Skip to main content

DNA Damage Response in Quiescent Hematopoietic Stem Cells and Leukemia Stem Cells

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1143))

Abstract

In humans, hematopoietic stem cells (HSCs) adopt unique responsive pathways counteracting with the DNA-damaging assaults to weigh the balance between the maintenance of normal stem cell poor for whole-life blood regeneration and the transformation to leukemia stem cells (LSCs) for leukemia initiation. LSCs also take actions of combating with the attack launched by externally therapeutic drugs that can kill most leukemic cells, to avoid extermination and promote disease relapse. Therefore, the collection of knowledge about all these underlined mechanisms would present a preponderance for later studies. In this chapter, the universal DNA damage response (DDR) mechanisms were firstly introduced, and then DDR of HSCs were presented focusing on the DNA double-strand breaks in the quiescent state of HSCs, which poses a big advantage in promoting its transformation into preleukemic HSCs. Lastly, the DDR of LSCs were summarized based on the major outcomes triggered by different pathways in specific leukemia, upon which some aspects for future investigations were envisioned under our currently limited scope of knowledge.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arnold CR, Abdelmoez A, Thurner G, Debbage P, Lukas P, Skvortsov S, Skvortsova II (2014) Rac1 as a multifunctional therapeutic target to prevent and combat cancer metastasis. Oncoscience 1(8):513–521

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bao SD, Wu QL, McLendon RE, Hao YL, Shi Q, Hjelmeland AB et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760

    Article  CAS  PubMed  Google Scholar 

  3. Barnes DE, Lindahl T (2004) Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet 49(38):445–476. https://doi.org/10.1146/annurev.genet.38.072902.092448

    Article  CAS  Google Scholar 

  4. Barnes DJ, Melo JV (2006) Primitive, quiescent and difficult to kill: the role of non-proliferating stem cells in chronic myeloid leukemia. Cell Cycle 5(24):2862–2866. https://doi.org/10.4161/cc.5.24.3573

    Article  CAS  PubMed  Google Scholar 

  5. Barnes DJ, Palaiologou D, Panousopoulou E, Schultheis B, Yong ASM, Wong A et al (2005) Bcr-Abl expression levels determine the rate of development of resistance to imatinib mesylate in chronic myeloid leukemia. Cancer Res 65(19):8912–8919

    Article  CAS  PubMed  Google Scholar 

  6. Beerman I, Seita J, Inlay MA, Weissman IL, Rossi DJ (2014) Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle. Cell Stem Cell 15(1):37–50. https://doi.org/10.1016/j.stem.2014.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bernstein KA, Rothstein R (2009) At loose ends: resecting a double-strand break. Cell 137(5):807–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Biechonski S, Olender L, Zipin-Roitman A, Yassin M, Aqaqe N, Marcu-Malina V et al (2018) Attenuated DNA damage responses and increased apoptosis characterize human hematopoietic stem cells exposed to irradiation. Sci Rep 8(1):6071. https://doi.org/10.1038/s41598-018-24440-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Biechonski S, Yassin M, Milyavsky M (2017) DNA-damage response in hematopoietic stem cells: an evolutionary trade-off between blood regeneration and leukemia suppression. Carcinogenesis 38(4):367–377

    Article  CAS  PubMed  Google Scholar 

  10. Blanpain C, Mohrin M, Sotiropoulou PA, Passegué E (2011) DNA-damage response in tissue-specific and cancer stem cells. Cell Stem Cell 8(1):16–29. https://doi.org/10.1016/j.stem.2010.12.012

    Article  CAS  PubMed  Google Scholar 

  11. Bohlander SK, Kakadia PM (2015) DNA repair and chromosomal translocations. Recent Results Cancer Res 200:1–37

    Article  CAS  PubMed  Google Scholar 

  12. Boiteux S, Guillet M (2004) Abasic sites in DNA: repair and biological consequences in Saccharomyces cerevisiae. DNA Repair (Amst) 3(1):1–12. https://doi.org/10.1016/j.dnarep.2003.10.002

    Article  CAS  Google Scholar 

  13. Brown JS, O’Carrigan B, Jackson SP, Yap TA (2017) Targeting DNA repair in cancer: beyond PARP inhibitors. Cancer Discov 7(1):20–37. https://doi.org/10.1158/2159-8290.CD-16-0860

    Article  CAS  PubMed  Google Scholar 

  14. Bruns I, Czibere A, Fischer JC, Roels F, Cadeddu RP, Buest S et al (2009) The hematopoietic stem cell in chronic phase CML is characterized by a transcriptional profile resembling normal myeloid progenitor cells and reflecting loss of quiescence. Leukemia 23(5):892–899. https://doi.org/10.1038/leu.2008.392

    Article  CAS  PubMed  Google Scholar 

  15. Bryant HE, Petermann E, Schultz N, Jemth AS, Loseva O, Issaeva N et al (2009) PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO J 28(17):2601–2615. https://doi.org/10.1038/emboj.2009.206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Burke BA, Carroll M (2010) BCR-ABL: a multi-faceted promoter of DNA mutation in chronic myelogeneous leukemia. Leukemia 24(6):1105–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cabezas-Wallscheid N, Eichwald V, de Graaf J, Lower M, Lehr HA, Kreft A et al (2013) Instruction of haematopoietic lineage choices, evolution of transcriptional landscapes and cancer stem cell hierarchies derived from an AML1-ETO mouse model. EMBO Mol Med 5(12):1804–1820. https://doi.org/10.1002/emmm.201302661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cabezas-Wallscheid N, Klimmeck D, Hansson J, Lipka DB, Reyes A, Wang Q et al (2014) Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis. Cell Stem Cell 15(4):507–522. https://doi.org/10.1016/j.stem.2014.07.005

    Article  CAS  PubMed  Google Scholar 

  19. Cadet J, Wagner JR (2013) DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb Perspect Biol 5(2). doi: https://doi.org/10.1101/cshperspect.a012559

    Article  PubMed  PubMed Central  Google Scholar 

  20. Caldecott KW (2008) Single-strand break repair and genetic disease. Nat Rev Genet 9(8):619–631. https://doi.org/10.1038/nrg2380

    Article  PubMed  Google Scholar 

  21. Caldecott KW (2014) DNA single-strand break repair. Exp Cell Res 329(1):2–8. https://doi.org/10.1016/j.yexcr.2014.08.027

    Article  CAS  PubMed  Google Scholar 

  22. Chang L, Graham PH, Hao J, Ni J, Bucci J, Cozzi PJ et al (2014) PI3K/Akt/mTOR pathway inhibitors enhance radiosensitivity in radioresistant prostate cancer cells through inducing apoptosis, reducing autophagy, suppressing NHEJ and HR repair pathways. Cell Death Dis 5:e1437. https://doi.org/10.1038/cddis.2014.415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cheung TH, Rando TA (2013) Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 14(6):329–340

    Article  CAS  PubMed  Google Scholar 

  24. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40(2):179–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL et al (2006) Cancer stem cells – perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66(19):9339–9344. https://doi.org/10.1158/0008-5472.can-06-3126

    Article  CAS  PubMed  Google Scholar 

  26. Cojoc M, Mäbert K, Muders MH, Dubrovska A (2015) A role for cancer stem cells in therapy resistance: cellular and molecular mechanisms. Semin Cancer Biol 31:16–27. https://doi.org/10.1016/j.semcancer.2014.06.004

    Article  CAS  PubMed  Google Scholar 

  27. Corces-Zimmerman MR, Hong WJ, Weissman IL, Medeiros BC, Majeti R (2014) Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci U S A 111(7):2548–2553. https://doi.org/10.1073/pnas.1324297111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cross NC, Daley GQ, Green AR, Hughes TP, Jamieson C, Manley P et al (2008) BCR-ABL1-positive CML and BCR-ABL1-negative chronic myeloproliferative disorders: some common and contrasting features. Leukemia 22(11):1975–1989. https://doi.org/10.1038/leu.2008.231

    Article  CAS  PubMed  Google Scholar 

  29. Curtin NJ (2012) DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer 12(12):801–817. https://doi.org/10.1038/nrc3399

    Article  CAS  PubMed  Google Scholar 

  30. Deans AJ, West SC (2011) DNA interstrand crosslink repair and cancer. Nat Rev Cancer 11(7):467–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Delia D, Mizutani S (2017) The DNA damage response pathway in normal hematopoiesis and malignancies. Int J Hematol 106(3):328–334

    Article  CAS  PubMed  Google Scholar 

  32. Economopoulou P, Pappa V, Papageorgiou S, Dervenoulas J, Economopoulos T (2011) DNA repair deficiency associated with hematological neoplasms. InTech

    Google Scholar 

  33. Elrick LJ, Jorgensen HG, Mountford JC, Holyoake TL (2005) Punish the parent not the progeny. Blood 105(5):1862–1866. https://doi.org/10.1182/blood-2004-08-3373

    Article  CAS  PubMed  Google Scholar 

  34. Estrov Z (2010) The leukemia stem cell. In: Nagarajan L (ed) Acute myelogenous leukemia: genetics, biology and therapy. Springer New York, New York, pp 1–17

    Google Scholar 

  35. Fortini P, Ferretti C, Dogliotti E (2013) The response to DNA damage during differentiation: pathways and consequences. Mutat Res-Fundam Mol Mech Mutagen 743:160–168

    Article  Google Scholar 

  36. Fu D, Calvo JA, Samson LD (2012) Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat Rev Cancer 12(2):104–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF et al (2014) Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 371(26):2477–2487. https://doi.org/10.1056/NEJMoa1409405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gonzalez-Herrero I, Rodriguez-Hernandez G, Luengas-Martinez A, Isidro-Hernandez M, Jimenez R, Garcia-Cenador MB, … Vicente-Duenas C (2018) The making of leukemia. Int J Mol Sci 19(5)

    Article  PubMed Central  Google Scholar 

  39. Guan YH, Gerhard B, Hogge DE (2003) Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML). Blood 101(8):3142–3149. https://doi.org/10.1182/blood-2002-10-3062

    Article  CAS  PubMed  Google Scholar 

  40. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  41. Harper JW, Elledge SJ (2007) The DNA damage response: ten years after. Mol Cell 28(5):739–745. https://doi.org/10.1016/j.molcel.2007.11.015

    Article  CAS  PubMed  Google Scholar 

  42. Helleday T, Lo J, van Gent DC, Engelward BP (2007) DNA double-strand break repair: from mechanistic understanding to cancer treatment. DNA Repair (Amst) 6(7):923–935. https://doi.org/10.1016/j.dnarep.2007.02.006

    Article  CAS  Google Scholar 

  43. Holyoake T, Jiang X, Eaves C, Eaves A (1999) Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood 94(6):2056–2064

    CAS  PubMed  Google Scholar 

  44. Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S et al (2007) Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol 25(11):1315–1321. https://doi.org/10.1038/nbt1350

    Article  CAS  PubMed  Google Scholar 

  45. Itkin T, Gur-Cohen S, Spencer JA, Schajnovitz A, Ramasamy SK, Kusumbe AP et al (2016) Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532(7599):323–328. https://doi.org/10.1038/nature17624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG et al (2014) Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371(26):2488–2498. https://doi.org/10.1056/NEJMoa1408617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jan M, Snyder TM, Corces-Zimmerman MR, Vyas P, Weissman IL, Quake SR, Majeti R (2012) Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci Transl Med 4(149):149ra118. https://doi.org/10.1126/scitranslmed.3004315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jeggo PA, Lobrich M (2015) How cancer cells hijack DNA double-strand break repair pathways to gain genomic instability. Biochem J 471(1):1–11. https://doi.org/10.1042/bj20150582

    Article  CAS  PubMed  Google Scholar 

  49. Jiang X, Saw KM, Eaves A, Eaves C (2007a) Instability of BCR-ABL gene in primary and cultured chronic myeloid leukemia stem cells. J Natl Cancer Inst 99(9):680–693. https://doi.org/10.1093/jnci/djk150

    Article  CAS  PubMed  Google Scholar 

  50. Jiang X, Zhao Y, Smith C, Gasparetto M, Turhan A, Eaves A, Eaves C (2007b) Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia 21(5):926–935. https://doi.org/10.1038/sj.leu.2404609

    Article  CAS  PubMed  Google Scholar 

  51. Jordan CT, Guzman ML, Noble M (2006) Cancer stem cells. N Engl J Med 355(12):1253–1261. https://doi.org/10.1056/NEJMra061808

    Article  CAS  PubMed  Google Scholar 

  52. Jorgensen HG, Holyoake TL (2007) Characterization of cancer stem cells in chronic myeloid leukaemia. Biochem Soc Trans 35(Pt 5):1347–1351. https://doi.org/10.1042/bst0351347

    Article  CAS  PubMed  Google Scholar 

  53. Josef J (2006) The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 7(5):335–346

    Google Scholar 

  54. Kathe SD, Shen GP, Wallace SS (2004) Single-stranded breaks in DNA but not oxidative DNA base damages block transcriptional elongation by RNA polymerase II in HeLa cell nuclear extracts. J Biol Chem 279(18):18511–18520. https://doi.org/10.1074/jbc.M313598200

    Article  CAS  PubMed  Google Scholar 

  55. Kelley MR, Kow YW, Wilson DM 3rd. (2003) Disparity between DNA base excision repair in yeast and mammals: translational implications. Cancer Res 63(3):549–554

    CAS  PubMed  Google Scholar 

  56. Kottemann MC, Smogorzewska A (2013) Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature 493(7432):356–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kraft D, Rall M, Volcic M, Metzler E, Groo A, Stahl A et al (2015) NF-kappaB-dependent DNA damage-signaling differentially regulates DNA double-strand break repair mechanisms in immature and mature human hematopoietic cells. Leukemia 29(7):1543–1554. https://doi.org/10.1038/leu.2015.28

    Article  CAS  PubMed  Google Scholar 

  58. Kreso A, Dick JE (2014) Evolution of the cancer stem cell model. Cell Stem Cell 14(3):275–291. https://doi.org/10.1016/j.stem.2014.02.006

    Article  CAS  PubMed  Google Scholar 

  59. Krokan HE, Bjoras M (2013) Base excision repair. Cold Spring Harb Perspect Biol 5(4):a012583. https://doi.org/10.1101/cshperspect.a012583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kunkel TA, Erie DA (2015) Eukaryotic mismatch repair in relation to DNA replication. Annu Rev Genet 49(49):291–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kuzminov A (2001) Single-strand interruptions in replicating chromosomes cause double-strand breaks. Proc Natl Acad Sci U S A 98(15):8241–8246. https://doi.org/10.1073/pnas.131009198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lambert MW (2016) Nuclear alpha spectrin: critical roles in DNA interstrand cross-link repair and genomic stability. Exp Biol Med 241(15):1621–1638

    Article  CAS  Google Scholar 

  63. Li GM (2008) Mechanisms and functions of DNA mismatch repair. Cell Res 18(1):85–98. https://doi.org/10.1038/cr.2007.115

    Article  CAS  PubMed  Google Scholar 

  64. Lieber MR (2010a) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79(79):181–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lieber MR (2010b) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. [Review] [164 refs]. Annu Rev Biochem 79(1):181–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Linn S (2003) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73(73):39–85

    Google Scholar 

  67. Talpaert-Borlé M (1987) Formation, detection and repair of AP sites. Mutat Res/Fundam Mol Mech Mutagen 181(1):45–56

    Article  Google Scholar 

  68. Mandal PK, Blanpain C, Rossi DJ (2011) DNA damage response in adult stem cells: pathways and consequences. Nat Rev Mol Cell Biol 12(3):198–202

    Article  CAS  PubMed  Google Scholar 

  69. McKerrell T, Park N, Moreno T, Grove CS, Ponstingl H, Stephens J et al (2015) Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis. Cell Rep 10(8):1239–1245. https://doi.org/10.1016/j.celrep.2015.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Milyavsky M, Gan OI, Trottier M, Komosa M, Tabach O, Notta F et al (2010) A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis-independent role for p53 in self-renewal. Cell Stem Cell 7(2):186–197. https://doi.org/10.1016/j.stem.2010.05.016

    Article  CAS  PubMed  Google Scholar 

  71. Mohrin M, Bourke E, Alexander D, Warr MR, Barry-Holson K, Le Beau MM et al (2010a) Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell 7(2):174–185. https://doi.org/10.1016/j.stem.2010.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Moore N, Lyle S (2011) Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance. J Oncol 2011:396076. https://doi.org/10.1155/2011/396076

    Article  CAS  PubMed  Google Scholar 

  73. Moroni F (2008) Poly(ADP-ribose)polymerase 1 (PARP-1) and postischemic brain damage. Curr Opin Pharmacol 8(1):96–103. https://doi.org/10.1016/j.coph.2007.10.005

    Article  CAS  PubMed  Google Scholar 

  74. Mouret S, Baudouin C, Charveron M, Favier A, Cadet J, Douki T (2006) Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proc Natl Acad Sci U S A 103(37):13765–13770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Niedernhofer LJ (2008) DNA repair is crucial for maintaining hematopoietic stem cell function. DNA Repair (Amst) 7(3):523–529

    Article  CAS  Google Scholar 

  76. Nilles N, Fahrenkrog B (2017) Taking a bad turn: compromised DNA damage response in leukemia. Cells 6(2). doi: Artn 11783390/Cells6020011

    Google Scholar 

  77. Noll DM, Mason TM, Miller PS (2006) Formation and repair of interstrand cross-links in DNA. Chem Rev 106(2):277–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Park H, Zhang K, Ren Y, Nadji S, Sinha N, Taylor JS, Kang C (2002) Crystal structure of a DNA decamer containing a cis-syn thymine dimer. Proc Natl Acad Sci U S A 99(25):15965–15970. https://doi.org/10.1073/pnas.242422699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Passegue E (2005) Hematopoietic stem cells, leukemic stem cells and chronic myelogenous leukemia. Cell Cycle 4(2):266–268

    Article  CAS  PubMed  Google Scholar 

  80. Pearl LH, Schierz AC, Ward SE, Al-Lazikani B, Pearl FMG (2015) Therapeutic opportunities within the DNA damage response. Nat Rev Cancer 15(3):166–180. https://doi.org/10.1038/nrc3891

    Article  CAS  PubMed  Google Scholar 

  81. Peitzsch C, Kurth I, Kunz-Schughart L, Baumann M, Dubrovska A (2013) Discovery of the cancer stem cell related determinants of radioresistance. Radiother Oncol 108(3):378–387. https://doi.org/10.1016/j.radonc.2013.06.003

    Article  PubMed  Google Scholar 

  82. Perrotti D, Jamieson C, Goldman J, Skorski T (2010) Chronic myeloid leukemia: mechanisms of blastic transformation. J Clin Invest 120(7):2254–2264. https://doi.org/10.1172/jci41246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Puri PL, Bhakta K, Wood LD, Costanzo A, Zhu JY, Wang JYJ (2002) A myogenic differentiation checkpoint activated by genotoxic stress. Nat Genet 32(4):585–593

    Article  CAS  PubMed  Google Scholar 

  84. Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL (2007a) Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447(7145):725-U715

    Article  Google Scholar 

  85. Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ, Weissman IL (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci USA 102(26):9194–9199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rossi DJ, Seita J, Czechowicz A, Bhattacharya D, Bryder D, Weissman IL (2007b) Hematopoietic stem cell quiescence attenuates DNA damage response and permits DNA damage accumulation during aging. Cell Cycle 6(19):2371–2376. https://doi.org/10.4161/cc.6.19.4759

    Article  CAS  PubMed  Google Scholar 

  87. Saito Y, Uchida N, Tanaka S, Suzuki N, Tomizawa-Murasawa M, Sone A et al (2010) Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nat Biotechnol 28(3):275-U133

    Article  Google Scholar 

  88. Sancar A (2003) Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem Rev 103(6):2203–2237. https://doi.org/10.1021/cr0204348

    Article  CAS  PubMed  Google Scholar 

  89. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85. https://doi.org/10.1146/annurev.biochem.73.011303.073723

    Article  CAS  PubMed  Google Scholar 

  90. Santos MA, Faryabi RB, Ergen AV, Day AM, Malhowski A, Canela A, … Nussenzweig A (2014) DNA-damage-induced differentiation of leukaemic cells as an anti-cancer barrier. Nature, 514(7520):107.−+

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Schneider L, Pellegatta S, Favaro R, Pisati F, Roncaglia P, Testa G et al (2013) DNA damage in mammalian neural stem cells leads to astrocytic differentiation mediated by BMP2 signaling through JAK-STAT. Stem Cell Rep 1(2):123–138

    Article  CAS  Google Scholar 

  92. Setlow RB, Carrier WL (1966) Pyrimidine dimers in ultraviolet-irradiated DNA’s. J Mol Biol 17(1):237–254

    Article  CAS  PubMed  Google Scholar 

  93. Sherman MH, Bassing CH, Teitell MA (2011) Regulation of cell differentiation by the DNA damage response. Trends Cell Biol 21(5):312–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V et al (2014) Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506(7488):328–333. https://doi.org/10.1038/nature13038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shuck SC, Short EA, Turchi JJ (2008) Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology. Cell Res 18(1):64–72. https://doi.org/10.1038/cr.2008.2

    Article  CAS  PubMed  Google Scholar 

  96. Skvortsov S, Debbage P, Lukas P, Skvortsova I (2015) Crosstalk between DNA repair and cancer stem cell (CSC) associated intracellular pathways. Semin Cancer Biol 31:36–42. https://doi.org/10.1016/j.semcancer.2014.06.002

    Article  CAS  PubMed  Google Scholar 

  97. Skvortsova I, Debbage P, Kumar V, Skvortsov S (2015) Radiation resistance: cancer stem cells (CSCs) and their enigmatic pro-survival signaling. Semin Cancer Biol 35:39–44. https://doi.org/10.1016/j.semcancer.2015.09.009

    Article  CAS  PubMed  Google Scholar 

  98. Sugimura K, Takebayashi S, Taguchi H, Takeda S, Okumura K (2008) PARP-1 ensures regulation of replication fork progression by homologous recombination on damaged DNA. J Cell Biol 183(7):1203–1212. https://doi.org/10.1083/jcb.200806068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Takeishi S, Nakayama KI (2016) To wake up cancer stem cells, or to let them sleep, that is the question. Cancer Sci 107(7):875–881. https://doi.org/10.1111/cas.12958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Takubo K, Ohmura M, Azuma M, Nagamatsu G, Yamada W, Arai F et al (2008) Stem cell defects in ATM-deficient undifferentiated spermatogonia through DNA damage-induced cell-cycle arrest. Cell Stem Cell 2(2):170–182. https://doi.org/10.1016/j.stem.2007.10.023

    Article  CAS  PubMed  Google Scholar 

  101. Taniguchi Ishikawa E, Gonzalez-Nieto D, Ghiaur G, Dunn SK, Ficker AM, Murali B et al (2012) Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells. Proc Natl Acad Sci U S A 109(23):9071–9076. https://doi.org/10.1073/pnas.1120358109

    Article  PubMed  PubMed Central  Google Scholar 

  102. Viale A, De Franco F, Orleth A, Cambiaghi V, Giuliani V, Bossi D et al (2009) Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature 457(7225):51-U52. https://doi.org/10.1038/nature07618

    Article  CAS  Google Scholar 

  103. Vitale I, Manic G, De Maria R, Kroemer G, Galluzzi L (2017) DNA damage in stem cells. Mol Cell 66(3):306–319. https://doi.org/10.1016/j.molcel.2017.04.006

    Article  CAS  PubMed  Google Scholar 

  104. Walter D, Lier A, Geiselhart A, Thalheimer FB, Huntscha S, Sobotta MC et al (2015) Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature 520(7548):549–552. https://doi.org/10.1038/nature14131

    Article  CAS  PubMed  Google Scholar 

  105. Wang J, Sun Q, Morita Y, Jiang H, Groß A, Lechel A et al (2012) A differentiation checkpoint limits hematopoietic stem cell self-renewal in response to DNA damage. Cell 148(5):1001–1014. https://doi.org/10.1016/j.cell.2012.01.040

    Article  CAS  PubMed  Google Scholar 

  106. Weeden CE, Asselin-Labat M-L (2018) Mechanisms of DNA damage repair in adult stem cells and implications for cancer formation. Biochim Biophys Acta (BBA) – Mol Basis Dis 1864(1):89–101. https://doi.org/10.1016/j.bbadis.2017.10.015

    Article  CAS  Google Scholar 

  107. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M et al (2008) Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135(6):1118–1129. https://doi.org/10.1016/j.cell.2008.10.048

    Article  CAS  PubMed  Google Scholar 

  108. Wilson JW, Pritchard DM, Hickman JA, Potten CS (1998) Radiation-induced p53 and p21WAF–1/CIP1 expression in the murine intestinal epithelium: apoptosis and cell cycle arrest. Am J Pathol 153(3):899–909. https://doi.org/10.1016/S0002-9440(10)65631-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Xie M, Lu C, Wang J, McLellan MD, Johnson KJ, Wendl MC et al (2014) Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 20(12):1472–1478. https://doi.org/10.1038/nm.3733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yoshida GJ, Saya H (2016) Therapeutic strategies targeting cancer stem cells. Cancer Sci 107(1):5–11. https://doi.org/10.1111/cas.12817

    Article  CAS  PubMed  Google Scholar 

  111. Zhang Y, Rowley JD (2006) Chromatin structural elements and chromosomal translocations in leukemia. DNA Repair (Amst) 5(9–10):1282–1297. https://doi.org/10.1016/j.dnarep.2006.05.020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministry of Science and Technology of China (Grant No. 2016YFE0107200) and the National Natural Science Foundation of China (Grant No. 81770151).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aibin Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, W., Wang, G., Liang, A. (2019). DNA Damage Response in Quiescent Hematopoietic Stem Cells and Leukemia Stem Cells. In: Zhang, H., Li, S. (eds) Leukemia Stem Cells in Hematologic Malignancies. Advances in Experimental Medicine and Biology, vol 1143. Springer, Singapore. https://doi.org/10.1007/978-981-13-7342-8_7

Download citation

Publish with us

Policies and ethics