundwater sustaining irrigation: A global assessment. Water Resources Research, 48(6), 335–344.

    Google Scholar 

  • Wada, Y., Beek, L. P., Sperna Weiland, F. C., Chao, B. F., Wu, Y. H., & Bierkens, M. F. (2012b). Past and future contribution of global groundwater depletion to sea-level rise. Geophysical Research Letters, 39(9).

    Google Scholar 

  • Wada, Y., van Beek, L. P., van Kempen, C. M., Reckman, J. W., Vasak, S., & Bierkens, M. F. (2010). Global depletion of groundwater resources. Geophysical Research Letters, 37(20).

    Google Scholar 

  • Wang, B., Bao, Q., Hoskins, B., Wu, G., & Liu, Y. (2008a). Tibetan plateau warming and precipitation changes in East Asia. Geophysical Research Letters, 35(14). https://doi.org/10.1029/2008gl034330.

  • Wang, X., de Linage, C., Famiglietti, J., & Zender, C. S. (2011a). Gravity Recovery and Climate Experiment (GRACE) detection of water storage changes in the Three Gorges Reservoir of China and comparison with in situ measurements. Water Resources Research, 47(12).

    Google Scholar 

  • Wang, C. Y., Han, W. B., Wu, J. P., Lou, H., & Chan, W. W. (2007). Crustal structure beneath the eastern margin of the Tibetan Plateau and its tectonic implications. Journal of Geophysical Research: Solid Earth (1978–2012), 112(B7).

    Google Scholar 

  • Wang, E., Kirby, E., Furlong, K. P., Van Soest, M., Xu, G., Shi, X., et al. (2012a). Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nature Geoscience, 5(9), 640–645.

    Article  Google Scholar 

  • Wang, C. -Y., Lou, H., Lü, Z., Wu, J., Chang, L., Dai, S., et al. (2008b). S-wave crustal and upper mantle’s velocity structure in the eastern Tibetan Plateau—Deep environment of lower crustal flow. Science in China Series D: Earth Sciences, 51(2), 263–274.

    Article  Google Scholar 

  • Wang, Q., Qiao, X., Lan, Q., Jeffrey, F., Yang, S., Xu, C., et al. (2011b). Rupture of deep faults in the 2008 Wenchuan earthquake and uplift of the Longmen Shan. Nature Geoscience, 4(9), 634–640.

    Article  Google Scholar 

  • Wang, M., Shen, Z., Niu, Z., Zhang, Z., Sun, H., Gan, W., et al. (2003). Contemporary crustal deformation of the Chinese continent and tectonic block model. Science in China, Series D: Earth Sciences, 46(2), 25–40.

    Google Scholar 

  • Wang, L., Shum, C. K., Simons, F. J., Tapley, B., & Dai, C. (2012b). Coseismic and postseismic deformation of the 2011 Tohoku–Oki earthquake constrained by GRACE gravimetry. Geophysical Research Letters, 39(7).

    Google Scholar 

  • Wang, Q., Zhang, P. -Z., Freymueller, J. T., Bilham, R., Larson, K. M., Lai, X. A. et al. (2001). Present-day crustal deformation in China constrained by global positioning system measurements. Science, 294(5542), 574–577.

    Article  Google Scholar 

  • Willis, J., Chambers, D. P., & Nerem, R. S. (2008). Assessing the globally-averaged sea level budget on seasonal to interannual timescales. Journal Geophysical Research, 113, C06015. https://doi.org/10.1029/2007JC004517.

    Article  Google Scholar 

  • Wouters, B., Chambers, D., & Schrama, E. J. O. (2008). GRACE observes small-scale mass loss in Greenland. Geophysical Research Letters, 35(20). https://doi.org/10.1029/2008gl034816.

  • Xinhua Net. (2015). In Zheng L. (Ed.), The three Gorge is in a new round of experimentally increasing its water level to 175 m (in Chinese). http://www.china.com.cn/newphoto/news/2015-10/08/content_36763591.htm.

  • Xu, L., Rondenay, S., & van der Hilst, R. D. (2007). Structure of the crust beneath the southeastern Tibetan Plateau from teleseismic receiver functions. Physics of the Earth and Planetary Interiors, 165(3), 176–193.

    Article  Google Scholar 

  • Yao, T., et al. (2012). Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2(9), 663–667. https://doi.org/10.1038/nclimate1580.

    Article  Google Scholar 

  • Yi, S., & Sun, W. (2014). Evaluation of glacier changes in high-mountain Asia based on 10 year GRACE RL05 models. Journal of Geophysical Research: Solid Earth, 119(3), 2504–2517.

    Google Scholar 

  • Yi, S., Sun, W., Heki, K., & Qian, A. (2015). An increase in the rate of global mean sea level rise since 2010. Geophysical Research Letters.

    Google Scholar 

  • Zhang, P.-Z. (2013). A review on active tectonics and deep crustal processes of the Western Sichuan region, eastern margin of the Tibetan Plateau. Tectonophysics, 584, 7–22. https://doi.org/10.1016/j.tecto.2012.02.021.

    Article  Google Scholar 

  • Zhang, P.-Z., Shen, Z., Wang, M., Gan, W., Bürgmann, R., Molnar, P., et al. (2004). Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32(9), 809–812.

    Article  Google Scholar 

  • Zhang, G., Yao, T., Xie, H., Kang, S., & Lei, Y. (2013). Increased mass over the Tibetan Plateau: From lakes or glaciers? Geophysical Research Letters, 40(10), 2125–2130. https://doi.org/10.1002/grl.50462.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Yi .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yi, S. (2019). Introduction. In: Application of Satellite Gravimetry to Mass Transports on a Global Scale and the Tibetan Plateau. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-7353-4_1

Download citation

Publish with us

Policies and ethics