Skip to main content

Chitin Synthesis and Degradation in Fungi: Biology and Enzymes

  • Chapter
  • First Online:
Book cover Targeting Chitin-containing Organisms

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1142))

Abstract

Chitin is one of the most important carbohydrates of the fungal cell wall, and is synthesized by chitin synthases. Chitin can be degraded by chitinases, which are important virulence factors in pathogenic fungi. Knowledge about the biosynthesis and degradation of chitin, and the enzymes responsible, has accumulated in recent years. In this review, we analyze the amino acid sequences of chitin synthases from several typical fungi. These enzymes can be divided into seven groups. While the different chitin synthases from a single fungus share a low degree of similarity, the same type of chitin synthase from different fungi shows high similarity. The number of chitinase genes in fungi display wide variation, from a single gene in Schizosaccharomyces pombe, to 36 genes in Trichoderma virens. Chitinases from different fungi can be divided into four groups. The functions of chitin synthases and chitinases in several typical fungi are summarized, and the crystal structures of chitinases and chitinase modification are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology 150:2029–2035

    Article  CAS  Google Scholar 

  • Bulawa CE (1993) Genetics and molecular biology of chitin synthesis in fungi. Annu Rev Microbiol 47:505–534

    Article  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  CAS  Google Scholar 

  • Choquer M, Becker HF, Vidal-Cros A (2007) Identification of two group A chitinase genes in Botrytis cinerea which are differentially induced by exogenous chitin. Mycol Res 111:615–625

    Article  CAS  Google Scholar 

  • Escott GM, Hearn VM, Adams DJ (1998) Inducible chitinolytic system of Aspergillus fumigatus. Microbiology 144:1575–1581

    Article  CAS  Google Scholar 

  • Fajardo-Somera RA, Jöhnk B, Bayram Ö, Valerius O, Braus GH, Riquelme M (2015) Dissecting the function of the different chitin synthases in vegetative growth and sexual development in Neurospora crassa. Fungal Genet Biol 75:30–45

    Article  CAS  Google Scholar 

  • Fan Y, Fang W, Guo S, Pei X, Zhang Y, Xiao Y et al (2007) Increased insect virulence in Beauveria bassiana strains overexpressing an engineered chitinase. Appl Environ Microbiol 73:295–302

    Article  CAS  Google Scholar 

  • Fang W, Leng B, Xiao Y, Jin K, Ma J, Fan Y et al (2005) Cloning of Beauveria bassiana chitinase gene Bbchit1 and its application to improve fungal strain virulence. Appl Environ Microbiol 71:363–370

    Article  CAS  Google Scholar 

  • Fang W, Feng J, Fan Y, Zhang Y, Bidochka MJ, Leger RJ et al (2009) Expressing a fusion protein with protease and chitinase activities increases the virulence of the insect pathogen Beauveria bassiana. J Invertebr Pathol 102:155–159

    Article  CAS  Google Scholar 

  • Gan Z, Yang J, Tao N, Liang L, Mi Q, Li J et al (2007a) Cloning of the gene Lecanicillium psalliotae chitinase Lpchi1 and identification of its potential role in the biocontrol of root-knot nematode Meloidogyne incognita. Appl Microbiol Biotechnol 76:1309–1317

    Article  CAS  Google Scholar 

  • Gan Z, Yang J, Tao N, Yu Z, Zhang KQ (2007b) Cloning and expression analysis of a chitinase gene Crchi1 from the mycoparasitic fungus Clonostachys rosea (syn. Gliocladium roseum). J Microbiol 45:422–430

    CAS  PubMed  Google Scholar 

  • Geng J, Plenefisch J, Komuniecki PR, Komuniecki R (2002) Secretion of a novel developmentally regulated chitinase (family 19 glycosyl hydrolase) into the perivitelline fluid of the parasitic nematode, Ascaris suum. Mol Biochem Parasitol 124:11–21

    Article  CAS  Google Scholar 

  • Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  CAS  Google Scholar 

  • Goldman DL, Vicencio AG (2012) The chitin connection. MBio 3:pii:e00056–12

    Google Scholar 

  • Gruber S, Kubicek CP, Seidl-Seiboth V (2011a) Differential regulation of orthologous chitinase genes in mycoparasitic Trichoderma species. Appl Environ Microbiol 77:7217–7226

    Article  CAS  Google Scholar 

  • Gruber S, Vaaje-Kolstad G, Matarese F, López-Mondéjar R, Kubicek CP, Seidl-Seiboth V (2011b) Analysis of subgroup C of fungal chitinases containing chitin-binding and LysM modules in the mycoparasite Trichoderma atroviride. Glycobiology 21:122–133

    Article  CAS  Google Scholar 

  • Gruber S, Seidl-Seiboth V (2012) Self versus non-self: fungal cell wall degradation in Trichoderma. Microbiology 158:26–34

    Article  CAS  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    Article  CAS  Google Scholar 

  • Hollis T, Monzingo AF, Bortone K, Ernst S, Cox R, Robertus JD (2000) The X-ray structure of a chitinase from the pathogenic fungus Coccidioides immitis. Protein Sci 9:544–551

    Article  CAS  Google Scholar 

  • Honda Y, Taniguchi H, Kitaoka M (2008) A reducing-end-acting chitinase from Vibrio proteolyticus belonging to glycoside hydrolase family 19. Appl Microbiol Biotechnol 78:627–634

    Article  CAS  Google Scholar 

  • Horiuchi H (2009) Functional diversity of chitin synthases of Aspergillus nidulans in hyphal growth, conidiophore development and septum formation. Med Mycol 47:S47–S52

    Article  CAS  Google Scholar 

  • Johnson SM, Pappagianis D (1992) The coccidioidal complement fixation and immunodiffusion-complement fixation antigen is a chitinase. Infect Immun 60:2588–2592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Junges A, Boldo JT, Souza BK, Guedes RL, Sbaraini N, Kmetzsch L et al (2014) Genomic analyses and transcriptional profiles of the glycoside hydrolase family 18 genes of the entomopathogenic fungus Metarhizium anisopliae. PLoS ONE 9:e107864

    Article  Google Scholar 

  • Kong LA, Yang J, Li GT, Qi LL, Zhang YJ, Wang CF et al (2012) Different chitin synthase genes are required for various developmental and plant infection processes in the rice blast fungus Magnaporthe oryzae. PLoS Pathog 8:e1002526

    Article  CAS  Google Scholar 

  • Kowsari M, Motallebi M, Zamani M (2013) Protein engineering of chit42 towards improvement of chitinase and antifungal activities. Curr Microbiol 68:495–502

    Article  Google Scholar 

  • Kuranda MJ, Robbins PW. Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. J Biol Chem 266:19758–19767

    Google Scholar 

  • Langner T, Göhre V (2016) Fungal chitinases: function, regulation, and potential roles in plant/pathogen interactions. Curr Genet 62:243–254

    Article  CAS  Google Scholar 

  • Latgé JP (2007) The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 66:279–290

    Article  Google Scholar 

  • Lenardon MD, Munro CA, Gow NA (2010) Chitin synthesis and fungal pathogenesis. Curr Opin Microbiol 13:416–423

    Article  CAS  Google Scholar 

  • Li DC (2006) Review of fungal chitinases. Mycopathologia 161:345–360

    Article  CAS  Google Scholar 

  • Limón MC, Margolles-Clark E, Benítez T, Penttilä M (2001) Addition of substrate-binding domains increases substrate-binding capacity and specific activity of a chitinase from Trichoderma harzianum. FEMS Microbiol Lett 198:57–63

    Article  Google Scholar 

  • Motoyama T, Fujiwara M, Kojima N, Horiuchi H, Ohta A, Takagi M (1997) The Aspergillus nidulans genes chsA and chsD encode chitin synthases which have redundant functions in conidia formation. Mol Gen Genet 253:520–528

    Article  CAS  Google Scholar 

  • Muszewska A, Pilsyk S, Perlińska-Lenart U, Kruszewska JS (2017) Diversity of cell wall related proteins in human pathogenic fungi. J Fungi 4:pii:E6

    Google Scholar 

  • Rao FV, Houston DR, Boot RG, Aerts JM, Hodkinson M, Adams DJ et al (2005) Specificity and affinity of natural product cyclopentapeptide inhibitors against A. fumigatus, human, and bacterial chitinases. Chem Biol 12:65–76

    Article  CAS  Google Scholar 

  • Roncero C (2002) The genetic complexity of chitin synthesis in fungi. Curr Genet 41:367–378

    Article  CAS  Google Scholar 

  • Ruiz-Herrera J, González-Prieto JM, Ruiz-Medrano R (2002) Evolution and phylogenetic relationships of chitin synthases from yeasts and fungi. FEMS Yeast Res 1:247–256

    Article  CAS  Google Scholar 

  • Seidl V, Huemer B, Seiboth B, Kubicek CP (2005) A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS J 272:5923–5939

    Article  CAS  Google Scholar 

  • Tzelepis GD, Melin P, Jensen DF, Stenlid J, Karlsson M (2012) Functional analysis of glycoside hydrolase family 18 and 20 genes in Neurospora crassa. Fungal Genet Biol 49:717–730

    Article  CAS  Google Scholar 

  • Tzelepis G, Dubey M, Jensen DF, Karlsson M (2015) Identifying glycoside hydrolase family 18 genes in the mycoparasitic fungal species Clonostachys rosea. Microbiology 161:1407–1419

    Article  CAS  Google Scholar 

  • Yamada E, Ichinomiya M, Ohta A, Horiuchi H (2005) The class V chitin synthase gene csmA is crucial for the growth of the chsA/chsC double mutant in Aspergillus nidulans. Biosci Biotechnol Biochem 69:87–97

    Article  CAS  Google Scholar 

  • Yang JK, Gan Z, Lou Z, Tao N, Mi Q, Liang L et al (2010) Crystal structure and mutagenesis analysis of chitinase CrChi1 from the nematophagous fungus Clonostachys rosea in complex with the inhibitor caffeine. Microbiology 156:3566–3574

    Article  CAS  Google Scholar 

  • Yang JK, Yu Y, Li J, Zhu W, Geng Z, Jiang D et al (2013) Characterization and functional analyses of the chitinase-encoding genes in the nematode-trapping fungus Arthrobotrys oligospora. Arch Microbiol 195:453–462

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research described here is jointly supported by the NSFC-Yunnan Joint Fund (U1402265), the National Natural Science Foundation of China (approved nos. 31272093 and 31360019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Qin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, J., Zhang, KQ. (2019). Chitin Synthesis and Degradation in Fungi: Biology and Enzymes. In: Yang, Q., Fukamizo, T. (eds) Targeting Chitin-containing Organisms. Advances in Experimental Medicine and Biology, vol 1142. Springer, Singapore. https://doi.org/10.1007/978-981-13-7318-3_8

Download citation

Publish with us

Policies and ethics