Skip to main content

Chitin Organizing and Modifying Enzymes and Proteins Involved In Remodeling of the Insect Cuticle

  • Chapter
  • First Online:
Targeting Chitin-containing Organisms

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1142))

Abstract

Chitin, the extracellular matrix polysaccharide of insects and arthropods is widely distributed in nature in all kingdoms of life and serves a variety of functions. After synthesis by membrane-bound chitin synthases, it is extensively remodeled before incorporation into divergent matrices with wide-ranging physical and biological properties. This chapter discusses the properties of a variety of insect enzymes and proteins involved in this process. Chitin remodeling involves chitin synthases, which make the nascent chitin chains, and chitin deacetylases that partially deacetylate some of the N-acetylglucosamine residues either randomly or sequentially to yield local chitosan-like regions. Other proteins secreted into the procuticle or the midgut help in the assembly of single chitin chains into larger crystalline aggregates that measure in a few 100 nanometers. They are further embedded in a complex matrix of cuticular proteins or become associated with proteins containing chitin-binding domains to constitute the laminar procuticle or the lattice-like peritrophic matrix. During molting, previously formed laminar cuticle or PM are decrystallized/depolymerized to unmask the chitin chains, which then are degraded by a mixture of chitinolytic enzymes consisting of chitinases and N-acetylglucosaminidases present in molting fluid or in gut secretions. Some of the degradation products may be recycled for the synthesis of new matrices. We present a model of chitin synthesis, assembly, and degradation and the roles of these chitin-remodeling enzymes in this overall process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal S, Kelkenberg M, Begum K, Steinfeld L, Williams CE, Kramer KJ, Beeman RW, Park Y, Muthukrishnan S, Merzendorfer H (2014) Two essential peritrophic matrix proteins mediate matrix barrier functions in the insect midgut. Insect Biochem Mol Biol 49:24–34

    Article  CAS  PubMed  Google Scholar 

  • Arakane Y, Zhu Q, Matsumiya M, Muthukrishnan S, Kramer KJ (2003) Properties of catalytic, linker and chitin-binding domains of insect chitinase. Insect Biochem Mol Biol 33:631–648

    Article  CAS  PubMed  Google Scholar 

  • Arakane Y, Hogenkamp DG, Zhu YC, Kramer KJ, Specht CA et al (2004) Characterization of two chitin synthase genes of the red flour beetle, Tribolium castaneum, and alternate exon usage in one of the genes during development. Insect Biochem Mol Biol 34:291–304

    Article  CAS  PubMed  Google Scholar 

  • Arakane Y, Muthukrishnan S, Kramer KJ, Specht CA, Tomoyasu Y et al (2005) The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix. Insect Mol Biol 14:453–463

    Article  CAS  PubMed  Google Scholar 

  • Arakane Y, Li B, Muthukrishnan S, Beeman RW, Kramer KJ, Park Y (2008a) Functional analysis of four neuropeptides, EH, ETH, CCAP and bursicon and their receptors in adult ecdysis behavior of the red flour beetle, Tribolium castaneum. Mech Dev 125:984–995

    Article  CAS  PubMed  Google Scholar 

  • Arakane Y, Specht CA, Kramer KJ, Muthukrishnan S, Beeman RW (2008b) Chitin synthases are required for survival, fecundity and egg hatch in the red flour beetle, Tribolium castaneum. Insect Biochem Mol Biol 38:959–962

    Article  CAS  PubMed  Google Scholar 

  • Arakane Y, Dixit R, Begum K, Park Y, Specht CA et al (2009) Analysis of functions of the chitin deacetylase gene family in Tribolium castaneum. Insect Biochem Mol Biol 39:355–365

    Article  CAS  PubMed  Google Scholar 

  • Arakane Y, Muthukrishnan S (2010) Insect chitinase and chitinase-like proteins. Cell Mol Life Sci 67:201–216

    Article  CAS  PubMed  Google Scholar 

  • Barbehenn RV (2001) Roles of peritrophic membranes in protecting herbivorous insects from ingested plant allelochemicals. Arch Insect Biochem Physiol 47:86–99

    Article  CAS  PubMed  Google Scholar 

  • Beckham GT, Crowley MF (2011) Examination of the α-chitin structure and decrystallization thermodynamics at the nanoscale. J Phys Chem B 115:4516–4522

    Article  CAS  PubMed  Google Scholar 

  • Bolognesi R, Terra WR, Ferreira C (2008) Peritrophic membrane role in enhancing digestive efficiency. Theoretical and experimental models. J Insect Physiol 54:1413–1422

    Article  CAS  PubMed  Google Scholar 

  • Brameld KA, Shrader WD, Imperiali B, Goddard WAIII (1998) Substrate assistance in the mechanism of family 18 chitinases: theoretical studies of potential intermediates and inhibitors. J Mol Biol 280:913–923

    Article  CAS  PubMed  Google Scholar 

  • Chaudhari SS, Arakane Y, Specht CA, Moussian B, Boyle DL et al (2011) Knickkopf protein protects and organizes chitin in the newly synthesized insect exoskeleton. Proc Natl Acad Sci USA 108:17028–17033

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaudhari SS, Moussian B, Specht CA, Arakane Y, Kramer KJ, Beeman RW, Muthukrishnan S (2014) Functional specialization among members of Knickkopf family of proteins in insect cuticle organization. PLoS Genet 2014(10):e1004537

    Article  CAS  Google Scholar 

  • Chen L, Liu T, Zhou Y, Chen Q, Shen X, Yang Q (2014) Structural characteristics of an insect group I chitinase, an enzyme indispensable to moulting. Acta Crystallographica D Biol Crystallogr 70:932–942

    Article  CAS  Google Scholar 

  • Chen C, Yang H, Tang B, Yang WJ, Jin DC (2017) Identification and functional analysis of chitinase 7 gene in white-backed planthopper, Sogatella furcifera. Comput Biochem Physiol B: Biochem Mol Biol 208–209:19–28

    Article  CAS  Google Scholar 

  • Chen X, Xu K, Yan X, Chen C, Cao Y, Wang Y, Li C, Yang W (2018a) Characterization of a β-N-acetylglucosaminidase gene and its involvement in the development of Lasioderma serricorne (Fabricius). Stored Product Res 77:156–165

    Article  Google Scholar 

  • Chen W, Qu M, Zhou Y (2018b) Qing Y (2018) Structural analysis of group II chitinase (ChtII) catalysis completes the puzzle of chitin hydrolysis in insects. J Biol Chem 293:2652–2660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen E (2010) Chitin biochemistry: synthesis, hydrolysis and inhibition. In: Jérôme C, Stephen JS (eds) Advances in insect physiology, vol 38. Academic Press, New York, pp 5–74

    Google Scholar 

  • Dinglasan RR, Devenport M, Florens L, Johnson JR, McHugh CA, Donnelly-Doman M, Carucci DJ, Yates JR, 3r, Jacobs-Lorena, M (2009) The Anopheles gambiae adult midgut peritrophic matrix proteome. Insect Biochem Mol Biol 39:125–134

    Google Scholar 

  • Dittmer NT, Hiromasa Y, Tomich JM, Lu N, Beeman RW, Kramer KJ, Kanost MR (2012) Proteomic and transcriptomic analyses of rigid and membranous cuticles from the elytra and hindwings of the red flour beetle. Tribolium castaneum. J. Proteome Research 11:269–278

    Article  CAS  Google Scholar 

  • Dixit R, Arakane Y, Specht CA, Richard C, Kramer KJ et al (2008) Domain organization and phylogenetic analysis of proteins from the chitin deacetylase gene family of Tribolium castaneum and three other species of insects. Insect Biochem Mol Biol 38:440–451

    Article  CAS  PubMed  Google Scholar 

  • Dorfmueller HC, Ferenbach AT, Borodkin VS, van Aalten DM (2014) A structural and biochemical model of processive chitin synthesis. J Biol Chem 289:23020–23028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dziadik-Turner C, Koga D, Mai MS, Kramer KJ (1981) Purification and characterization of two β-N-acetylhexosaminidases from the tobacco hornworm, Manduca sexta (L.) (Lepidoptera: Sphingidae). Arch Biochem Biophys 21:546–560

    Article  Google Scholar 

  • Eisemann CH, Donaldson RA, Pearson RD, Cadogan LC, Vuocolo T, Tellam RL (1994) Larvicidal activity of lectins on Lucilia cuprina: Mechanism of action. Ent Exp Appl 72:1–10

    Article  CAS  Google Scholar 

  • Fabritius HO, Sachs C, Triguero PR, Raabe D (2009) Influence of structural principles on the mechanics of a biological fiber-based composite material with hierarchical organization: The Exoskeleton of the Lobster Homarus americanus. Adv Mater Sci 21:391–400

    CAS  Google Scholar 

  • Filho BP, Lemos FJ, Secundino NF, Pascoa V, Pereira ST, Pimenta PF (2002) Presence of chitinase and beta-N-acetylglucosaminidase in the Aedes aegypti: A chitinolytic system involving peritrophic matrix formation and degradation. Insect Biochem Mol Biol 32:1723–1729

    Article  CAS  PubMed  Google Scholar 

  • Fukamizo T, Kramer KJ (1985) Mechanism of chitin hydrolysis by the binary chitinase system in insect moulting fluid. Insect Biochem 15:141–145

    Article  CAS  Google Scholar 

  • Gohlke S, Muthukrishnan S, Merzendorfer H (2017) In Vitro and In Vivo studies on the structural organization of Chs3 from Saccharomyces cerevisiae. Int J Mol Sci 18:E702

    Article  CAS  PubMed  Google Scholar 

  • Grifoll-Romero L, Pascual S, Aragunde H, Biarnés X, Planas A (2018) Chitin deacetylases: structures. Specific Biotech Appl Polymers 10:352

    Google Scholar 

  • Guo W, Li G, Pang Y, Wang P (2005) A novel chitin-binding protein identified from the peritrophic membrane of the cabbage looper, Trichoplusia ni. Insect Biochem Mol Biol 35:1224–1234

    Article  CAS  PubMed  Google Scholar 

  • Harper MS, Hopkins TL (1997) Peritrophic membrane structure and secretion in European corn borer larvae (Ostrinia nubilalis). Tissue Cell 29:463–475

    Article  CAS  PubMed  Google Scholar 

  • He B, Chu Y, Yin M, Müllen K, An C, Shen J (2013) Fluorescent nanoparticle delivered dsRNA toward genetic control of insect pests. Adv Mater 25:4580–4584

    Article  CAS  PubMed  Google Scholar 

  • Hegedus D, Erlandson M, Gillott C, Toprak U (2009) New insights into peritrophic matrix synthesis, architecture, and function. Annu Rev Entomol 54:285–302

    Article  CAS  PubMed  Google Scholar 

  • Henrissat B (1991) A classification of glycosylhydrolases based on amino acid sequence similarities. Bochem J. 280:309–316

    Article  CAS  Google Scholar 

  • Hogenkamp DG, Arakane Y, Zimoch L, Merzendorfer H, Kramer KJ et al (2005) Chitin synthase genes in Manduca sexta: characterization of a gut-specific transcript and differential tissue expression of alternately spliced mRNAs during development. Insect Biochem Mol Biol 35:529–540

    Article  CAS  PubMed  Google Scholar 

  • Hogenkamp DG, Arakane Y, Kramer KJ, Muthukrishnan S, Beeman RW (2008) Characterization and expression of the & #x03B2;-N-acetylhexosaminidase gene family of Tribolium castaneum. Insect Biochem Mol Biol 38:478–489

    Article  CAS  PubMed  Google Scholar 

  • Hopkins TL, Harper MS (2001) Lepidopteran peritrophic membranes and effects of dietary wheat germ agglutinin on their formation and structure. Arch Insect Biochem Physiol 47:100–109

    Article  CAS  PubMed  Google Scholar 

  • Hamodrakas SJ, Willis JH, Iconomidou VA (2005) A structural model of the chitin-binding domain of cuticle proteins. Insect Biochem Molec Biol 32:1577–1583

    Article  Google Scholar 

  • Intra J, Pavesi G, Horner DS (2008) Phylogenetic analyses suggest multiple changes of substrate specificity within the glycosyl hydrolase 20 family. BMC Evol Biol 8:214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer LM, Anantharaman V, Aravind L (2007) The Domon domains are involved in heme and sugar recognition. Bioinformatics 23:2660–2664

    Article  CAS  PubMed  Google Scholar 

  • Jakubowska AK, Caccia S, Gordon KH, Ferre J, Herrero S (2010) Downregulation of a chitin deacetylase-like protein in response to baculovirus infection and its application for improving baculovirus infectivity. J Virol 84:2547–2555

    Article  CAS  PubMed  Google Scholar 

  • Jasrapuria S, Arakane Y, Osman G, Kramer KJ, Beeman RW, Muthukrishnan S (2010) Genes encoding proteins with peritrophin A-type chitin-binding domains in Tribolium castaneum are grouped into three distinct families based on phylogeny, expression and function. Insect Biochem Mol Biol 40:214–227

    Article  CAS  PubMed  Google Scholar 

  • Jasrapuria S, Specht CA, Kramer KJ, Beeman RW, Muthukrishnan S (2012) Gene families of cuticular proteins analogous to peritrophins (CPAPs) in Tribolium castaneum have diverse functions. PLoS ONE 7:e49844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawamura K, Shibata T, Saget O, Peel D, Bryant PJ (1999) A new family of growth factors produced by the fat body and active on Drosophila imaginal disc cells. Development 126:211–219

    CAS  PubMed  Google Scholar 

  • Kaya M, Baran T, Erdoğan S, Menteş A, Özüsağlam MA, Çakmak YS (2014) Physicochemical comparison of chitin and chitosan obtained from larvae and adult Colorado potato beetle (Leptinotarsa decemlineata). Mater Sci Eng 45:72–81

    Article  CAS  Google Scholar 

  • Kelkenberg M, Odman-Naresh J, Muthukrishnan S, Merzendorfer H (2015) Chitin is a necessary component to maintain the barrier function of the peritrophic matrix in the insect midgut. Insect Biochem Mol Biol 56:21–28

    Article  CAS  PubMed  Google Scholar 

  • Khajuria C, Buschman LL, Chen MS, Muthukrishnan S, Zhu KY (2010) A gut-specific chitinase gene essential for regulation of chitin content of peritrophic matrix and growth of Ostrinia nubilalis larvae. Insect Biochem Mol Biol 40:621–629

    Article  CAS  PubMed  Google Scholar 

  • Kimura S (1976) Insect haemolymph exo-β -N-acetylglucosaminidase from Bombyx mori. Purification and properties. Biochim Biophys Acta 446:399–406

    Article  CAS  PubMed  Google Scholar 

  • Koga D, Mai MS, Dziadik-Turner C, Kramer KJ (1982) Kinetics and mechanism of exochitinase and ß-N-acetylhexosaminidase from the tobacco hornworm, Manduca sexta L. (Lepidoptera: Sphingidae). Insect Biochem 12:493–499

    Article  CAS  Google Scholar 

  • Koga D, Sasaki Y, Uchiumi Y, Hirai N, Arakane Y, Nagamatsu Y (1997) Purification and characterization of Bombyx mori chitinases. Insect Biochem Mol Biol 27:757–767

    Article  CAS  PubMed  Google Scholar 

  • Kramer KJ, Corpuz L, Choi HK, Muthukrishnan S (1993) Sequence of a cDNA and expression of the gene encoding epidermal and gut chitinases of Manduca sexta. Insect Biochem Mol Biol 23:691–701

    Article  CAS  PubMed  Google Scholar 

  • Leonard R, Rendic D, Rabouille C, Wilson IB, Preat T, Altmann F (2006) The Drosophila fused lobes gene encodes an N-acetylglucosaminidase involved in N-glycan processing. J Biol Chem 281:4867–4875

    Article  CAS  PubMed  Google Scholar 

  • Li H, Greene LH (2010) Sequence and structural analysis of the chitinase insertion domain reveals two conserved motifs involved in chitin binding. PLoS ONE 5:e8654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Zhang J, Wang Y, Liu X, Ma E et al (2015) Two chitinase 5 genes from Locusta migratoria: Molecular characteristics and functional differentiation. Insect Biochem Mol Biol 58:46–54

    Article  CAS  PubMed  Google Scholar 

  • Li K, Zhang X, Lou W, Zhang J, Moussian B (2017) Timed Knickkopf function is essential for wing cuticle formationin Drosophila melanogaster. Insect Biochem Mol Biol 89:1–10

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Zhang H, Liu F, Wu Q, Shen X, Yang Q (2011) Structural determinants of an insect & #x03B2;-N-acetyl-D-hexosaminidase specialized as a chitinolytic enzyme. J Biol Chem 286:4049–4058

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Liu T, Qu M, Yang Q (2012) Molecular and biochemical characterization of a novel β-N-acetyl-D-hexosaminidase with broad substrate-spectrum from the Asian corn borer. O. furnacalis. Int J Biol Sci 8:1085–1096

    Article  CAS  Google Scholar 

  • Liu XJ, Li F, Li DQ, Ma EB, Zhang WQ, Zhu KY, Zhang JZ (2013) Molecular and functional analysis of UDP-N-acetylglucosamine pyrophosphorylases from the migratory locust. Locusta migratoria. PLoS ONE 8:e71970

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Zhu W, Wang J, Zhou Y, Duan Y, Qu M, Yang Q (2018) The deduced role of a chitinase containing two non-synergistic catalytic domains. Acta Cryst D74:21–29

    Google Scholar 

  • Liu Z, Gay LM, Tuveng TR, Agger JW, Westereng B, Mathiesen G, Horn SJ, Vaaje-Kolstad G, van Aalten DMF, Eijsink VGH (2017) Structure and function of a broad-specificity chitin deacetylase from Aspergillus nidulans FGSC A4. Sci Rep 7:1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu YM, Zen KC, Muthukrishnan S, Kramer KJ (2002) Site-directed mutagenesis and functional analysis of active site acidic amino acid residues D142, D144 and E146 in Manduca sexta (tobacco hornworm) chitinase. Insect Biochem Mol Biol 32:1369–1382

    Article  CAS  PubMed  Google Scholar 

  • Luschnig S, Batz T, Armbruster K, Krasnow MA (2006) Serpentine and vermiform encode matrix proteins with chitin binding and deacetylation domains that limit tracheal tube length in Drosophila. Curr Biol 16:186–194

    Article  CAS  PubMed  Google Scholar 

  • Maue L, Meissner D, Merzendorfer H (2009) Purification of an active, oligomeric chitin synthase complex from the midgut of the tobacco hornworm. Insect Biochem Mol Biol 39:654–659

    Article  CAS  PubMed  Google Scholar 

  • Merzendorfer H (2013) Chitin synthesis inhibitors: old molecules and new developments. Insect Sci 20:121–138

    Google Scholar 

  • Merzendorfer H, Zimoch L (2003) Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 206:4393–4412

    Article  CAS  PubMed  Google Scholar 

  • Merzendorfer H, Kelkenberg M, Muthukrishnan S (2016) Peritrophic matrices. In: Moussian B, Cohen E (eds) Extracellular composite matrices in arthropods, Chap. 8. Springer, Switzerland, pp 255–324

    Google Scholar 

  • Miller N, Lehane MJ (1993) Ionic environment and the permeability properties of the peritrophic membrane of Glossina morsitans morsitans. J Insect Physiol 631:139–144

    Article  Google Scholar 

  • Morgan JL, McNamara JT, Fischer M, Rich J, Chen HM, Withers SG, Zimmer J (2016) Observing cellulose biosynthesis and membrane translocation in crystallo. Nature 531:329–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moussian B, Tang E, Tonning A, Helms S, Schwarz H et al (2005) Drosophila Knickkopf and Retroactive are needed for epithelial tube growth and cuticle differentiation through their specific requirement for chitin filament organization. Development 133:163–171

    Article  CAS  Google Scholar 

  • Muthukrishnan S, Merzendorfer H, Arakane Y, Kramer KJ (2012) Chitin metabolism in insects. In: Gilbert LI (ed) Insect biochemistry and molecular biology. Elsevier, San Diego, pp.193–235

    Google Scholar 

  • Muthukrishnan S, Merzendorfer H, Arakane Y, Yang Q (2016) Chitin metabolic pathways in insects and their regulation. In: Moussian B, Cohen E (eds) Extracellular composite matrices in arthropods, Chap. 2. Springer, Switzerland, pp 31–65

    Google Scholar 

  • Muzzarelli RAA (1973) Chitin. In: Muzzarelli RAA (ed) Natural chelating polymers: alginic acid, chitin, and chitosan. Pergamon Press, New York, pp 83–252

    Google Scholar 

  • Nagamatsu Y, Yanagisawa I, Kimoto M, Okamoto E, Koga D (1995) Purification of a chitooligosaccharidolytic beta-N-acetylglucosaminidase from Bombyx mori larvae during metamorphosis and the nucleotide sequence of its cDNA. Biosci Biotechnol Biochem 59:219–225

    Article  CAS  PubMed  Google Scholar 

  • Neville AC, Parry DA, Woodhead-Galloway J. (1976) The chitin crystallite in arthropod cuticle. J Cell Sci 21:73–82

    Google Scholar 

  • Noh MY, Kramer KJ, Muthukrishnan S, Arakane Y (2014) Two major cuticular proteins are required for assembly of horizontal laminae and vertical pore canals in rigid cuticle of Tribolium castaneum. Insect Biochem Mol Biol. 53:22–29

    Google Scholar 

  • Noh M, Muthukrishnan S, Kramer KJ, Arakane Y (2018a) A chitinase with two catalytic domains is required for organization of the cuticular extracellular matrix of a beetle. PLOS Genetics| https://doi.org/10.1371/journal.pgen.1007307

  • Noh M, Muthukrishnan S, Kramer KJ, Arakane Y (2018b) Group I chitin deacetylases are essential for higher order organization of chitin fibers in beetle cuticle. J Biol Chem 293:6985–6995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostrowski S, Dierick HA, Bejsovec A (2002) Genetic control of cuticle formation during embryonic development of Drosophila melanogaster. Genetics 161:171–182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pesch YY, Riedel D, Behr M (2015) Obstructor A organizes matrix assembly at the apical cell surface to promote enzymatic cuticle maturation in Drosophila. J Biol Chem 290:10071–10082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pesch Y, Riedel D, Patil KR, Loch G, Behr M (2016a) Chitinases and Imaginal disc growth factors organize the extracellular matrix formation at barrier tissues in insects. Sci Rep 6, Article number:18340

    Article  CAS  Google Scholar 

  • Pesch Y, Riedel D, Loch G, Behr M (2016b) Drosophila chitinase 2 is expressed in chitin producing organs for cuticle formation. Arthropod Struct Dev 46:4–12

    Article  PubMed  Google Scholar 

  • Petkau G, Wingen C, Jussen LC, Radtke T, Behr M (2012) Obstructor-A is required for epithelial extracellular matrix dynamics, exoskeleton function, and tubulogenesis. J Biol Chem 287:21396–21405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu M, Yang Q (2011) A novel alternative splicing site of class A chitin synthase from the insect O. furnacalis- Gene organization, expression pattern and physiological significance. Insect Biochem Mol Biol 41:923–931

    Article  CAS  PubMed  Google Scholar 

  • Qu M, Yang Q (2012) Physiological significance of alternatively spliced exon combinations of the single-copy gene class A chitin synthase in the insect O. furnacalis (Lepidoptera). Insect Mol Biol 21:395–404

    Article  CAS  PubMed  Google Scholar 

  • Qu M, Ma L, Chen P, Yang Q (2014) Proteomic analysis of insect molting fluid with a focus on enzymes involved in chitin degradation. J Proteome Res 13:2931–2940

    Article  CAS  PubMed  Google Scholar 

  • Qu M, Ren Y, Liu Y, Yang Q (2017) Studies on the chitin/chitosan binding properties of six cuticular proteins analogous to peritrophin 3 from Bombyx mori. Insect Molec Biol 26432–439

    Google Scholar 

  • Reynolds SE, Samuels RI (1996) Physiology and biochemistry of insect molting fluid. Adv Insect Physiol 26:157–232

    Article  CAS  Google Scholar 

  • Sacristan C, Manzano‐Lopez J, Reyes A, Spang A, Muniz M, Roncero C (2013) Oligomerization of the chitin synthase Chs3 is monitored at the Golgi and affects its endocytic recycling. Mol Microbiol 90:252–266

    Google Scholar 

  • Schorderet S, Pearson RD, Vuocolo T, Eisemann C, Riding GA, Tellam RL (1998) cDNA and deduced amino acid sequences of a peritrophic membrane glycoprotein, ‘peritrophin-48’, from the larvae of Lucilia cuprina. Insect Biochem Mol Biol 28:99–111

    Article  CAS  PubMed  Google Scholar 

  • Shen Z, Jacobs-Lorena M (1998) A type I peritrophic matrix protein from the malaria vector Anopheles gambiae binds to chitin. Cloning, expression, and characterization. J Biol Chem 273:17665–17670

    Article  CAS  PubMed  Google Scholar 

  • Shirk PD, Perera OP, Shelby KS, Furlong RB, LoVullo ED, Pophamc HJR (2015) Unique synteny and alternate splicing of the chitin synthases in closely related heliothine moths. Gene 574:121–139

    Article  CAS  PubMed  Google Scholar 

  • Su C, Tu G, Huang S, Yang Y, Shahad MF, Li F (2016) Genome-wide analysis of chitinase genes and theirvaried functions in larval moult, pupation and eclosion in the rice striped stem borer, Chilo suppressalis. Insect Mol Biol 25:401–412

    Article  CAS  PubMed  Google Scholar 

  • Tellam RL (1996) The peritrophic matrix. In: Lehane MJ, Billingsley PF (eds) Biology of the insect midgut. Chapman-Hall, Cambridge, pp. 86–114

    Google Scholar 

  • Tellam RL, Vuocolo T, Johnson SE, Jarmey J, Pearson RD (2000) Insect chitin synthase cDNA sequence, gene organization and expression. Eur J Biochem 267:6025–6043

    Article  CAS  PubMed  Google Scholar 

  • Terra WR (2001) The origin and functions of the insect peritrophic membrane and peritrophic gel. Arch Insect Biochem Physiol 47:47–61

    Article  CAS  PubMed  Google Scholar 

  • Tetreau G, Cao XL, Chen YR, Muthukrishnan S, Jiang HB et al (2015a) Overview of chitin metabolism enzymes in Manduca sexta: Identification, domain organization, phylogenetic analysis and gene expression. Insect Biochem Mol Biol 62:114–126

    Article  CAS  PubMed  Google Scholar 

  • Tetreau G, Dittmer NT, Caoc X, Agrawal S, Chen Y-R et al (2015b) Analysis of chitin-1 binding proteins from Manduca sexta provides new insights into evolution of peritrophin A type chitin-binding domains in insects. Insect Biochem Mol Biol 62:27–41

    Google Scholar 

  • Tews I, van Scheltinga T, Perrakis A, Wilson KS, Dijkstra BW (1997) Substrate-assisted catalysis unifies two families of chitinolytic enzymes. J Am Chem Soc 119:7954–7959

    Article  CAS  Google Scholar 

  • Tomiya N, Narang S, Park J, Abdul-Rahman B, Choi O, Singh S, Hiratake J, Sakata K, Betenbaugh MJ, Palter KB, Lee YC (2006) Purification, characterization, and cloning of a Spodoptera frugiperda Sf9 beta-N-acetylhexosaminidase that hydrolyzes terminal N-acetylglucosamine on the N-glycan core. J Biol Chem 281:19545–19560

    Article  CAS  PubMed  Google Scholar 

  • Toprak U, Baldwin D, Erlandson M, Gillott C, Hegedus DD (2010) Insect intestinal mucins and serine proteases associated with the peritrophic matrix from feeding, starved and moulting Mamestra configurata larvae. Insect Mol Biol 19:163–175

    Article  CAS  PubMed  Google Scholar 

  • Toprak U, Erlandson M, Baldwin D, Karcz S, Wan L, Coutu C, Gillott C, Hegedus DD (2015) Identification of the Mamestra configurata (Lepidoptera: Noctuidae) peritrophic matrix proteins and enzymes involved in peritrophic matrix chitin metabolism. Insect Sci. https://doi.org/10.1111/1744-7917.12225

    Article  PubMed  Google Scholar 

  • Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sorlie M, Eijsink GH (2010) An oxidative enzyme boosing the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–222

    Article  CAS  PubMed  Google Scholar 

  • Varela PF, Llera AS, Mariuzza RA, Tormo J (2002) Crystal structure of imaginal disc growth factor-2. J Biol Chem 277:13229–13236

    Article  CAS  PubMed  Google Scholar 

  • Venancio TM, Cristofoletti PT, Ferreira C, Verjovski-Almeida S, Terra WR (2009) The Aedes aegypti larval transcriptome: a comparative perspective with emphasis on trypsins and the domain structure of peritrophins. Insect Mol Biol 18:33–44

    Article  CAS  PubMed  Google Scholar 

  • Vuocolo T, Eisemann CH, Pearson RD, Willadsen P, Tellam RL (2001) Identification and molecular characterisation of a peritrophin gene, peritrophin-48, from the myiasis fly Chrysomya bezziana. Insect Biochem Mol Biol 31:919–932

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Jayaram SA, Hemphala J, Senti KA, Tsarouhas V, Jin H, Samakovlis C (2006) Septate-junction-dependent luminal deposition of chitin deacetylases restricts tube elongation in the Drosophila trachea. Curr Biol 16:180–185

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Fan HW, Huang HJ et al (2012) Chitin synthase 1 gene and its two alternative splicing variants from two sap-sucking insects, Nilaparvata lugens and Laodelphax striatellus (Hemiptera: Delphacidae). Insect Biochem Mol Biol 42:637–646

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Kobori K, Miyashita K, Fujii T, Sakai H, Uchida M, Tanaka H (1993) Identification of glutamic acid 204 and aspartic acid 200 in chitinase A1 of Bacillus circulans WL-12 as essential residues for chitinase activity. J Biol Chem 268:18567–18572

    CAS  PubMed  Google Scholar 

  • Wieschaus E, Nüsslein-Volhard C, Jurgens G (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster: zygotic loci on the X-chromosome and the fourth chromosome. Wilhelm Roux’s Arch Dev Biol 193:296–307

    Article  CAS  Google Scholar 

  • Willis JH, Papandreou NC, Iconomidou VA, Hamodrakas SJ (2012) Cuticular proteins. In: Gilbert LI (ed) Insect molecular biology and biochemistry. Chapel Hill (NC): Academic, New Jersey, pp 134–166

    Google Scholar 

  • Wu JJ, Chen Z-C, Wang Y-W, Fu K-Y, Guo W-C, Li G-Q (2018) Silencing chitin deacetylase 2 impairs larval-pupal and pupal-adult molts in Leptinotarsa decemlineata. Insect Mol Biol In press

    Google Scholar 

  • Xi Y, Pan PL, Ye YX, Yu B, Xu HJ et al (2015) Chitinase-like gene family in the brown planthopper, Nilaparvata lugens. Insect Biochem Mol Biol 24:29–40

    Article  CAS  Google Scholar 

  • Xi Y, Pan PL, Ye YX, Yu B, Zhang CX (2014) Chitin deacetylase family genes in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Insect Mol Biol 23:695–705

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Zhang J, Lyu H, Liu J, Ding Y, Feng Q, Zhong Q, Zheng S (2017) BmCHSA-2b, a Lepidoptera specific alternative splicing variant of epidermal chitin synthase, is required for pupal wing development in Bombyx mori. Insect Biochem Mol Biol 87:117–126

    Article  CAS  PubMed  Google Scholar 

  • Yabe T, ToshikoY-O Nakajima T, Masayuki S, Mikio A, Hisafumi Y-O (1998) Mutational analysis of chitin synthase 2 of Saccharomyces cerevisiae: Identification of additional amino acid residues involved in its catalytic activity. Eur J Biochem 258:941–947

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Liu T, Liu FY, Qu MB Qian XH. (2008) A novel β-N-acetyl-D-hexosaminidase from the insect O. furnacalis (Guene´e). FEBS J 275:5690–5702

    Google Scholar 

  • Yang WJ, Xu KK, Cong L, Wang JJ (2013) Identification, mRNA expression, and functional analysis of chitin synthase 1 gene and its two alternative splicing variants in oriental fruit fly, Bactrocera dorsalis. Int J Biol Sci 9:331–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu R, Liu W, Li D, Zhao X, Ding G, Zhang M, Ma E, Zhu K-Y, Li S, Mousian B, Zhang J (2016) Helicoidal organization of chitin in the cuticle of the migratory locust requires the function of the chitin deacetylase enzyme (LmCDA2). J Biol Chem 291:24352–24363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zees AC, Pyrpassopoulos S, Vorgias CE (2009) Insights into the role of the (alpha + beta) insertion in the TIM-barrel catalytic domain, regarding the stability and the enzymatic activity of chitinase A from Serratia marcescens. Biochim Biophys Acta 1794:23–31

    Article  CAS  PubMed  Google Scholar 

  • Zen KC, Choi HK, Nandigama K, Muthukrishnan S, Kramer KJ (1996) Cloning, expression and hormonal regulation of an insect β-N-acetylglucosaminidase gene. Insect Biochem Mol Biol 26:435–444

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Chen J, Yao Q, Pan Z, Chen J et al (2012) Functional analysis of two chitinase genes during the pupation and eclosion stages of the beet armyworm Spodoptera exigua by RNA interference. Arch Insect Biochem Physiol 79:220–234

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Lu A, Zhang Q, Ling E (2014) Functional analysis of insect molting fluid proteins on the protection and egulation of ecdysis. J Biol Chem 289:35891–35906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Liu X, Li D, Sun Y, Guo Y et al (2010) Silencing of two alternative splicing-derived mRNA variants of chitin synthase 1 gene by RNAi is lethal to the oriental migratory locust, Locusta migratoria manilensis (Meyen). Insect Biochem Mol Biol 40:824–833

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang X, Arakane Y, Muthukrishnan S, Kramer KJ, Ma E, Zhu KY (2011a) Comparative genomic analysis of chitinase and chitinase-like genes in the African malaria mosquito (Anopheles gambiae). PLoS ONE 6(5):e19899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhang X, Arakane Y, Muthukrishnan S, Kramer KJ, Ma E, Zhu KY (2011b) Identification and characterization of a novel chitinase-like gene cluster (AgCht5) possibly derived from tandem duplications in the African malaria mosquito, Anopheles gambiae. Insect Biochem Mol Biol 41:521–528

    Article  CAS  PubMed  Google Scholar 

  • Zhong XW, Wang XH, Tan X, Xia QY, Xiang ZH, Zhao P (2014) Identification and molecular characterization of a chitin deacetylase from Bombyx mori peritrophic membrane. Int J Mol Sci 15:1946–1961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Badgett MJ, Bowen JH, Vannini L, Orlando R, Willis JH (2016) Distribution of cuticular proteins in different structures of adult Anopheles gambiae. Insect Biochem Mol Biol 75:45–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Q, Arakane Y, Banerjee D, Beeman RW, Kramer KJ, Muthukrishnan S (2008a) Domain organization and phylogenetic analysis of the chitinase-like family of proteins in three species of insects. Insect Biochem Mol Biol 38:452–466

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Arakane Y, Beeman RW, Kramer KJ, Muthukrishnan S (2008b) Characterization of recombinant chitinase-like proteins of Drosophila melanogaster and Tribolium castaneum. Insect Biochem Mol Biol 38:467–477

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Arakane Y, Beeman RW, Kramer KJ, Muthukrishnan S (2008c) Functional specialization among insect chitinase family genes revealed by RNA interference. Proc Nat Acad Sci USA 105:6650–6655

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu Q, Deng Y, Vanka P, Brown SJ, Muthukrishnan S et al (2004) Computational identification of novel chitinase-like proteins in the Drosophila melanogaster genome. Bioinformatics 20:161–169

    Article  CAS  PubMed  Google Scholar 

  • Zimoch L, Merzendorfer H (2002) Immunolocalization of chitin synthase in the tobacco hornworm. Cell Tissue Res 308:287–297

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT) (2018R1A2B6005106) to YA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subbaratnam Muthukrishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muthukrishnan, S., Merzendorfer, H., Arakane, Y., Yang, Q. (2019). Chitin Organizing and Modifying Enzymes and Proteins Involved In Remodeling of the Insect Cuticle. In: Yang, Q., Fukamizo, T. (eds) Targeting Chitin-containing Organisms. Advances in Experimental Medicine and Biology, vol 1142. Springer, Singapore. https://doi.org/10.1007/978-981-13-7318-3_5

Download citation

Publish with us

Policies and ethics