Skip to main content

Metabolic Regulations in Hematopoietic Stem Cells

  • Chapter
  • First Online:
Leukemia Stem Cells in Hematologic Malignancies

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1143))

Abstract

One of the bottlenecks of the treatments for malignant hematopoietic disorders is the unavailability of sufficient amount of hematopoietic stem cells (HSCs). HSCs are considered to be originated from the aorta-gonad-mesonephros and gradually migrates into fetal liver and resides in a unique microenvironment/niche of bone marrow. Although many intrinsic and extrinsic factors (niche components) are reported to be involved in the origination, maturation, migration, and localization of HSCs at different developmental stages, the detailed molecular mechanisms still remain largely unknown. Previous studies have shown that intrinsic metabolic networks may be critical for the cell fate determinations of HSCs. For example, HSCs mainly utilize glycolysis as the main energy sources; oxidative phosphorylation is required for the homeostasis of HSCs; lipid or amino acid metabolisms may also sustain HSC stemness. Mechanistically, lots of regulatory pathways, such as MEIS1/HIF1A and PI3K/AKT/mTOR signaling, are found to fine-tune the different nutrient metabolisms and cell fate commitments of HSCs. However, more efforts are required for the optimization and establishment of precise metabolic techniques specific for the HSCs with relatively rare cell frequency and understanding of the basic metabolic properties and their underlying regulatory mechanisms of different nutrients (such as glucose) during the different developmental stages of HSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parmar K et al (2007) Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci U S A 104(13):5431–5436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Suda T, Takubo K, Semenza GL (2011) Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 9(4):298–310

    Article  CAS  PubMed  Google Scholar 

  3. Chow DC et al (2001) Modeling pO(2) distributions in the bone marrow hematopoietic compartment. II. Modified Kroghian models. Biophys J 81(2):685–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bryder D, Rossi DJ, Weissman IL (2006) Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol 169(2):338–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Blank U, Karlsson G, Karlsson S (2008) Signaling pathways governing stem-cell fate. Blood 111(2):492–503

    Article  CAS  PubMed  Google Scholar 

  6. Zhang CC, Lodish HF (2008) Cytokines regulating hematopoietic stem cell function. Curr Opin Hematol 15(4):307–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhao M, Li L (2015) Regulation of hematopoietic stem cells in the niche. Sci China Life Sci 58(12):1209–1215

    Article  CAS  PubMed  Google Scholar 

  8. Simsek T et al (2010) The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7(3):380–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kocabas F et al (2012) Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells. Blood 120(25):4963–4972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4(1–2):7–25

    CAS  PubMed  Google Scholar 

  11. Khan JA et al (2016) Fetal liver hematopoietic stem cell niches associate with portal vessels. Science 351(6269):176–180

    Article  CAS  PubMed  Google Scholar 

  12. Ding L et al (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481(7382):457–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou BO et al (2014) Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15(2):154–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mendez-Ferrer S et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bruns I et al (2014) Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med 20(11):1315–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao M et al (2014) Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med 20(11):1321–1326

    Article  CAS  PubMed  Google Scholar 

  17. Naveiras O et al (2009) Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460(7252):259–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eliasson P, Jonsson JI (2010) The hematopoietic stem cell niche: low in oxygen but a nice place to be. J Cell Physiol 222(1):17–22

    Article  CAS  PubMed  Google Scholar 

  19. Harrison JS et al (2002) Oxygen saturation in the bone marrow of healthy volunteers. Blood 99(1):394

    Article  CAS  PubMed  Google Scholar 

  20. Kubota Y, Takubo K, Suda T (2008) Bone marrow long label-retaining cells reside in the sinusoidal hypoxic niche. Biochem Biophys Res Commun 366(2):335–339

    Article  CAS  PubMed  Google Scholar 

  21. Lo Celso C, Wu JW, Lin CP (2009) In vivo imaging of hematopoietic stem cells and their microenvironment. J Biophoton 2(11):619–631

    Article  Google Scholar 

  22. Katahira J, Mizoguchi H (1987) Improvement of culture conditions for human megakaryocytic and pluripotent progenitor cells by low oxygen tension. Int J Cell Cloning 5(5):412–420

    Article  CAS  PubMed  Google Scholar 

  23. Koller MR et al (1992) Reduced oxygen tension increases hematopoiesis in long-term culture of human stem and progenitor cells from cord blood and bone marrow. Exp Hematol 20(2):264–270

    CAS  PubMed  Google Scholar 

  24. LaIuppa JA, Papoutsakis ET, Miller WM (1998) Oxygen tension alters the effects of cytokines on the megakaryocyte, erythrocyte, and granulocyte lineages. Exp Hematol 26(9):835–843

    CAS  PubMed  Google Scholar 

  25. Miharada K et al (2011) Cripto regulates hematopoietic stem cells as a hypoxic-niche-related factor through cell surface receptor GRP78. Cell Stem Cell 9(4):330–344

    Article  CAS  PubMed  Google Scholar 

  26. Spencer JA et al (2014) Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 508(7495):269–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Takubo K et al (2010) Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 7(3):391–402

    Article  CAS  PubMed  Google Scholar 

  28. Hochachka PW et al (1996) Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci U S A 93(18):9493–9498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Arai F et al (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118(2):149–161

    Article  CAS  PubMed  Google Scholar 

  30. Jang YY, Sharkis SJ (2007) A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110(8):3056–3063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Miyamoto K et al (2007) Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1(1):101–112

    Article  CAS  PubMed  Google Scholar 

  32. Ito K et al (2004) Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431(7011):997–1002

    Article  CAS  PubMed  Google Scholar 

  33. Spangrude GJ, Johnson GR (1990) Resting and activated subsets of mouse multipotent hematopoietic stem cells. Proc Natl Acad Sci U S A 87(19):7433–7437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Unwin RD et al (2006) Quantitative proteomics reveals posttranslational control as a regulatory factor in primary hematopoietic stem cells. Blood 107(12):4687–4694

    Article  CAS  PubMed  Google Scholar 

  35. Li Z et al (2005) VHL protein-interacting deubiquitinating enzyme 2 deubiquitinates and stabilizes HIF-1alpha. EMBO Rep 6(4):373–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jeong JH et al (2011) 4-O-methylascochlorin, methylated derivative of ascochlorin, stabilizes HIF-1alpha via AMPK activation. Biochem Biophys Res Commun 406(3):353–358

    Article  CAS  PubMed  Google Scholar 

  37. Ichihara S et al (2009) Inhibition of ischemia-induced angiogenesis by benzo[a]pyrene in a manner dependent on the aryl hydrocarbon receptor. Biochem Biophys Res Commun 381(1):44–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zheng J et al (2014) Profilin 1 is essential for retention and metabolism of mouse hematopoietic stem cells in bone marrow. Blood 123(7):992–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou F et al (2016) Tracing haematopoietic stem cell formation at single-cell resolution. Nature 533(7604):487–492

    Article  CAS  PubMed  Google Scholar 

  40. Kocabas F et al (2015) Hypoxic metabolism in human hematopoietic stem cells. Cell Biosci 5:39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Takubo K et al (2013) Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 12(1):49–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang YH et al (2014) Cell-state-specific metabolic dependency in hematopoiesis and leukemogenesis. Cell 158(6):1309–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Piccoli C et al (2007) The hypoxia-inducible factor is stabilized in circulating hematopoietic stem cells under normoxic conditions. FEBS Lett 581(16):3111–3119

    Article  CAS  PubMed  Google Scholar 

  44. Rehn M et al (2011) Hypoxic induction of vascular endothelial growth factor regulates murine hematopoietic stem cell function in the low-oxygenic niche. Blood 118(6):1534–1543

    Article  CAS  PubMed  Google Scholar 

  45. Vukovic M et al (2016) Adult hematopoietic stem cells lacking Hif-1alpha self-renew normally. Blood 127(23):2841–2846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dunwoodie SL (2009) The role of hypoxia in development of the Mammalian embryo. Dev Cell 17(6):755–773

    Article  CAS  PubMed  Google Scholar 

  47. Kaidi A, Williams AC, Paraskeva C (2007) Interaction between beta-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nat Cell Biol 9(2):210–217

    Article  CAS  PubMed  Google Scholar 

  48. Kim CG et al (2006) Profiling of differentially expressed genes in human stem cells by cDNA microarray. Mol Cell 21(3):343–355

    CAS  Google Scholar 

  49. Iyer NV et al (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 12(2):149–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mantel C, Messina-Graham S, Broxmeyer HE (2010) Upregulation of nascent mitochondrial biogenesis in mouse hematopoietic stem cells parallels upregulation of CD34 and loss of pluripotency: a potential strategy for reducing oxidative risk in stem cells. Cell Cycle 9(10):2008–2017

    Article  CAS  PubMed  Google Scholar 

  51. de Almeida MJ et al (2017) Dye-independent methods reveal elevated mitochondrial mass in hematopoietic stem cells. Cell Stem Cell 21(6):725–729 e4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Anso E et al (2017) The mitochondrial respiratory chain is essential for haematopoietic stem cell function. Nat Cell Biol 19(6):614–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rimmele P et al (2015) Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3. EMBO Rep 16(9):1164–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gan B et al (2010) Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 468(7324):701–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Laurenti E, Wilson A, Trumpp A (2009) Myc’s other life: stem cells and beyond. Curr Opin Cell Biol 21(6):844–854

    Article  CAS  PubMed  Google Scholar 

  56. Matsuoka S et al (2008) Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes Dev 22(8):986–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen Y et al (2011) Critical role for Gimap5 in the survival of mouse hematopoietic stem and progenitor cells. J Exp Med 208(5):923–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mardis ER et al (2009) Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 361(11):1058–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ward PS et al (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17(3):225–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ko M et al (2010) Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468(7325):839–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Park IK et al (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423(6937):302–305

    Article  CAS  PubMed  Google Scholar 

  62. Guo Z et al (2010) ATM activation by oxidative stress. Science 330(6003):517–521

    Article  CAS  PubMed  Google Scholar 

  63. Storz P (2011) Forkhead homeobox type O transcription factors in the responses to oxidative stress. Antioxid Redox Signal 14(4):593–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cao YA et al (2008) Heme oxygenase-1 deficiency leads to disrupted response to acute stress in stem cells and progenitors. Blood 112(12):4494–4502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27(41):5497–5510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Juntilla MM et al (2010) AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 115(20):4030–4038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee JY et al (2010) mTOR activation induces tumor suppressors that inhibit leukemogenesis and deplete hematopoietic stem cells after Pten deletion. Cell Stem Cell 7(5):593–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen C et al (2008) TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med 205(10):2397–2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gurumurthy S et al (2010) The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 468(7324):659–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tothova Z, Gilliland DG (2007) FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 1(2):140–152

    Article  CAS  PubMed  Google Scholar 

  71. Chen Z et al (2015) Wip1 deficiency impairs haematopoietic stem cell function via p53 and mTORC1 pathways. Nat Commun 6:6808

    Article  CAS  PubMed  Google Scholar 

  72. Zhang L et al (2015) Inhibition of wild-type p53-induced phosphatase 1 promotes liver regeneration in mice by direct activation of mammalian target of rapamycin. Hepatology 61(6):2030–2041

    Article  CAS  PubMed  Google Scholar 

  73. Yu WM et al (2013) Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell 12(1):62–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu X et al (2015) Maintenance of mouse hematopoietic stem cells ex vivo by reprogramming cellular metabolism. Blood 125(10):1562–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ito K et al (2012) A PML-PPAR-delta pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med 18(9):1350–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Signer RA et al (2014) Haematopoietic stem cells require a highly regulated protein synthesis rate. Nature 509(7498):49–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Taya Y et al (2016) Depleting dietary valine permits nonmyeloablative mouse hematopoietic stem cell transplantation. Science 354(6316):1152–1155

    Article  CAS  PubMed  Google Scholar 

  78. Liu X et al (2018) PPM1K regulates hematopoiesis and leukemogenesis through CDC20-mediated ubiquitination of MEIS1 and p21. Cell Rep 23(5):1461–1475

    Article  CAS  PubMed  Google Scholar 

  79. Cabezas-Wallscheid N et al (2017) Vitamin A-retinoic acid signaling regulates hematopoietic stem cell dormancy. Cell 169(5):807–823 e19

    Article  CAS  PubMed  Google Scholar 

  80. Shackelford DB, Shaw RJ (2009) The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 9(8):563–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fan Y, Dickman KG, Zong WX (2010) Akt and c-Myc differentially activate cellular metabolic programs and prime cells to bioenergetic inhibition. J Biol Chem 285(10):7324–7333

    Article  CAS  PubMed  Google Scholar 

  82. Shakya A et al (2009) Oct1 loss of function induces a coordinate metabolic shift that opposes tumorigenicity. Nat Cell Biol 11(3):320–327

    Article  CAS  PubMed  Google Scholar 

  83. Tothova Z et al (2007) FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128(2):325–339

    Article  CAS  PubMed  Google Scholar 

  84. Yilmaz OH et al (2006) Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441(7092):475–482

    Article  CAS  PubMed  Google Scholar 

  85. Reya T et al (2003) A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423(6938):409–414

    Article  CAS  PubMed  Google Scholar 

  86. Pike LS et al (2011) Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochim Biophys Acta 1807(6):726–734

    Article  CAS  PubMed  Google Scholar 

  87. Agathocleous M et al (2017) Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. Nature 549(7673):476–481

    Article  PubMed  PubMed Central  Google Scholar 

  88. Zhao Y et al (2011) Genetically encoded fluorescent sensors for intracellular NADH detection. Cell Metab 14(4):555–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junke Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, D. et al. (2019). Metabolic Regulations in Hematopoietic Stem Cells. In: Zhang, H., Li, S. (eds) Leukemia Stem Cells in Hematologic Malignancies. Advances in Experimental Medicine and Biology, vol 1143. Springer, Singapore. https://doi.org/10.1007/978-981-13-7342-8_3

Download citation

Publish with us

Policies and ethics